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Metagenomics has become one of the indispensable tools in microbial ecology for the last few decades, and a new revolution 
in metagenomic studies is now about to begin, with the help of recent advances of sequencing techniques. The massive data 
production and substantial cost reduction in next-generation sequencing have led to the rapid growth of metagenomic 
research both quantitatively and qualitatively. It is evident that metagenomics will be a standard tool for studying the 
diversity and function of microbes in the near future, as fingerprinting methods did previously. As the speed of data 
accumulation is accelerating, bioinformatic tools and associated databases for handling those datasets have become more 
urgent and necessary. To facilitate the bioinformatics analysis of metagenomic data, we review some recent tools and 
databases that are used widely in this field and give insights into the current challenges and future of metagenomics from a 
bioinformatics perspective.
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Introduction

Metagenomics is defined as the study of the metagenome, 
which is total genomic DNA from environmental samples. 
Metagenomics has long been one of the major research tools 
in microbial ecology since the term was first used in 1998 
[1]. Metagenomic information allows for a more in-depth 
understanding of the ecological role, metabolism, and evo-
lutionary history of microbes in a given ecosystem by 
analyzing environmental DNA directly without prior culti-
vation. Metagenomics has made unprecedented contribu-
tions to microbial ecology; among them, one of the most 
outstanding discoveries of metagenomics is the first descrip-
tion of proteorhodopsin in marine bacteria [2]. Moreover, 
many hypotheses and questions in ecology and evolutionary 
biology have been tested and answered through metage-
nomic research. For example, Fuhrman et al. [3] tested a 
latitudinal gradient of biodiversity, which is one of the most 
widely recognized patterns in macroscopic taxa, on marine 
bacteria, and more recently, the taxonomic and functional 

distinction of bacteria in desert compared to other nondesert 
biomes was investigated through cross biome comparison 
using shotgun metagenomics [4]. Varied definitions con-
verge into two main categories, targeted metagenomics and 
shotgun metagenomics, depending on their purpose and 
target materials. This review offers an overview of the tools 
and databases that are widely used in both targeted and 
shotgun metagenomics, in particular emphasizing on meta-
genome sequences generated by recent next-generation 
sequencing (NGS) technologies.

A Revolution of Sequencing Technologies 
and Current Challenges in Bioinformatics

The recent development of sequencing technologies has 
enabled us to assess much deeper layers of microbial com-
munities by generating tons of nucleotide sequences at 
lower costs. NGS technologies have revolutionized the field 
of microbial ecology, as they have allowed researchers to 
reach the true level of diversity more closely through more 
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in-depth sequencing. There are various applications using 
these NGS platforms, ranging from single-gene targeted 
sequencing to whole-genome sequencing and shotgun 
metagenome sequencing. Details about the principles and 
applications of each NGS technique have already been 
reviewed elsewhere [5]. The first NGS platform, pyrose-
quencer (GS20), generated just 20 Mb per run with a read 
length of 100 bp on average. A recent version of pyrose-
quencer (GS-FLX Titanium) has an advantage over other 
NGS techniques, especially 16S rRNA gene-based surveys, 
as it produces around ∼500 Mb per run with a longer read 
length (400‒500 bp), which is sufficient to cover partial 
hypervariable regions of 16S rRNA. Illumina sequencing 
produces many more reads with cheaper price that are more 
accurate (accuracy of >99%) than 454 platforms (accuracy of 
98.93%) [6] but is somewhat limited in certain fields due to 
the relatively shorter read length (<100 bp) of early 
versions. However, Illumina became more popular, since it 
gradually improved readable lengths (i.e., 2 × 250 bp in 
MiSeq). More recently, Pacific Biosciences has released a 
new sequencing technology, PacBio RS, and Oxford Nano-
pore Technologies introduced GridION/MinION devices, 
both of which allow single-molecule sequencing with a 
much longer read length. However, further improvements 
are necessary for use in practice due to the high intrinsic errors 
(10% to 15% in PacBio and around 4% in GridION) [7].

Since the first launch of the NGS platform in 2006, novel 
sequencing technologies have been developed continuously 
and rapidly. As a result, massive sequence data produced by 
NGS technologies are accumulating at an unflagging rate. 
However, the computing power and development of 
algorithms needed to deal with the huge datasets efficiently 
are not keeping up with the speed of data production. For 
example, access to sequence data is still hampered by un-
suitable data storage systems, such as short read archive 
(SRA), and many early papers were not accompanied by data 
deposition into public databases. Repositories should be big 
enough to be ready to allow the increasing volume of 
upcoming sequence data, and all data must be deposited in a 
standardized manner. In addition to the shortage of data 
storage space and confounding submission formats, the 
characteristics of the produced sequence data pose another 
problem in further processing. For instance, shorter read 
length, which is an inevitable limit of high-throughput 
sequencing, is a barrier for sequence assembly, and the 
relatively higher rates of sequencing errors compared with 
previous Sanger methods also make it hard to recover 
genuine sequences.

Targeted Metagenomics

Targeted metagenomics refers to a metagenomic approach 
that surveys genes or genomic regions of particular interest 
by targeted methods (activity- and sequence-driven studies) 
[8]. Sequence-driven targeted metagenomics is normally 
conducted by PCR-based directed sequencing of environ-
mental genomic DNA. Ribosomal RNA genes (e.g., small 
subunit [SSU] and large subunit [LSU]) have been used as 
taxonomic marker genes for identifying microbial species. 
The characteristics of having both highly conserved and 
variable regions have allowed for accurate taxonomic iden-
tification and made it easier to design primers targeting the 
whole taxa of interest. Although taxonomic resolution of the 
16S rRNA gene is not sufficient for delineating taxa at the 
species or strain level in some cases [9], the SSU of ribo-
somal RNA (16S rRNA) has been used widely as a standard 
marker gene in prokaryotes. For the last few decades, 
molecular methods to assess microbial diversity have focu-
sed on rRNA genes using probe-based approaches, such as 
fluorescent in situ hybridization and microarray, finger-
printing methods, and molecular cloning. Some of them are 
still in use, but in this review, we focus mainly on sequence 
data generated by recent NGS techniques. 

Microbial community profiling using taxonomic marker 
genes (e.g., 16S rRNA gene) commonly uses an operational 
taxonomic unit (OTU)-based approach, as the sequence- 
based species definition in microbes is still vague and current 
public databases still do not reach the full extent of microbial 
diversity, despite the massive sequencing efforts. This OTU- 
based approach is now generally accepted in most microbial 
community studies based on environmental samples. Over 
the last few years, 454 pyrosequencing has been a major 
source of generating amplicon metagenomics data among 
NGS platforms due to its capability of producing a relatively 
longer read length. Therefore, bioinformatic analysis tools 
dealing with sequence data have been developed and tailored 
for pyrosequencing results. More detailed information about 
the algorithms and processes at each step can be found in 
several other reviews [7, 10]. In this part, we introduce 
recent tools and databases and provide brief explanations 
about how they work in the course of the analysis workflow 
(Table 1) [11-29].

Denoising

The first part of an analysis of NGS-generated data starts 
from filtering out ‘noise’ sequences. Most metagenomic 
studies based on single- or multiple-gene amplicons have 
used 454 pyrosequencing due to its advantage of producing 
longer read lengths, and currently available denoising algo-
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Resources Function Reference Website

Pyronoise Denoising [11] http://code.google.com/p/ampliconnoise
Denoiser Denoising [12] http://qiime.org
DADA Denoising [13] http://sites.google.com/site/dadadenoiser
Acacia Denoising [14] http://sourceforge.net/projects/acaciaerrorcorr
UCHIME Chimera detection [15] http://www.drive5.com/uchime
ChimeraSlayer Chimera detection [16] http://microbiomeutil.sourceforge.net
Perseus Chimera detection [11] http://code.google.com/p/ampliconnoise
DECIPHER Chimera detection [17] http://decipher.cee.wisc.edu
UCLUST OTU clustering [18] http://www.drive5.com/usearch
CD-HIT-OTU OTU clustering [19] http://weizhong-lab.ucsd.edu/cd-hit-otu
ESPRIT-Tree OTU clustering [20] http://plaza.ufl.edu/sunyijun/ES-Tree.htm
TBC OTU clustering [21] http://sw.ezbiocloud.net
RDP 16S database [22] http://rdp.cme.msu.edu
SILVA rRNA database [23] http://www.arb-silva.de
Greengenes 16S database [24] http://greengenes.lbl.gov
EzTaxon-e 16S database [25] http://eztaxon-e.ezbiocloud.net
UNITE ITS database [26] http://unite.ut.ee
Mothur All in one [27] http://www.mothur.org
QIIME All in one [28] http://qiime.org
MEGAN All in one [29] http://ab.inf.uni-tuebingen.de/software/megan

Table 1. Bioinformatic resources for studying targeted metagenomics

rithms have also been developed for that purpose. The 
denoising process per se does not remove actual sequences 
but keeps abundant information on erroneous sequences by 
retaining representative reads. Several denoising algorithms 
have been suggested so far. PyroNoise [11] implements a 
flowgram clustering method, and other denoising tools, 
such as Denoiser [12], DADA [13], and Acacia [14], use 
sequence abundance information on the denoising process. 
Similarly, single-linkage preclustering can be used before 
performing the formal OTU clustering to reduce ‘noise’ 
sequences generated by PCR and sequencing errors [30]. It 
first ranks sequences in order of decreasing abundance, and 
rarer sequences within a certain threshold are merged into 
the original abundant sequences.

Chimera Detection

Once denoising and additional quality control processes 
are completed, chimeric sequences should be removed from 
the dataset. Chimeras are artificial recombinants between 
two or more parental sequences, and they are normally 
formed when prematurely terminated fragments reanneal to 
other template DNA during PCR amplification [31]. These 
artificial molecules make it difficult to differentiate the 
original sequence from recombinants, resulting in over-
estimation of the level of microbial diversity in environ-
mental samples [32]. Once chimeras are generated and 
sequenced, they need to be identified and removed from the 
dataset using bioinformatics tools. However, detecting 

chimeras is still challenging, as breakpoints can take place at 
any position more than once, and NGS platforms generate 
shorter lengths of sequences, making them hard to diffe-
rentiate the source of parents with insufficient taxonomic 
information. Several elegant algorithms and tools have been 
suggested for preferentially identifying chimeric sequences 
in high-throughput datasets. These tools include UCHIME 
[15], ChimeraSlayer [16], Perseus [11], and Decipher [17]. 
All of these tools, except for ChimeraSlayer, use sequence 
frequency information to detect chimeras, assuming that 
chimeric sequences are less frequently represented in a given 
dataset than normally amplified sequences. There is no 
algorithm to detect chimeras perfectly, but to date, it has 
been known that UCHIME outperforms other algorithms, at 
least for short NGS reads [15]. Although there are still 
several limitations in detecting chimeric sequences that are 
formed by hybridization between closely related organisms, 
the tools listed above work well on SSUs and LSUs, but 
further validations are necessary for internal transcribed 
spacers and other functional genes.

OTU Clustering

The next step following chimera detection is OTU clus-
tering, which is an essential process in community analysis, 
as it sorts sequences with the closest matches and then gives 
a taxonomic meaning to the clustered group. Sequencing 
errors, chimeras, and clustering algorithms have great 
influence on the quality of OTUs [33]. There are generally 
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two ways that have been suggested for generating OTUs. 
One is alignment-based clustering, and the other is the 
alignment-free clustering method. Sequence alignment is 
done by either aligning query sequences against pre-aligned 
reference sequences [34] or using pairwise and multiple 
sequence alignments [35]. It is known that alignment qua-
lity has a significant impact on OTU clustering results [36]. 
Alignment quality varies, depending on gene loci and the 
parameters used, but sequence alignment incorporating 
secondary structure information generally improves OTU 
assignment, at least for 16S rRNA gene sequences [37]. The 
nearest alignment space termination (NAST) algorithm [34] 
has been used successfully in microbial ecology as a profile- 
based alignment tool, and SINA aligner [38], based on 
partial order alignment, and infernal [39], using consensus 
RNA secondary structure profiles, were recently introduced. 
However, there is currently no method or algorithm that 
does automatic alignment almost perfectly or up to the 
quality that can be achieved manually. Alternatively, align-
ment-free methods are more broadly used in picking OTUs. 
Commonly used alignment-free tools are UCLUST [18], 
CD-HIT [19], and ESPRIT-Tree [20]. UCLUST and CD-HIT 
implemented their own sorting processes in OTU clustering 
by sorting sequences in order of decreasing abundance (i.e., 
UCLUST) or decreasing length (i.e., CD-HIT), and ESPRIT- 
Tree uses an average linkage-based hierarchical clustering 
algorithm. There are some other tools that implement a 
‘homopolymer collapse option’ for minimizing homopoly-
mer errors in 454 reads: CLOTU [40], SCATA (http:// 
scata.mykopat.slu.se), CrunchCluster [41], and TBC [21]. 
However, these tools are currently applicable only to 454 
reads, and there is a fundamental limitation of not being able 
to detect ‘real’ sequence differences appearing in homo-
polymer regions. SCATA has suggested another OTU pic-
king approach by using both reference sequences and query 
sequences together in the clustering process, and then the 
OTU is assigned to a taxonomic identity of the reference 
sequence if the reference sequence belongs to the cluster.

A taxonomy-dependent approach was recently proposed 
as an alternative to OTU clustering approaches [42]. This 
method has two major advantages over OTU clustering. 
First, direct taxonomic assignment to each query sequence is 
more tolerant to sequencing errors than the OTU picking 
process, as the assignment process is less affected by mis-
matches or insertion/deletion errors, while sequencing 
errors are known to generate many spurious OTUs. It also 
helps prevent a massive loss of erroneous but still taxo-
nomically meaningful sequences. Second, it enables resear-
chers to perform a more standardized community analysis, 
based on a single assignment rule. There is no truly ‘uni-
versal’ primer set, and the difference in primer sets makes it 

difficult to compare datasets, as the different primer sets 
amplify differing variable regions within 16S rRNA genes 
and catch only a partial body of the whole ‘true’ community. 
On the other hand, a taxonomy-supervised method can 
circumvent the problem by directly assigning sequences to 
the closest relatives using full-length reference sequences. 
This approach also facilitates cross-comparison and meta- 
analysis across versatile microbial community studies. A 
caveat is the low taxa coverage of current marker gene 
databases, which offsets the advantage of this approach and 
hinders the application in practice by failing to find the 
closest matches to known members, due primarily to its lack 
of close relatives in a given database. Another limitation is 
the relatively lower assignment accuracy and precision of 
short NGS reads compared to those of full-length sequences. 
It is generally known that even longer 454 Titanium reads are 
able to be identifiable with high confidence scores at best to 
the genus level [43], even genus-level classification is doub-
ted [44]. However, this problem will be soon overcome as 
more high-quality sequences are added to the databases. For 
example, EzTaxon-e benefits from using artificially defined 
species names, which are defined based on combinatorial 
evaluation using both phylogeny and pairwise similarity 
between unclassified sequences on all taxonomic levels. It 
endows taxonomically more meaningful information to 
those ‘unclassified’ sequences rather than remaining un-
known or environmental sequences. Moreover, recent up-
dates have slightly improved the database coverage by 
adding error-free 454 reads that are selected using abun-
dance information (http://eztaxon-e.ezbiocloud.net/).

16S Databases and Taxonomic Classification

Identifying each individual sequence is of great impor-
tance in microbial community analysis, as taxonomic infor-
mation gives us access to basic information of its traits, such 
as physiology, epidemiology, and evolutionary history, and it 
allows for indirect inference of their ecological roles in a 
given environment. There are several methods that have 
been suggested for assigning microbial taxonomy with 
high-throughput sequence data. BLAST [45] is one of the 
most widely used algorithms when classifying sequences. 
The top BLAST hits by searching against reference databases 
are generally used for taxonomic identification of query 
sequences. There are several well-curated public SSU data-
bases, such as RDP [22], SILVA [23], Greengenes [24], and 
EzTaxon-e [25]. However, the top BLAST hit does not always 
give the correct taxonomy result, especially in shorter reads. 
Alternatively, Greengenes and EzTaxon-e use BLAST in 
conjunction with global alignment, and the post processing 
of a BLAST-aligned output has been suggested to improve 
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Fig. 1. Overall workflow and bioin-
formatics tools for shotgun metageno-
mic analysis. HMM, hidden Markov 
model; KEGG, Kyoto encyclopedia of 
genes and genomes; STRING, Search 
Tool for the Retrieval of Interacting 
Genes/Proteins.

assignment accuracy using the lowest common ancestor 
(LCA) algorithm in MEGAN [46] and the optimal consensus 
method (F-measure) in TANGO [47]. The probabilistic 
approach also gives a similar level of accuracy but is much 
faster than a BLAST search. The naïve Bayesian algorithm 
[48], implemented in RDP, uses 8-mer word-matching for 
training datasets and provides assignment results with 
bootstrapped confidence estimates. Phylogenetic placement 
method is a recently suggested approach that places query 
sequences into a phylogenetic guide tree on the basis of 
various evolutionary models. This approach is particularly 
useful in a case where there are no close relatives to the query 
sequence in databases, due primarily to the low DB coverage, 
which is the case with microbial eukaryotes. Tools using 
phylogenetic methods in taxonomic assignment include the 
evolutionary placement algorithm (EPA) [49], pplacer [50], 
and SEPP [51], and these algorithms were recently incor-
porated into QIIME [28] and AMPHORA2 [52].

Shotgun Metagenomics

Until the arrival of NGS technologies in this field in 2006, 
shotgun libraries had been constructed using circular 
vectors, each of which had an insert derived from a meta-
genomic DNA fragment [53]. Sequencing strategies desig-
ned either to completely assemble the sequence of each 
long-insert vector (tens to thousands of kilobases) or to 

generate a paired-end read from small inserts (around 1‒2 
kilobases) were applied to those vector libraries. The former 
strategy has a unique strength, in that it is relatively easy to 
generate contigs orders of magnitude longer than the read 
length when assembling the reads from homogeneous 
templates [2]. However, such a strategy is not scalable to 
analyze a large number of clones, as the tremendous amount 
of reads per clone needs to be screened. The latter strategy, 
a genuine random shotgun approach, took essentially the 
same approach with the NGS-based metagenome assembly, 
which enables analysis of a large number of clones but 
requires high coverage in order to be successful [54, 55]. 
Regardless of the strategies taken, vector library con-
struction and subsequent sequencing are time-consuming 
and cost-ineffective, and only a few organizations can lead 
such efforts. 

NGS technologies have proven their utility in shotgun 
metagenomics since their earliest application appeared in 
2006 with studies using 454 pyrosequencing data. After all, 
technologies like 454 and Illumina sequencing have become 
routinely applied for shotgun metagenomics, accompanying 
changes in the trends of the field as well as the properties of 
the data themselves. As sequencing cost continues to de-
crease, more researchers outside the big sequencing centers 
have started to participate in metagenomic studies, resulting 
in higher individuality and diversity of metagenome data. 
Bioinformatics for metagenome analysis has progressed, 
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along with the explosion of data, both by extension from the 
tools and databases previously developed in genomics and 
the adoption of methodologies used by ecologists. Less than 
a decade has passed since metagenomic shotgun sequencing 
took its place as general practice for biologists, and it is fair 
to say that bioinformatics for shotgun metagenomics is at a 
premature stage. In this section, we aim to summarize the 
methods that seem to be the ‘current’ standard, the most 
widely used, in the analysis of shotgun metagenomic data 
(Fig. 1).

Assembly

Assembly is the process of merging overlapped short 
reads into larger contiguous sequences (contigs). Current 
sequencing technologies normally break genomic DNA into 
pieces, and original genomic sequences need to be recovered 
from fragmented reads by an assembly process. In metage-
nomics for retrieving coding regions, it is necessary to make 
it easier to do functional annotations, as a more accurate 
classification/annotation is possible in longer sequence 
information. Most assemblers have been developed for the 
single genome or clonal populations with high coverage. 
There are currently few metagenomic assemblers, as meta-
genomic reads are more complex, owing to nonclonal hete-
rogeneous reads resulting from multiple strains differing 
only by partial regions or rearrangements, lower or uneven 
coverage across genomes, sharing of repetitive sequences 
among closely related species, and lateral gene transfer 
sharing similar entities between distantly related organisms. 

At an early stage of metagenomic studies, reference map-
ping approaches (e.g., Newbler, AMOS, MIRA) were applied 
to the metagenome assembly process. However, with the 
low coverage and complexity of megenomic reads, de novo 
assemblers were preferred to reference mapping, based on 
the advantage of feasibility for dealing with the aforemen-
tioned problems. Starting from initial assemblers, such as 
SOAPdenovo [56], there are now several improved assem-
blers available: are Genovo [57], Meta-IDBA [58], Meta-
Velvet [59], MAP [60], and Ray Meta [61]. Metagenome- 
specialized assemblers have to distinguish reads from 
different species. MetaVelvet and Meta-IDBA resolve this 
issue by partitioning the de brujin graph based on k-mer 
coverage and separately assemble each subgraph. Ray Meta 
does not decompose the de brujin graph; instead, it uses a 
heuristics-guided graph traversal approach to find the 
optimal assembly. Meta-IDBA, MetaVelvet, and Ray Meta 
were developed to perform well on short reads (e.g., Illumina 
sequencing). On the other hand, other tools, like Genovo 
and MAP, were developed for longer reads (e.g., 454 se-
quencing). The outputs from various assemblers can be used 

to generate scaffolds using Bambus2 by avoiding misjoins 
between distantly related organisms by detecting repeats 
and genomic variants [62].

Binning and Taxonomic Classification

Taxonomic classification of reads, which is called binning, 
is the most basic step in the characterization of microbial 
communities by metagenome sequencing. However, taxono-
mic binning of metagenome shotgun sequences is a chal-
lenging task for researchers, especially when working with 
short reads derived from NGS. There are several reasons that 
make binning a nontrivial job. 

One of the reasons is that NGS technologies generally 
produce short reads. When applying shotgun sequencing to 
complex microbial communities found in soil, seawater, 
freshwater, and the gastrointestinal tract, the sequencing 
coverage does not reach the level required to make the 
assembly practically useful, even by current deep sequencing 
methods. The majority of reads remains unassembled. As a 
result, the majority of reads is taxonomically classified by the 
information in their short length. Short length presents a 
number of drawbacks in binning. Homology search-based 
methods suffer from a lack of alignment confidence and 
difficulties in predicting protein sequences from partial 
genes. Phylogenetic methods suffer from a lack of resolution 
due to insufficient phylogenetic information. Another chal-
lenge is the size of data that have to be processed during the 
binning process. Data size here refers to both the reads 
obtained from metagenomes and the sequences in the 
reference database. The novelty of microbes in the environ-
mental samples also hampers binning, as they are not 
represented by any sequence in the reference database. One 
last challenging thing for researchers is the diversity of 
binning tools. There are dozens of choices, differing in both 
logical and practical aspects. 

A straightforward approach for taxonomic classification 
of metagenome shotgun reads is searching for a similar 
sequence in a collection of known sequences that carries the 
taxonomic identity of each sequence. Similarity-based me-
thods vary in at least three dimensions. 1) Choice of re-
ference database: the search space could be restricted to a 
particular marker gene (e.g., SSU rRNA for prokaryotes) or 
a small number of selected protein families or could be as 
general as the entire NCBI nr database. 2) Search algorithm: 
from BLASTN (in case of using rRNA gene marker), 
BLASTX (protein database), and BLASTP (protein database 
after gene prediction) to a hidden Markov model (HMM)- 
based homology search (searching for protein families). 3) 
Taxonomic assignment from the hit information: from 
simply transferring the identity of the best hit to the use of 
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LCA, modified LCA, or more complicated phylogenetic 
inferences. Among the popularly used tools, MEGAN uses 
the NCBI nr database for searching and LCA algorithms for 
assignment [29]. MTR and SOrt-ITEMS modified MEGAN’s 
LCA algorithm by use of taxonomic information shared by 
hits (MTR) or by performing a reciprocal BLAST hit to 
reduce false positive hits (SOrt-ITEMS) [63, 64]. MG-RAST 
exploits both rRNA gene sequences and protein-coding 
sequences [65]. For the rRNA gene sequences, MG-RAST 
follows the RDP pipeline [22], while for protein-coding 
genes, it first predicts the protein coding sequences and then 
performs a BLASTX search against a number of databases, 
including SEED [66], and extracts taxonomic information 
from SEED hits. CARMA uses an algorithm similar to LCA 
and offers two ways for searching the database of known 
protein sequences: the NCBI nr database searched by 
BLASTX and the Pfam database searched by HMMER3 [67]. 
MetaPhyler is a power-up version of AMPHORA and uses 31 
marker genes to reduce the search space [68, 69]. 

Composition-based classification of DNA sequences has 
been proven to be very useful, although it does not appear as 
intuitive as similarity-based methods. Composition-based 
methods exploit the uniqueness of base composition (from 
single to oligonucleotide levels) found across the genomes of 
different taxonomic entities. In many cases, these methods 
implement machine-learning algorithms. Ultimately, all of 
these methods use the taxonomic information of the refe-
rence database to assign a taxonomic identity to the reads. 
However, they can be divided into supervised and unsu-
pervised methods, based on their dependence on the re-
ference training set during the initial learning procedure. 
The most popular tools using supervised learning are 
PhyloPythia, NBC, and Phymm. Starting from the publicly 
available microbial genome sequences, NBC trains a naïve 
Bayes classifier based on the N-mer frequency profiles of 
each genome [70], Phymm builds an interpolated Markov 
Model using variable-length oligonucleotides typically found 
in taxa [71], and PhyloPythia trains a support vector ma-
chine classifier based on variable-length oligonucleotide 
composition [72]. Among the above, NBC and Phymm are 
suitable for classifying short reads generated from NGS 
sequencers. The popular tools employing unsupervised 
learning are TACOA and TaxSOM. TACOA introduced a 
kernelized k-nearest neighbor approach to cluster the reads 
[73], while TaxSOM uses batch-learning self-organizing 
maps (BLSOMs) and growing SOMs (GSOMs) to generate 
the clusters of related reads [74]. Both TaxSOM and TACOA 
are not suitable for unassembled short NGS reads.

There are tools that combine composition-based approa-
ches and similarity-based approaches together to gain 
accuracy and discard fewer reads. PhymmBL linearly com-

bines the BLASTN score and Phymm score and thereby gains 
more power to discriminate between similar BLAST hits 
[71]. RITA also combines a BLAST search with a com-
position- based NBC; however, unlike PhymmBL, RITA puts 
more weight on the BLAST result [75]. Both approaches are 
reported to perform well, even with short reads, but as they 
involve a BLAST search, they consume much time. There is 
a third type of taxonomic binning method recently imple-
mented in the tool MetaPhlAn, which uses clade-specific 
marker genes [76]. From the database of microbial genomes, 
MetaPhlAn precalculated 400,141 genes that are most 
representative of each taxonomic unit. In theory, detection of 
the reads that match these markers can classify the members 
at the species level. MetaPhlAn uses BLASTN search to com-
pare the reads against the set of marker genes. As the search 
space is markedly reduced from general sequence databases 
used in other approaches, MetaPhlAn exhibits unusually 
high speed.

Functional Annotation and Metabolic Re-
Construction

Functional assignments and pathway reconstructions are 
ultimate steps of shotgun metagenomics that allow the 
characterization of the functional potential of uncultivated 
microbes or microbial communities under investigation. 
Connecting the sequences of metagenomic data to specific 
functions in the environments can be performed by using 
web-based workflows offered by useful portals without 
access to high-performance computers. These online meta-
genome annotation services, like IMG/M [77], METAREP 
[78], CAMERA [79], and MG-RAST [80], provide platforms 
for gene prediction, assignment of functional categories, 
protein families and gene ontologies, and inference of pro-
tein interactions and metabolic pathways represented in the 
metagenomic data (Table 2). While an installable workflow 
like MEGAN4 [29] also exists, MEGAN4 does not provide 
gene predictions or homology-based or profile-based anno-
tation analyses. Instead, the pipeline uses ready-made anno-
tation data derived from BLASTX or BLASTP against the 
NCBI nr database. 

Gene finding or gene prediction is a fundamental step for 
annotation. Classical gene finders that have been developed 
for a single genome are unsuitable for metagenomic analysis, 
because metagenome data are made up of a mixture of se-
quences from different organisms and often comprise mainly 
short assemblies and unassembled reads. Moreover, the high 
error rate of NGS can lead to frameshifts and make gene 
prediction more difficult. For this reason, several dedicated 
gene prediction programs have been developed, like Meta-
Gene [81], MetaGeneAnnotator [82], Orphelia [83], Frag-
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Resources Gene prediction Functional 
category Protein family Gene ontology Protein-protein 

interaction 
Pathway and 
subsystems 

MG-RAST FragGeneScan COGs,
 eggNOGs 

FIGfams GO STRING KEGG, SEED 

IMG/M FragGeneScan 
Genemark MetaGene 

COGs Pfam TIGRfam GO - KEGG, SEED 

METAREP MetaGeneAnnotator COGs Pfam TIGRfam GO - PRIAM 
CAMERA FragGeneScan 

Metagene 
COGs Pfam TIGRfam GO - KEGG 

MEGAN4 - COGs - - - KEGG, SEED 

STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; KEGG, Kyoto encyclopedia of genes and genomes.

Table 2. Comparison of five major resources for metagenomic functional annotation

GeneScan [84], Glimmer-MG [85], and MetaGenemark 
[86]. These programs incorporate different models for gene 
prediction, such as machine learning algorithms [87], HMMs 
[88], and di-codon usages [89]. MetaGeneMark (GeneMark) 
uses codon usage-incorporated HMM; Prodigal incorporates 
a machine learning algorithm [90]; MetaGene incorporates 
di-codon usage [91]; FragGeneScan uses a sequencing error 
model and codon usage-incorporated HMM; MetaGene-
Annotator uses a machine learning algorithm and di-codon 
usage information; Glimmer-MG uses an interpolated 
Markov model [92]; and Orphelia uses a codon usage- 
incorporated machine learning algorithm.

Functional analysis of metagenome generally uses a 
homology-based approach and involves a BLAST [45] search 
against a database, integrating several individual databases 
curated for specific analysis [93]. For functional category 
annotation, COGs [94] and eggnogs [95] databases are used. 
COGs, one of the widely used gene categories, was cons-
tructed from 66 genomes. Because COGs has a relatively 
small size of functional categories appropriate for deter-
mining well-known genes and because the database has not 
been updated for a long time, COGs shows low sensitivity for 
recently discovered genes. eggNOGs, created in 2011 and 
used by the portal service MG-RAST, shows higher sen-
sitivity than COGs, because it is constructed based on the 
pre-annotation of orthologous groups from 1,133 genomes 
using COGs and KOGs. A BLAST-based approach is still 
widely used in functional category annotation, but it is 
hampered by its computational complexity and lack of 
homologous sequences in reference databases [93].

For a protein family analysis, the resources in the Pfam 
[96] and TIGRfam [97] databases are applied through the 
use of a HMM-based algorithm, profile (HMM profile), and 
search tool (HMMER; [98]). Similarity search results are 
transferred to annotations, based on the best hit’s infor-
mation. The Pfam and TIGRfam databases are resources 
consisting of curated multiple alignments and HMMs 

generated from the Sanger Institute and J. Craig Venter 
Institute, respectively. A previous study reported that more 
protein family predictions were available using Pfam, 
because the Pfam database contains a higher number of 
protein families (14,831 protein families in Pfam 27.0 
release) than TIGRfam database (4,284 protein families in 
TIGRfam 13.0 release) [93]. While IGM/M, METAREP, and 
CAMERA use HMM-based databases, such as Pfam and 
TIGRfam, MG-RAST uses an HMM-independent database, 
namely FIGfams [99]. FIGfams are sets of protein sequences 
and alignments that are similar along their full length and are 
believed to implement the same function generated from 
National Microbial Pathogen Data Resource (NMPDR). 
Gene ontology is assigned using the gene ontology (GO) 
database in most publically available pipelines. GO analysis 
was available in version 3 of MEGAN, but it was replaced by 
two functional methods, based on the SEED classification 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) in 
MEGAN4. In addition to protein family analysis, MG-RAST 
offers information on putative protein-protein interactions 
by applying EMBL’s Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING) tool [100]. 

Metabolic pathway reconstruction is generally performed 
using the KEGG database [101]. While IMG/M, CAMERA, 
and MG-RAST use the KEGG database and KEGG graphs, 
METAREP uses PRIAM [102]. PRIAM is a method for auto-
mated enzyme detection, based on the available ENZYME 
database [103], and provides KEGG graphs for visualization. 
Other pathway databases and tools, like MetaCyc [104] and 
MetaPath [105], are also used to annotate functional roles 
for metagenomic data but have not yet been integrated into 
online portal services for metagenomic analysis. An alter-
native to the methods mentioned above for inferring meta-
bolic pathways is ‘subsystem’ in SEED [66]. Subsystems 
represent the collection of functional roles that constitute 
similar or related forms of complex structural and metabolic 
pathways, such as glyoxylate bypass, sulfur oxidation, and 
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ribosomal protein paralogs. The subsystem annotation 
based on SEED is currently implemented in IMG/M, MG- 
RAST, and MEGAN4.

Future of Metagenomics

Early metagenomic studies focused mainly on investi-
gating less complex ecosystems and specific targets in a 
given environment due to high sequencing costs, ecosystem 
complexity, and lack of high-performance computing and 
bioinformatics tools. Much work has been done on testing 
new molecular techniques and tools and discovering novel 
enzymes and taxonomic lineages rather than testing many 
scientific hypotheses. This is why many previous and even 
current studies are not sufficiently replicated in experi-
mental design. Of course, it is possible to compare the 
difference between metagenomic studies, which are not 
replicated [106]. However, it enables us to obtain stati-
stically meaningful and biologically more relevant conclu-
sions if larger sample sizes with more replicates are provided 
at a deeper layer of the sequencing regimen.

For inferring statistically meaningful differences between 
metagenome samples and exploring metabolic/taxonomic 
diversity in a given sample, metadata should be provided and 
standardized according to a proper rule. More standardized 
formats for describing marker genes, genomes, and meta-
genome datasets were recently suggested in minimum infor-
mation about any (x) sequence checklists (MIxS) [107]. This 
standardized format makes it possible to do many statistical 
analyses and meta-analyses across metagenomic studies by 
providing more standardized contextual information about 
the environment sampled as well as experimental and 
sequencing information. Centralizing contextual infor-
mation will become more common in future metagenomic 
studies.

Aside from experimental design and contextual data, 
metagenomic data have inherent limitations that must be 
overcome in the future. Metagenomic reads commonly show 
a relatively low genomic coverage compared to that of a 
single genome, and the short length of sequencing reads 
makes only fragmented information by the incomplete 
assembly and annotation processes accessible. Initiatives are 
already under way for filling the gap between metagenomic 
reads by doing co-assembly with single-cell genomics [108] 
and joint analysis between multiple metagenomes simul-
taneously [109], on the assumption that the same species 
must exist in different samples and that the co-occurrence 
helps extract shared information. The ultimate goal of 
metagenomics is a comprehensive understanding of our 
ecosystem. In the near future, metagenomics will be one of 
the essential parts of viewing our ecosystem through inte-

gration with other ‘-omics’ approaches such as metatran-
scriptomics and metaproteomics.

Conclusion

Over the last few years, metagenomics has accelerated the 
understanding of microbial ecology and evolution, thanks to 
the technical advances of sequencing platforms. Metage-
nomics itself is not a panacea that is able to answer all 
unresolved questions and uncover the ‘dark matter’ of our 
knowledge in microbial diversity and function studies, but it 
is undoubtedly an excellent tool, giving insight into com-
pleting the jigsaw puzzles of our understanding of the 
surrounding biosphere by exploring both ‘who is out there’ 
and ‘what they do’ in nature. It is true that studying 
metagenomics is still recognized by ordinary microbial 
ecologists as a tool that is difficult to tackle due to its 
complexity and the enormous amount of sequence data that 
needs to be dealt with. However, it is not surprising that we 
will witness ‘doing metagenomics’ in the future as if we 
routinely do PCR and gel electrophoresis in our laboratory. 
Current development of tools and databases for meta-
genomic studies is in its infancy, and there are still many 
challenges to overcome. It will not take long to see an 
explosive growth of metagenomics with a revolution of 
metagenomic bioinformatics.
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