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Measuring visual functions such as light and contrast
sensitivity, visual acuity, reading speed, and crowding
across retinal locations provides visual-field maps (VFMs)
that are extremely valuable for detecting and managing
eye diseases. Although mapping light sensitivity is a
standard glaucoma test, the measurement is often noisy
(Keltner et al., 2000). Mapping other visual functions is
even more challenging. To improve the precision of light-
sensitivity mapping and enable other VFM assessments,
we developed a novel hybrid Bayesian adaptive testing
framework, the qVFM method. The method combines a
global module for preliminary assessment of the VFM’s
shape and a local module for assessing individual visual-
field locations. This study validates the qVFM method in
measuring light sensitivity across the visual field. In both
simulation and psychophysics studies, we sampled 100
visual-field locations (608 3 608) and compared the
performance of qVFM with the qYN procedure (Lesmes
et al., 2015) that measured light sensitivity at each
location independently. In the simulations, a simulated
observer was tested monocularly for 1,000 runs with
1,200 trials/run, to compare the accuracy and precision
of the two methods. In the experiments, data were
collected from 12 eyes (six left, six right) of six human
subjects. Subjects were cued to report the presence or
absence of a target stimulus, with the luminance and
location of the target adaptively selected in each trial.
Both simulations and a psychological experiment
showed that the qVFM method can provide accurate,
precise, and efficient mapping of light sensitivity. This
method can be extended to map other visual functions,

with potential clinical signals for monitoring vision loss,
evaluating therapeutic interventions, and developing
effective rehabilitation for low vision.

Introduction

Peripheral vision is important for performing a wide
range of daily activities (Higgitt & Smith, 1955; Larson
& Loschky, 2009; Lemmink, Dijkstra, & Visscher,
2005; Strasburger, Rentschler, & Jüttner, 2011). A
number of conditions can significantly affect peripheral
vision, including glaucoma (Caprioli, 1991; Ng et al.,
2012; Smith, Katz, & Quigley, 1996), diabetic retinop-
athy (Bengtsson, Heijl, & Agardh, 2005), stroke
(Townend et al., 2007), pituitary disease (Okamoto,
Okamoto, Hiraoka, Yamada, & Oshika, 2008; Rowe et
al., 2015), brain tumors (Huber, 1976), and other
neurological deficits (Papageorgiou et al., 2007). People
with damaged peripheral vision often experience major
difficulties in performing many important activities,
such as reading (Higgitt & Smith, 1955; Ramulu, West,
Munoz, Jampel, & Friedman, 2009), driving (Johnson
& Keltner, 1983; Wood, 2002), spatial orienting
(Marron & Bailey, 1982), mobility (Lovie-Kitchin,
Soong, Hassan, & Woods, 2010; Lovie-Kitchin,
Woods, Hassan, & Soong, 2001), scene-gist recognition
(Larson & Loschky, 2009), social interactions (Rogers
& Landers, 2005), and tool use/manipulation (National
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Research Council, 2002; P. Ramulu, 2009; Wang,
Javitt, Rowe, & Meng, 1996).

The visual-field map (VFM), defined as ‘‘the spatial
array of visual sensations available to observation in
introspectionist psychological experiments’’ (Smythies,
1996, pp. 369–371)—analogous to the concept of the
field of view of optical instruments and sensors—
provides a quantitative assessment of an individual’s
central and peripheral vision through measurements of
visual function(s) across retinal locations (Aulhorn &
Harms, 1972; Strasburger et al., 2011). The VFM is
used not only to detect visual dysfunctions in the clinic
but also by the Social Security Administration as part
of their procedure for determining visual disability
(National Research Council, 2002; Thornton et al.,
2004; Wixon & Strand, 2013).

As of now, the VFM is typically measured with
perimetry (Goldmann, 1945b, 1945a; Harms, 1952),
which usually involves measurement of visual sensitiv-
ity in detecting a small light target projected on a
uniform dark background (Aulhorn & Harms, 1972).
Since peripheral vision is heavily involved in many
different visual activities, a comprehensive character-
ization of peripheral vision requires assessment of
VFMs of multiple visual functions in addition to light
sensitivity (Strasburger et al., 2011). Such character-
ization is crucial for monitoring the status of vision
loss, for developing and providing effective rehabilita-
tion interventions, and for obtaining projections of
potential benefits from interventions (Advanced Glau-
coma Intervention Study Investigators, 1994).

While the majority of eye-care practitioners use
standard automated perimetry (SAP) as part of their
clinical ophthalmic diagnostic procedure (Anderson &
Patella, 1999; Chris A. Johnson, Wall, & Thompson,
2011), a number of different types of perimetry test are
also available, including frequency-doubling technolo-
gy perimetry (Chauhan & Johnson, 1999; Johnson &
Samuels, 1997), Amsler grid (Easterbrook, 1984; Fink
& Sadun, 2004; Nguyen et al., 2009; Wall & May,
1987), color perimetry (Carlow, Flynn, & Shipley, 1976;
Hart, Hartz, Hagen, & Clark, 1984; Sample &Weinreb,
1990), flicker perimetry (Lachenmayr, Drance, Doug-
las, & Mikelberg, 1991; Lachenmayr et al., 1994;
Yoshiyama & Johnson, 1997), motion perimetry (Wall,
Brito, & Kutzko, 1997; Wall & Ketoff, 1995; Wall,
Woodward, Doyle, & Artes, 2009), high-pass resolu-
tion perimetry (Chauhan, House, McCormick, &
LeBlanc, 1999; FrisÉn, 1993; Frisén, 1992) , multifocal
visual-evoked potential (Hood, Odel, & Winn, 2003;
James, 2003; Klistorner, Graham, Grigg, & Billson,
1998), pupil perimetry (Kardon, 1992; Kardon, Kirkali,
& Thompson, 1991; Rajan, Bremner, & Riordan-Eva,
2002), and rarebit perimetry (Brusini, Salvetat, Parisi,
& Zeppieri, 2005; Martin, 2005; Martin & Wanger,
2004). The 1994 report of the Committee on Vision

provides an overview of VFM measurement techniques
and factors that are relevant to VFM testing (Lennie,
1994). Because it is difficult to balance test efficiency
and precision, many of these VFM tests are still
considered as screening references or research tools and
are not frequently used in the clinic (Johnson et al.,
2011). The current in-clinic evaluation of ophthalmic
disorders mostly consists of measurements of multiple
visual functions at a single visual-field location, which
provides a rather limited characterization of residual
spatial vision, and mapping visual functions beyond
light sensitivity is uncommon (Broadway, 2012; Ho-
dapp, Parrish, & Anderson, 1993; Lim, Mitchell,
Seddon, Holz, & Wong, 2012; Markowitz, 2006).

Ideally, a comprehensive test of peripheral vision
should include light sensitivity and many of the visual
functions in the various types of perimetry tests just
discussed, as well as contrast sensitivity (Daitch &
Green, 1969; Swanson, Malinovsky, et al., 2014), visual
acuity (Thompson, Montague, Cox, & Corbett, 1982;
VA, 1965), color vision (Carlow et al., 1976; Hart et al.,
1984; Sample & Weinreb, 1990, 1992), reading speed
(Ramulu et al., 2009; Yu, Cheung, Legge, & Chung,
2010), crowding (Balas, Nakano, & Rosenholtz, 2009;
Levi & Carney, 2009), and others. However, there are
many challenges. A precise and accurate VFM assess-
ment with existing methods is extremely time consum-
ing (Artes, Iwase, Ohno, Kitazawa, & Chauhan, 2002;
Weinreb & Kaufman, 2009, 2011). In fact, the results
from SAP are noisy (Keltner et al., 2000; Stewart &
Hunt, 1993); assessment of the VFM of other visual
functions is difficult and rarely used in clinic. Although
many new perimetric methods can provide helpful
clinical information, they have not been sufficiently
validated for routine clinical use (Johnson et al., 2011;
Keltgen & Swanson, 2012; Strasburger et al., 2011;
Swanson, Malinovsky, et al., 2014).

Currently, SAP is the gold standard for detecting
optic-nerve disease in glaucoma and staging glau-
comatous damage into different categories (Broadway,
2012; Caprioli, 1991; Drance & Anderson, 1985; Ng et
al., 2012; Sharma, Sample, Zangwill, & Schuman,
2008). Staging visual-field damage is crucial for optimal
treatment and for establishing the rate and risk of
progression of each subtype of glaucomatous visual-
field loss (‘‘ICD-10 Glaucoma Staging Definitions,’’
2015; Katz, Gilbert, Quigley, & Sommer, 1997; Mills et
al., 2006; Quigley, Tielsch, Katz, & Sommer, 1996;
Susanna & Vessani, 2009). However, staging based on
perimetry is difficult because of the inaccuracy,
inefficiency, and lack of robustness of existing SAP
devices (Heijl, Lindgren, & Lindgren, 1988, 1989;
Keltner et al., 2000). The variability of the estimated
visual sensitivity from SAP is relatively large for
individuals with healthy vision. Heijl, Lindgren, and
Olsson (1987) showed that the intratest variation
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(short-term fluctuation) was 1.59 dB and intertest
variation (standard deviation) was about 4 dB in the
peripheral visual field. Katz and Sommer (1987) found
that the standard deviation ranged from 1.2 to 2.8 dB
and from 2.2 to 8.3 dB for subjects under and over 60
years of age, respectively, and short-term fluctuations
contributed to 25% of the variability of threshold
measurements over time. Lewis, Johnson, Keltner, and
Labermeier (1986) measured the test–retest variability
of the estimated visual sensitivity in different regions of
the visual field of healthy subjects using six commer-
cially available automated threshold static perimeters,
and found that the standard deviation ranged from
1.23 to 2.25 dB. Werner, Saheb, and Thomas (1982)
found that the estimated light-detection threshold had
a test–retest variability of more than 4 dB in at least
one retinal location in 11 of 12 healthy eyes. Wilensky
and Joondeph (1984) concluded that estimated visual
sensitivity from automated visual-field tests must be
interpreted cautiously, because an apparent pathologic
change may represent only normal variation.

It has been reported that 85.9% of the abnormal
visual fields determined by SAP in the Ocular
Hypertension Treatment Study were not verified on
retest (Keltner et al., 2000). For individuals with
progressive glaucoma, the uncertainty exhibited by
SAP makes it difficult to distinguish between truly
progressive glaucoma and long-term variability unless
several VFMs are obtained over time (Ashimatey &
Swanson, 2016; Swanson, Horner, Dul, & Malinovsky,
2014; Weinreb & Kaufman, 2009). Werner et al. (1982)
concluded that a minimum of six repeated VFM
measurements were required to make informed clinical
judgments as to whether a patient’s VFM was stable or
progressing. Quantitative approaches using linear
regression have come to similar conclusions, indicating
that approximately seven repeated VFM measurements
obtained over several years are needed to reliably
distinguish progression from intratest variability
(Birch, Wishart, & O’Donnell, 1995; Katz et al., 1997;
Smith et al., 1996). For studies using a discrete measure
(change from baseline) rather than regression tech-
niques, it has been found that confirmation of change is
necessary to avoid ‘‘overcalling’’ progression of visual-
field loss. In the Normal-Tension Glaucoma Study,
Schulzer et al. (1994) found that four to six confirming
VFM tests (two of three tests performed within 1 to 4
weeks showing change, followed by two of three tests
performed 3 months later) were required to reliably
determine visual-field progression. Because of the
variabilities in SAP, only large changes of light
sensitivity can be used as a clinically relevant functional
endpoint by the FDA. For example, a 24-2 (Humphrey
field analyzer) full VFM of light sensitivity is consid-
ered to demonstrate progression if five or more
reproducible points of the 52 non-blind-spot visual-

field locations have significant changes from the
baseline in the glaucoma-change probability analysis
(Lloyd, Harris, Wadhwa, & Chambers, 2008; Lloyd,
Wadhwa, Eydelman, & Kramm, 2011). Alternatively,
visual-field progression is suspected if the mean
difference in threshold for the entire field is statistically
and clinically significant between treatment and no-
treatment groups (7-dB change on more than one
examination; Weinreb & Kaufman, 2009, 2011).

SAP often involves adaptive psychophysical proce-
dures that use observer responses to focus stimulus
presentation to predefined regions of the empirical
psychometric function (Anderson & Patella, 1999;
Leek, 2001; Treutwein, 1995). Most SAP devices
implement the Full Threshold algorithm (Haley, 1986;
Heijl, 1985), which is a nonparametric 1-up/1-down
staircase method for estimating independent thresholds
around 50% correct (or ‘‘yes’’) at predetermined test
locations (Dixon & Mood, 1948; Anderson & Patella,
1999). The step size(s), number of reversals and number
of staircase procedures at each test location influence
the accuracy of the estimated thresholds. To achieve an
acceptable accuracy level, tests using the Full Thresh-
old algorithm are very time consuming. Test durations
up to 20 minutes are not unusual for patients with
glaucomatous visual-field defects (Haley, 1986; Heijl,
1985). Shorter tests are available, but generally with
reduced accuracy (Heijl, 1977; Johnson, Chauhan, &
Shapiro, 1992). For example, one shorter test algo-
rithm, FASTPAC, has been reported to produce less
reliable results than the Full Threshold algorithm
(Flanagan, Wild, & Trope, 1993). Another shorter test
algorithm, SITA (the Swedish Interactive Thresholding
Algorithm), can produce the same quality of test results
as the Full Threshold strategy with considerable
reduction of test time. However, it can only be used
with the Goldmann size III stimulus of the Humphrey
perimeter, and was released only for glaucomatous
patients because its a priori threshold distribution was
based on glaucoma (Artes et al., 2002; Bengtsson &
Heijl, 1998). More features of different threshold test
algorithms are detailed in the Discussion section.

To improve the accuracy and precision of light-
sensitivity VFM, enable other VFM testing, and reduce
testing time, we have developed a novel Bayesian
adaptive testing framework, the qVFM method, that
combines a global module for preliminary assessment
of the general shape of the VFM, a local module for
assessing visual functions at each individual visual-field
location, and a switch module that evaluates the rate of
information gain in the global module and determines
when to switch to the local module (Lu, Xu, Lesmes, &
Yu, n.d.). Taking advantage of a one-step-ahead search
procedure to gain maximum information on the VFM,
the qVFMmethod selects the optimal stimulus location
and intensity to test in each trial.
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The Bayesian framework was first applied in the
landmark development of the QUEST method and is
now extensively used in psychophysics (Kujala &
Lukka, 2006; Leek, 2001; Lu & Dosher, 2013;
Treutwein, 1995; Watson, 2017). Whereas QUEST was
designed to measure a single threshold (King-Smith,
Grigsby, Vingrys, Benes, & Supowit, 1994; Simpson,
1989; Watson & Pelli, 1983), recent developments have
extended the adaptive procedure to measure various
psychological functions, including the threshold-versus-
contrast external noise function (Lesmes, Jeon, Lu, &
Dosher, 2006), contrast sensitivity function (Dorr et al.,
2015; Hou et al., 2010; Hou, Lesmes, Bex, Dorr, & Lu,
2015; Lesmes, Lu, Baek, & Albright, 2010), sensory
memory decay (Baek, Lesmes, & Lu, 2014, 2016),
reading function (Hou et al., 2018; Shepard et al.,
2019), and detailed time course of perceptual sensitivity
change (Lu, Zhang, Zhao, & Dosher, 2018; Zhao,
Lesmes, & Lu, 2019).

To achieve better efficiency in measuring detection
thresholds and be consistent with SAP, we adapted a
yes/no (YN) task in this study. The primary statistical
advantage of the YN task is the wider dynamic range of
the YN psychometric function (Klein, 2001; Leek,
2001; Lesmes et al., 2015). The notable disadvantage of
the YN task is the significant contribution of the
observer’s decision criterion (response bias) in detection
behavior. Previously, we have developed a qYN
procedure that combines elements of signal detection
theory and Bayesian adaptive inference to concurrently
estimate a threshold associated with a d0 level (rather
than a percent yes level) and decision criterion (Lesmes
et al., 2015).

In this study, we implemented the qVFM method
with a YN light-detection task based on the qYN
procedure. We will first describe the qVFM algorithm,
and then computer simulations and a psychophysical
experiment to validate the method in assessing the
light-sensitivity VFM.

The qVFM method

The qVFM method consists of three major modules.
In the global module, the shape of the VFM is modeled
as a tilted elliptic paraboloid function (TEPF) with five
parameters. The score of the VFM at each visual-field
location represents a measure of visual function in that
location. For example, in mapping light sensitivity, the
score in each location of the VFM represents percep-
tual sensitivity (1/threshold) at a fixed d0 level in that
location. Together with a decision criterion (the sixth
parameter) and a slope of the psychometric function
(assumed to be fixed), the VFM can be used to predict
light-detection probability in every single visual-field

location. Using Bayesian update and optimal stimulus
selection (Kontsevich & Tyler, 1999; Lesmes et al.,
2015), the qVFM updates the joint posterior distribu-
tion of the six parameters—that is, the shape of the
VFM—based on subject’s response in each trial.

The switch module evaluates the rate of information
gain in the global module and determines when to
switch to the local module. At the point of the switch,
the module generates a prior distribution of measures
of visual function in each visual-field location based on
the posterior from the global module. For example, in
mapping light sensitivity, the prior is over both
perceptual sensitivity and decision criterion at each
visual-field location.

Using the prior generated by the switch module, the
local module provides assessment of visual function in
each visual-field location via another Bayesian adap-
tive procedure that determines the order and stimulus
of the test based on the relative information gain
across locations. For example, in mapping light
sensitivity, we used qYN (Lesmes et al., 2015) as the
adaptive procedure to assess visual function at each
visual-field location, and the expected information
gain across all visual-field locations and stimulus
intensity levels to determine the optimal stimulus in
each trial.

Next, we describe all three modules in more detail.

The global module

In the global module, we first define a six-dimen-
sional prior probability distribution, in which five of
the dimensions correspond to the five parameters of the
TEPF and one dimension represents the decision
criterion in a YN task in light detection. The prior
distribution, together with the slope of the psycho-
metric function, completely specifies the probability of
YN responses across all the light intensity levels and
visual-field locations of all possible observers. We then
define a two-dimensional stimulus space representing
both the spatial locations and intensities of the stimuli.
The optimal stimulus (location and light intensity) for
the first test is determined based on the prior
distribution. Bayes’s rule is used to update the posterior
distribution of the six parameters based on the
observer’s response. A new trial starts using the
posterior from the previous trial as the prior. The
procedure repeats until the switch module decides to
switch to the local module.

Modeling the likelihood function of the VFM with a TEPF

In the global module, we model the VFM as a TEPF
of spatial location (as shown in Figure 1) with five
parameters: the central gain (e.g., sensitivity at the
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fovea), EPZ; (2) the bandwidth (latus rectum) in the
horizontal direction, EPA, which describes the func-
tion’s full width at half maximum (in octaves) in the
horizontal direction of the visual field; the bandwidth in
the vertical direction, EPB; the tilted level in the
horizontal direction, SLA; and the tilted level in the
vertical direction, SLB:

s x; yð Þ ¼ EPZ� x

EPA

� �2
� y

EPB

� �2
þ SLA 3x

þ SLB 3 y: ð1Þ

In mapping light sensitivity, the height of the TEPF,
s(x,y), defines the light sensitivity (1/threshold) at a
fixed d0 ¼ 1.0 level at visual-field location (x,y).

The d0 psychometric function at each visual-field
location (x,y)—that is, perceptual sensitivity for a given
stimulus intensity s—is modeled as

d 0 s; x; yð Þ ¼ b s3 s x; yð Þð Þcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s3 s x; yð Þð Þ2c þ b2 � 1

� �q ; ð2Þ

where c is the slope of the d0 psychometric function and
b is the asymptote of the function (Lesmes et al., 2015;
Lu & Dosher, 2008). Plotted on log axes, this function
is approximately linear over low to medium stimulus
intensities and saturates at high intensities. Following
the previous study (Lesmes et al., 2015), we have fixed c
(¼2.1) and b (¼5.0) in the current implementation of the
qVFM.

In the YN detection task at a visual-field location
(x,y), the probability of reporting target presence
(‘‘yes’’) is determined by both perceptual sensitivity and

decision criterion. Based on signal detection theory (X.
Gu & Green, 1994; Klein, 2001),

P s;x; yð Þ ¼Zþ‘

�‘

/ t� d0 s; x; yð Þ � k x; yð Þ½ �ð ÞU tð Þdt; ð3Þ

where /() is the probability density function of a
standard normal distribution function, U() is the
cumulative probability density function of a standard
normal distribution function, d0(s,x,y) is the d0 value
associated with a stimulus with signal intensity s at
visual-field location (x,y), and k(x,y) is the decision
criterion at visual-field location (x,y). In the global
module, a single k is used across all visual-field
locations. In the local module, k(x,y) is independent at
each visual-field location.

In addition, we assume a fixed lapse rate e for human
observers (Klein, 2001; Lesmes et al., 2015; Wichmann
& Hill, 2001):

P0 s; x; yð Þ ¼ 1

2
eþ 1� eð ÞP s;x; yð Þ; ð4Þ

where P(s,x,y) is the psychometric function without
lapse. In the qVFM method, e was set to 0.03 (Lesmes
et al., 2010; Wichmann & Hill, 2001).

Equation 4 is the likelihood function of the VFM
that completely describes the probability of light
detection across all visual-field locations and light
intensity levels.

Figure 1. Simulated visual-field map and tilted elliptic paraboloid function. The left panel shows the visual-field map of a simulated

left eye with a blind spot at (�158,�38). The right panel shows the corresponding tilted elliptic paraboloid function without the blind

spot.
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Setting the prior and stimulus space

Before running the qVFM procedure, a probability

density function p ~h
� �

is defined over the parameter

space of the TEPF and decision criterion, where
~h ¼ EPZ; EPA; EPB; SLA; SLB; kð Þ. Before any data
collection (trial t ¼ 0), the initial prior distribution
pt¼0(~h) represents foreknowledge of model parameters.
In addition, a stimulus space is defined that includes all
possible stimulus locations (x,y) and stimulus intensi-
ties. With the prior and the stimulus space, we can
compute the probability of detecting any stimulus in
the visual field for all possible observers based on
Equation 4.

Stimulus selection

In the qVFM, information is quantified by entropy,

a measure of uncertainty associated with random

variables. The method uses a one-step-ahead search

strategy to determine the optimal stimulus in the next

trial that would lead to the minimum expected

entropy. It first computes the observer’s response

probability Ptþ1(rjs) in every possible stimulus condi-

tion in the next trial based on the current prior; the

expected posterior probability distributions for all

possible stimuli; and the expected entropy for each

possible stimulus.
The entropy of the posterior is defined as

Htþ1 s; rð Þ ¼

�
X
~h

Ptþ1 ~hjs; r
� �

3 log Ptþ1ð~hjs; rÞ
� �

; ð5Þ

where r represents the observer’s response (yes or no) to
a test with signal intensity s. The expected entropy after
a trial with the signal intensity of stimulus s is
calculated as a weighted sum of posterior entropy:

E½Htþ1 s; rð Þ� ¼
X
r

Htþ1 s; rð Þ3Ptþ1 rjsð Þ: ð6Þ

The stimulus with the minimum expected entropy is
chosen for the next trial:

stþ1 ¼ arg min
s

E Htþ1 sð Þ½ �: ð7Þ

This is equivalent to maximizing the expected
information gain, quantified as the entropy change
between the prior and posterior (Kujala & Lukka,
2006; Lesmes et al., 2006).

Bayesian update

The prior distribution pt(~h) in trial t is updated to the
posterior distribution pt(~hjs,rt) with the observer’s

response rt (yes or no) to a test with a stimulus s by
Bayes’s rule:

Pt
~hjs; rt
� �

¼
P rtj~h; s
� �

Pt
~h
� �

Pt rtjsð Þ ; ð8Þ

where ~h represents the parameters of the VFM model
and pt(~h) is the prior probability function of ~h. The
probability of a response rt in a given stimulus
condition s, pt(rtjs), is estimated by weighting the
empirical response probability by the prior:

Pt rtjsð Þ ¼
X
~h

P rtj~h; s
� �

Pt
~h
� �h i

; ð9Þ

where p(rtjs,~h) is the likelihood of observing response rt
given ~h and stimulus s. The posterior pt(~hjs,rt) following
trial t serves as the prior ptþ1(~h) in the next trial:

Ptþ1 ~h
� �
¼ Pt

~hjs; rt
� �

: ð10Þ

The means of the marginal posterior distributions
are used to estimate the parameters of the qVFM
model after each trial.

The switch module

Since TEPF modeling cannot detail the blind spot
or other regional deficits on the VFM (as shown in
Figure 1), it is necessary to switch from the global
module to the local module for further VFM
assessments.

In the global module, the expected information
gain—computed as the difference between the entropy
of the prior and the expected posterior distribution for
each potential stimulus—is computed before each
trial. The stimulus that would lead to the maximum
amount of information gain is used in the next trial.
Before each trial, the expected information gain is also
used by the switch module to determine the switch
point to the local module. Instead of using the
maximum expected information gain, the switch
module computes the total expected information gain
(TEI) from the top 10% potential stimuli. In the
beginning, the TEI is high in the global module. With
increasing numbers of trials, the TEI is expected to
gradually decrease as the method learns more about
the parameters. As the learning saturates over trials,
the trend of the TEI begins to flatten and may even
reverse—that is, the TEI in trial t þ 1 may be higher
than that in previous trials. In the current implemen-
tation, the switch module compares the TEI in trial tþ
1 with the average TEI of three previous trials, t� 2, t
� 1, and t, to determine if the qVFM should switch to
the local module. The switch happens when the TEI in
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trial tþ 1 is higher than the average TEI in trials t� 2,
t � 1, and t.

Upon the switch, the switch module generates a prior
distribution of visual function in each visual-field
location based on the posterior of the parameters in the
global module. Specifically, the posterior distribution is
sampled repeatedly to generate the prior distribution
for each visual-field location.

The local module

The setup of the local module is very similar to that
of the global module except the following:

� Independent parameters in each visual-field loca-
tion: Instead of using six parameters to model
visual function across all visual-field locations,
independent parameters are used to model visual
function in each visual-field location. In mapping
light sensitivity, s x; yð Þ in Equation 2 is no longer
described by Equation 1 but rather is independent
in each location. In addition, the decision criterion
k x; yð Þ is independent at each visual-field location
as well.
� Independent priors and posteriors: Each visual-
field location has its independent parameters and
therefore independent priors and posteriors. The
initial priors in the local module are generated by
the switch module.
� Computing the information gain: The informa-
tion gain of each location is computed indepen-
dently, while in the global module the
information gains are computed simultaneously
across all visual-field locations based on the
TEPF and the psychometric function with the
bias criterion. Regardless of the dependency of
the computations of information gains, optimal
stimulus selection is always based on the total
expected entropy across all the visual-field loca-
tions in both local and global modules. In other
words, to select the next test location and
stimulus intensity, the expected entropy from all
visual-field locations are considered.

Stopping rules

In the current implementation, the qVFM procedure
terminates after a fixed number of trials. Alternatively,
it can stop after it achieves a certain defined objective
(e.g., after reaching a criterion level of precision for
either the parameters in qVFM or the light sensitivity
across all visual-field locations).

Simulations

Methods

To evaluate the performance of the qVFM method,
we simulated an observer with healthy vision who
viewed testing target (a light disc) monocularly and
was cued to report the presence or absence of a light
target in 100 visual-field locations (Figure 1). The
parameters of the simulated observer were chosen to
approximate those of the observers in our psycho-
physical validation, with EPA ¼ 81.0 (8/

ffiffiffiffiffiffi
dB
p

), EPB ¼
41.1 (8/

ffiffiffiffiffiffi
dB
p

), EPZ ¼ 24.3 (dB), SLA ¼ 0.020 (dB/8),
SLB¼0.032 (dB/8), and k¼1.20. Here, dB is calculated
as �10 3 log10(luminance, in asb/10,000). The blind
spot of the simulated left eye was at (�158,�38) of the
VF.

In the qVFM, the parameter space includes 20
linearly spaced EPA values (from 69.08/

ffiffiffiffiffiffi
dB
p

to 93.08/ffiffiffiffiffiffi
dB
p

), 20 linearly spaced EPB values (from 33.68/
ffiffiffiffiffiffi
dB
p

to 51.68/
ffiffiffiffiffiffi
dB
p

), 32 linearly spaced EPZ values (from
16.3 to 25.0 dB), 15 linearly spaced SLA values (from
�0.2 to 0.2 dB/8), 15 linearly spaced SLB values (from
�0.17 to 0.23 dB/8), and 20 linearly spaced k values
(from 0.4 to 2.1). The broad parameter space ensures
robust assessment of a wide range of populations and
avoids effects of extreme values—the tendency to bias
toward the center of the parameter space when the
observer’s true parameter values are close to the
boundary of the space.

For each of the six qVFM parameters, the prior was
defined by a hyperbolic secant (sech) function (King-
Smith & Rose, 1997). For each qVFM parameter hi (i¼
1, 2, 3, 4, 5, 6), the mode of the marginal prior p(hi) was
defined by the best guess for that parameter based on a
pilot study, hi,guess, and the width was defined by the
confidence in that guess, hi,confidence:

P hið Þ ¼ sech hi;confidence 3 hi � hi;guess

� �� �
; ð11Þ

where

sech zð Þ ¼ 2

ez þ e�z
: ð12Þ

The priors were log-symmetric around hi,guess, whose
values for the respective parameters were EPA ¼ 71.4
(8/

ffiffiffiffiffiffi
dB
p

), EPB¼ 46.1 (8/
ffiffiffiffiffiffi
dB
p

), EPZ¼ 24.5 (dB), SLA¼
0.019 (dB/8), SLB ¼ 0.048 (dB/8), and k ¼ 1.16. For
hi,confidence of the respective parameters, the values were
set to 0.67 for EPA, 1.26 for EPB, 1.93 for EPZ, 3.13
for SLA, 3.03 for SLB, and 2.68 for k. The joint prior
was defined as the normalized product of the marginal
priors, which resulted in a weakly informative prior in
the current study.

The stimulus space includes a 10 3 10 evenly spaced
grid of visual-field locations (608 3 608) and log-linearly
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spaced luminance values (from 10.2 to 25.0 dB): 60
luminance values in the global module and 120 in the
local module.

We compared the performance of the full qVFM
procedure, which has all three modules, with a reduced
qVFM procedure that has only the local module (the
qYN procedure in this study), a staircase procedure
based on the 4-2 algorithm, and a staircase procedure
based on the 4-2-1 algorithm, in 1,000 repeated
simulations of 1,200 trials each.

The prior of the reduced qVFM was generated from
the prior of the global module of the full qVFM.
Therefore, the two methods were equated before the
first trial. For simplification, we will use ‘‘the qYN
method’’ to refer to the reduced qVFM method from
this point on.

To minimize the bias and variability of the
staircase procedure and give it the best chance, we
matched the initial stimulus intensity in each location
with the true sensitivity of the simulated observer.
The step size in the 4-2 staircase algorithm is 4 dB at
beginning and decreases to 2 dB after the first
response reversal. In the 4-2-1 algorithm, the step
size keeps decreasing to 1 dB after the second
response reversal. The test on each location stops at
the second response reversal in the 4-2 algorithm and
the third response reversal in the 4-2-1 algorithm.
The sensitivities are estimated with two methods,
both used in clinical perimetry (Anderson & Patella,
1999; Weijland, Fankhauser, Bebie, & Flammer,
2004): the last seen stimulus intensity (referred to as
the h method) and the average of the last seen and
unseen stimulus intensities (referred to as the o
method). The test procedure follows the ‘‘growth
pattern’’ method, which begins at four primary
points and grows to their neighboring points in a
pseudorandom order.

Metrics of evaluation

Accuracy is a measure of how much the estimates
deviate from the truth and precision is a measure of the
variability of the estimates. We quantify accuracy using
the root mean square error (RMSE) of the estimated
sensitivities across all 100 visual-field locations.
RMSEsimulation after trial i can be calculated as

RMSEsimulation
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
j sijk � strue

k

� �2
J3K

s
; ð13Þ

where sijk is the estimated sensitivity at the kth visual-
field location after trial i in the jth run, and sk

true is the
true sensitivity at that location.

Two methods have been used to assess the precision
of the qVFM procedure. The first is based on the

standard deviation of repeated measures:

SDi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
j sijk �mean sijk

� �� �2
J3K

s
: ð14Þ

Another measure of precision is the average half
width of the credible interval (HWCI) of the posterior
distribution of the estimated sensitivities across visual-
field locations. The 68.2% credible interval represents
the range within which the actual value lies with 68.2%
probability, whereas the confidence interval, the most
popular index of precision, represents an interval that
contains the true value of sensitivity for 68.2% of
unlimited repetitions. Since researchers typically do not
iterate an experiment many times for the same
observer, the HWCI of the posterior distribution is a
very important index of precision that can be obtained
with a single run of the procedure (Hou et al., 2015).

To further compare the performance of all methods,
we computed a number of global indices on the
estimated VFMs from the simulations for each method:
mean defect, loss variance, short-term fluctuation, and
corrected loss variance (Flammer, Drance, Augustiny,
& Funkhouser, 1985). The mean defect of the estimated
sensitivities across all 100 visual-field locations after
trial i is calculated as

MDi ¼
P

k

P
j strue

k � sijk
� �
J3K

: ð15Þ

The loss variance is calculated as

LVi ¼
P

k

P
j sijk � strue

k þMDi

� �2
J3 K� 1ð Þ : ð16Þ

The short-term fluctuation is calculated as

SFi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k

P
j sijk �mean sijk

� �� �2
J� 1ð Þ3K

s
: ð17Þ

The corrected loss variance is calculated as

CLVi ¼ LVi � SFi
2: ð18Þ

Results

The estimated light-sensitivity VFMs of the simu-
lated observer, obtained with the qVFM and qYN
methods, are shown in Figure 2.

Figure 3 shows the corresponding RMSE, standard
deviation, and average 68.2% HWCI of the estimated
VFM in each visual-field location.

The average RMSEsimulation of the estimated sensi-
tivities from both the qVFM and qYN methods across
all 100 visual-field locations started at 1.41 dB on the
first trial. It decreased to 0.76 dB and 1.15 dB for the
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qVFM and qYN methods after the first 300 trials, and
to 0.15 dB and 0.26 dB for the two methods after 1,200
trials (Figure 4a). The average RMSEsimulation of the
staircase methods started at 0 dB and increased to 0.79
and 0.53 dB for the 4-2-1h and 4-2-1o algorithms and
1.39 and 0.74 dB for the 4-2h and 4-2o algorithms after
300 trials, and 0.92 and 0.65 dB for the 4-2-1h and 4-2-
1o algorithms and 1.54 and 0.82 dB for the 4-2h and 4-
2o algorithms after 1,200 trials (Figure 4a).

The standard deviations of the estimated sensitivities
were 0.63 dB with the qVFM method and 0.75 dB with
the qYN method after 300 trials, and decreased to 0.15
dB with the qVFM method and 0.24 dB with the qYN
method after 1,200 trials (Figure 4b). The standard
deviations of the staircase methods were 0.68 and 0.51
dB for the 4-2-1h and 4-2-1o algorithms, 0.91 and 0.68
dB for the 4-2h and 4-2o algorithms after 300 trials,
and 0.62 dB for both the 4-2-1h and 4-2-1o algorithms
and 0.73 dB for both the 4-2h and 4-2o algorithms after
1,200 trials (Figure 4b).

The 68.2% HWCI of the estimated sensitivities
also decreased with trial number. It started at 2.12
dB for both the qVFM and qYN methods, and
decreased to 0.20 dB with the qVFM method and
0.69 dB with the qYN method after the first 300
trials and to 0.15 dB with the qVFM method and

0.24 dB with the qYN method after 1,200 trials (in
Figure 4c).

For the qVFM method, the switch from the global
module to the local module occurred after between 30
and 63 trials, with the mean around 38 trials and a
standard deviation of 6.8 trials. From Figure 4b and 4c,
we can tell that the global module acted very efficiently
in reducing random errors and uncertainties in the
beginning of the qVFM method.

In characterizing spatial vision, the area under the
log contrast sensitivity function is often used as a
summary metric (Applegate et al., 2000; Applegate,
Howland, Sharp, Cottingham, & Yee, 1998; Oshika,
Klyce, Applegate, & Howland, 1999; Oshika, Okamo-
to, Samejima, Tokunaga, & Miyata, 2006; van Gaalen,
Jansonius, Koopmans, Terwee, & Kooijman, 2009).
Here in Figure 4d, we show the volume under the
surface of the VFM (VUSVFM) to provide a summary
metric of the entire visual field.

Figure 5a shows that the mean defects of both the
qVFM and qYN methods did not drift much and
converged to 0 dB with increasing trial number, while
the Full Threshold method shows significant overall
biased estimations across visual field. The loss variance
and short-term fluctuation of the qVFM method both
dropped quickly below those of the qYN method after
several trials in the beginning, as the qYN method

Figure 2. Simulation results I. (a, e) The true visual-field map (VFM) of a simulated observer (monocular). The estimated VFMs

obtained with the qVFM method after (b, f) 1,200 trials and (c, g) 300 trials. (d, h) The estimated VFM obtained with the qYN method.
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exhibited vast fluctuations (Figure 5c and 5b). For the
staircase methods, the loss variance all started at 0 dB2,
ending up at 0.39 dB2 for both the 4-2-1h and 4-2-1o
algorithms and 0.56 dB2 for both the 4-2h and 4-2o
algorithms (Figure 5c). The short-term fluctuations all
increased in patterns similar to loss variance, ending up
at 0.62 dB for both the 4-2-1h and 4-2-1o algorithms
and 0.73 dB for both the 4-2h and 4-2o algorithms
(Figure 5b). For both the qVFM and qYN methods,
the corrected loss variance started at 1.95 dB2 and
dropped to less than 1 dB2 after only 168 trials for the

qVFM method, while the qYN method needed 241
trials to reach 1 dB2.

In summary, the simulations showed that the
staircase method exhibited overall positively biased
estimates with high standard deviations. Although
both the qVFM and qYN methods can reach high
accuracy and precision in 1,200 trials, it took
significantly fewer trials for the qVFM method. To
achieve 1-dB accuracy (RMSE), qVFM needed only
213 trials, while qYN needed 352 trials. To achieve 1-
dB precision (standard deviation and HWCI), qVFM

Figure 3. Simulation results II. The (a–c) RMSEsimulation, (d–f) standard deviation, and (g–i) average 68.2% half width of the credible

interval of the estimates (unit: dB) in each visual-field location for, respectively, the qVFM method after 1,200 trials, the qVFM

method after 300 trials, and the qYN method after 1,200 trials.
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used six and seven trials, while qYN used 155 and 152
trials.

Psychophysical validation

Methods

Apparatus

The psychophysical experiment was conducted on an
IBM PC compatible computer running MATLAB

(MathWorks, Natick, MA) programs with PsychTool-

box extensions (Brainard, 1997; Pelli, 1997). The

stimuli were displayed on a Samsung 55-in. monitor

(UN55FH6030, Clear Motion Rate of 240 Hz) with a

resolution of 1,920 3 1,080 pixels, a refresh rate of 60

Hz, and a background luminance of 31.5 asb. Subjects

viewed the stimuli monocularly with natural pupil at a

viewing distance of 30 cm in a dimly lighted room. A

chin and forehead rest was used to minimize head

movement during the experiment.

Figure 4. Simulation results III. (a) RMSEsimulation, (b) standard deviation, and (c) average 68.2% half width of the credible interval of

the estimated sensitivities across 100 visual-field locations and 1,000 runs. (d) Average volume under the surface of the visual-field

map across 1,000 runs. Results from the qVFM and qYN methods are shown in black solid and dashed lines. Results from the staircase

4-2-1 algorithm of h and o methods are shown in red solid and dashed lines. Results from the staircase 4-2 algorithm of h and o

methods are shown in blue solid and dashed lines. The h method uses the last seen stimulus intensity as the estimated sensitivity, the

o method uses the average of the last seen and unseen stimulus intensities as the estimated sensitivity.

Figure 5. Simulation results IV. The global indices of the estimated visual-field maps: (a) mean defect, (b) short-term fluctuation, (c)

loss variance, and (d) corrected loss variance. Results from the qVFM and qYN methods are shown in black solid and dashed lines.

Results from the staircase 4-2-1 algorithm of h and o methods are shown in red solid and dashed lines. Results from the staircase 4-2

algorithm of h and o methods are shown in blue solid and dashed lines.
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Stimuli and design

Consistent with the Goldmann size III stimulus
(Dersu, Wiggins, Luther, Harper, & Chacko, 2006), the
test target was a small light disc with a diameter of
0.438. The luminance of the target varied between 31.5
and 950 asb, corresponding to sensitivity 25.0 to 10.2
dB, where dB¼�10 3 log10(luminance, in asb/10,000).
Each trial contained a location cue—a circle with a
diameter of 8.178 and a luminance of 77.4 asb. The
target, if present, resided at the center of the location
cue, and both were presented simultaneously for 150
ms in one of the 100 visual-field locations. All subjects
confirmed afterwards that they were able to see the
location cue in all testing trials. The intertrial interval
was set to 1.2 s. A fixation dot was displayed in the
center of the visual field throughout the whole session.
An illustration of the stimulus layout is shown in
Figure 6.

Procedure

Subjects were asked to report the target’s presence or
absence in the center of the location cue, with the
luminance of the target adaptively adjusted in each
trial. Each eye was tested in four sessions, each
consisting of an independent 300-trial qVFM assess-
ment and 300 serial qYN trials, with the two types of
trials randomly mixed.

Participants

This study collected data from 12 eyes (six left, six
right) of six subjects (four men, two women; 25–39
years old): the first author PX (Subject 1) and five
others who were unaware of the research goals
(Subjects 2–6).

Results

The estimated light-sensitivity VFMs of the 12 tested
eyes from both the qVFM and qYN methods are
shown in Figure 7 (Subject 1) and Figures A1 through
A5 (Subjects 2–6).

The agreement between the estimated VFMs from
qVFM and qYN was evaluated by the root mean
square error (RMSEeyes) of the estimated sensitivities
across all 100 visual-field locations:

RMSEeyes
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
l

P
k

P
j sqVFM

ijkl � sqYN
kl

� �2
J3K3L

vuut
; ð19Þ

where sqVFM
ijkl is the estimated sensitivity from the qVFM

method in the kth visual-field location of eye l after i
trials obtained in the jth session, and sqYN

kl is the
estimated sensitivity from the qYN method in the kth
visual-field location of eye l after 1,200 trials. The
average RMSEeyes started at 2.47 dB on the first qVFM
trial and decreased to 1.87 dB after 150 trials and to
1.38 dB after 300 trials across all test sessions and eyes
(Figure 8a). The decreasing RMSEeyes with trial
number suggests that the accuracy of qVFM increased
with the number of trials.

The average 68.2% HWCI of the estimated sensi-
tivities across all 12 eyes and 100 visual-field locations
decreased from 2.28 dB before the first qVFM trial to
0.27 dB after 150 trials and 0.25 dB after 300 trials. The
average 68.2% HWCI of the estimated sensitivities
decreased from 2.28 dB before the first qYN trial to
1.05 dB after 150 trials, 0.69 dB after 300 trials, and
0.29 dB after 1,200 trials (as show in Figure 8b). These
results suggest that the precision of the estimated
sensitivities from the qVFM and qYN methods
increased with trial number, and reached 1 dB in about
9 and 160 trials, respectively.

For the qVFM method, the switch from the global
module to the local module occurred after between 26
and 54 trials, with the mean around 37 trials and a
standard deviation of 5.7 trials across all 12 eyes,
consistent with the simulations. The rapid convergence
of the VFM estimation by the global module (the
average 68.2% HWCI) is evident in Figure 8b.

Figure 8c presents the average estimated VUSVFM
of the 12 eyes as a function of trial number for qVFM
and qYN. The difference of the estimated VUSVFM

Figure 6. Illustration of the stimulus layout in the psychophysical

experiment. Subjects were asked to fixate on the center of the

display and report whether the target (a light disc with a

diameter of 0.438 at one of the 100 visual-field locations) was

present at the center of the location cue (circle) for 150 ms.
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between the two methods was less than 0.9% at 300
trials.

Test–retest reliability of the qVFM method is
assessed through analysis of the four qVFM runs
completed in four sessions. Figure 9a plots estimated

sensitivities (100 locations) of the paired qVFM runs

from four independent sessions (2 random pairs of

qVFM 3 12 eyes 3 100 locations¼ 2,400 data points).

The average test–retest correlation for the paired VFM

Figure 7. Experimental results I. Light-sensitivity visual-field maps (VFMs) in the left and right eye of Subject 1. The estimated VFMs

are presented in the first row with achromatic color maps and in the second row with numerical values (unit: dB). For each visual-field

location of the estimated VFM, the 68.2% half width of the credible interval is presented in the third row, and the standard deviations

from four sessions of the qVFM method and the RMSEeyes between the qVFM and qYN methods are presented in the fourth row. The

results obtained from the qVFM and qYN methods are displayed in the odd and even columns, respectively.
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estimate was 99.5% 6 0.06% (SD) across 100 runs of

randomly sampled pairs.

Although test–retest correlations are widely reported

as measures of test–retest reliability, they are not the

most useful way to characterize method reliability or

agreement (Bland & Altman, 1986). Figure 9b presents

a Bland–Altman plot of the difference of the qVFM

estimates between randomly sampled pairs of sessions

against their respective means. The mean and standard

deviation of the test–retest differences are�0.02 and

1.28 dB in Figure 9b. These results suggest that

estimated sensitivities did not change much over the

course of test sessions and that the test–retest difference

between sessions agreed with the estimated RMSEeyes

(1.28 vs. 1.38 dB). The repeated runs of the qVFM
procedure generated quite consistent results.

To demonstrate the convergence of the estimated
VUSVFMs obtained with the qVFM method, Figure
9c presents the coefficient of variation of VUSVFM
estimates as a function of trial number for each eye.
The coefficient of variation, also known as relative
standard deviation, is defined as the ratio of the
standard deviation to the mean:

cvi ¼
ri

li

; ð20Þ

where ri is the standard deviation of estimated
VUSVFMs after trial i across four runs, and li is the
mean of the estimated VUSVFMs after trial i across

Figure 8. Experimental results II. (a) RMSEeyes of the estimated sensitivities from the qVFM method as a function of trial number,

using estimated sensitivities from 1,200 qYN trials as the ‘‘truth.’’ (b) Average 68.2% half width of the credible interval of the

estimated sensitivities across 100 locations and 12 eyes. (c) Average volume under the surface of the visual-field map across 12 eyes.

Results from the qVFM method are shown in solid lines, and results from the qYN method are shown in dashed lines.

Figure 9. Experimental results III. (a) Test–retest comparison of the estimated sensitivities from repeated qVFM runs. (b) Bland–

Altman plot for repeated qVFM runs. (c) Coefficient of variability of estimated volumes under the surface of the visual-field map (four

runs each) as functions of trial number for all 12 tested eyes.
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four runs. A consistent pattern, exhibited in each tested
eye, is a decrease in variability with trial number: from
approximately 8% after 15 trials to less than 3% after
300 trials.

Discussion

In this study, we developed a novel Bayesian
adaptive testing framework, the qVFM method, that
combines a global module for preliminary assessment
of the VFM’s shape and a local module for assessing
individual visual-field locations. We implemented and
validated the method in measuring light-sensitivity
VFM. Simulations showed that the RMSEsimulation and
standard deviation of the estimated sensitivities after
1,200 trials were both 0.15 dB for the qVFM, and 0.26
and 0.24 dB for the qYN. To achieve 1-dB accuracy
and 1-dB precision, on average, it took 213 and six or
seven qVFM trials, respectively, and 352 and 152–155
qYN trials. Estimates of within-run variability (68.2%
HWCIs) were comparable to cross-run variability (SD).
For the subjects in the psychophysical experiment, the
average HWCI of the qVFM estimates decreased from
2.28 dB on the first trial to 0.27 dB after 150 trials, and
to 0.25 dB after 300 trials. The RMSEeyes of light-
sensitivity estimates from the qVFM and qYN methods
started at 2.47 dB on the first trial and decreased to 1.87
dB after 150 qVFM trials and to 1.38 dB after 300
trials. The qVFM provides an accurate, precise, and
efficient mapping of light sensitivity. The method can
be extended to map other visual functions, with
potential clinical signals for monitoring vision loss,
evaluating therapeutic interventions, and developing
effective rehabilitation for low vision.

SAP, widely used in clinical vision, provides only a
light-sensitivity map (Johnson et al., 2011). Other
visual functions (e.g., visual acuity and contrast
sensitivity function [CSF]) are typically measured only
in one single spatial location, either in central vision or
at a single peripheral location (Dorr et al., 2015; Hou
et al., 2010; Qiu, Xu, Zhou, & Lu, 2007; Westheimer,
1965; Xu, Lu, Qiu, & Zhou, 2006; Xu et al., 2010).
Vision tests in a single visual-field location cannot
fully represent the typical usage of residual vision in
ophthalmic patients’ everyday activities (Bengtsson et
al., 2005; Hodapp et al., 1993; Markowitz, 2006). To
obtain a more comprehensive assessment of residual
vision in patients, we must obtain other visual-
function maps, including but not limited to visual
acuity (Thompson et al., 1982; VA, 1965), CSF
(Daitch & Green, 1969; Swanson, Malinovsky, et al.,
2014), color vision (Carlow et al., 1976; Hart et al.,
1984; Sample & Weinreb, 1990, 1992), motion
sensitivity (Sperling & Lu, 1998), reading speed

(Ramulu et al., 2009; Yu et al., 2010), and crowding
(Balas et al., 2009; Levi & Carney, 2009). It is
extremely challenging or even impossible to obtain
even a single one of these maps with conventional
methods because of the tremendous amount of data
collection required. The development of our hybrid
adaptive procedures makes it possible to measure
visual functions at multiple locations across the visual
field.

Typically, visual functions are derived from indi-
vidual thresholds in many conditions estimated with an
adaptive procedure. Traditional adaptive procedures
have been developed to estimate threshold and in a few
cases the slope of the psychometric function for only a
single stimulus condition at a time (Alcala-Quintana &
Garcia-Perez, 2007; Garcı́a-Pérez & Alcalá-Quintana,
2007; King-Smith & Rose, 1997). Although measure-
ment of individual thresholds is efficient, these con-
ventional methods do not take advantage of the
relationship across conditions, and the demand of data
collection is multiplied by the number of conditions.

Novel combination of global and local modules

The combination of the global and local modules to
measure visual-function maps is a novel development in
Bayesian adaptive testing techniques. Previous studies
developed the qCSF method to accurately estimate the
CSF in less than 100 trials (Dorr et al., 2015; Hou et al.,
2010; Hou et al., 2015; Lesmes et al., 2010). In the
qCSF method, the truncated log parabola with four
parameters is used as the functional form of the CSF.
The algorithm applies a one-step-ahead search, and an
information-gain strategy, to efficiently estimate the
four parameters of this functional form. With a 10-
alternative forced-choice task (Hou et al., 2015), as few
as 25 to 50 qCSF trials, distributed over 12 possible
spatial frequencies, are sufficient for a general assess-
ment of the CSF.

In this study, we adopted the method used in qCSF
to develop the global module for preliminary assess-
ment of the VFM’s shape, which was modeled by a
mathematical function, the TEPF, with five parame-
ters. The adaptive Bayesian procedure was used to
update estimates of the parameters of the model based
on trial-by-trial performance. To provide detailed
assessment in the individual visual-field locations, we
introduced the local module using qYN (Lesmes et al.,
2015) as the adaptive procedure, to assess visual
function at each location with the expected information
gain across all locations and stimulus intensity levels to
determine the optimal stimulus in each trial. To
determine the appropriate switch point from the global
module to the local module, we evaluate the rate of
information gain in the global module and switch to the
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local module when the rate of information gain is lower
than a criterion value. Further, we generate a prior
distribution for the local module by sampling the
posterior from the global module. Different global,
local, and switch modules can be adopted and modified
according to the specific applications of this frame-
work.

This hybrid Bayesian adaptive test framework shows
the capability of significantly reducing testing time for
estimating visual function maps of normally-sighted
individuals, laying the groundwork for future research
on a wide range of eye diseases, including age-related
macular degeneration (AMD), glaucoma, diabetic
retinopathy, and retinitis pigmentosa.

Applying the qVFM method to estimate VFM in
eye disease

We have evaluated the performance of the qVFM
method on simulated observers with scotoma, cataract,
glaucoma, and AMD. The results show that the qVFM
method can provide an accurate, precise, and efficient
assessment of vision loss in light-sensitivity maps.

In these simulations, the simulated glaucoma ob-
server had affected peripheral vision, in which light
sensitivity dropped to 2.5 times lower than that of the
simulated normal observer outside of the central 68.
The simulated scotoma observer had three scotomas
located at (�98, 98), (�98,�98), and (�98,�158) from the
fovea. The simulated cataract observer had light
sensitivity that was 2.2 dB lower compared to the
simulated normal observer at each retinal location
across the entire visual field. The simulated AMD
observer had reduced light sensitivity across fovea
vision in the central 68 of the visual field.

We sampled 100 visual-field locations (608 3608) and
compared the performance of the qVFM with the qYN
procedure that evaluated each location independently.
The task for the simulated observers was to report a the
presence or absence of a light disc, with its luminance
adaptively adjusted on each trial. Simulated runs of
1,200 trials (for both qVFM and qYN) were used to
compare the accuracy and precision of the methods.

For the simulated glaucoma observer, the RMSE of
the qVFM and qYN estimates, started at 6.40 dB and
became 1.52 dB and 3.13 dB after 300 trials and 0.65 dB
and 0.73 dB after 1,200 trials, respectively. The average
standard deviations of the qVFM and qYN estimates
were 0.76 dB and 2.45 dB after 300 trials and 0.58 dB
and 0.71 dB after 1,200 trials, respectively. For the
simulated scotoma observer, the RMSE of the qVFM
and qYN estimates started at 2.54 dB and became 1.42
dB and 1.71 dB after 300 trials and 0.29 dB and 0.37 dB
after 1,200 trials, respectively. The average standard
deviations of the qVFM and qYN estimates were 1.15

dB and 0.89 dB after 300 trials and 0.29 dB and 0.33 dB
after 1,200 trials, respectively. For the simulated
cataract observer, the RMSE of the qVFM and qYN
estimates started at 4.63 dB and became 0.85 dB and
2.15 dB after 300 trials and 0.37 dB and 0.61 dB after
1,200 trials, respectively. The average standard devia-
tions of the qVFM and qYN estimates were 0.65 dB
and 1.77 dB after 300 trials and 0.36 dB and 0.60 dB
after 1,200 trials, respectively. For the simulated AMD
observer, the RMSE of the qVFM and qYN estimates
started at 3.26 dB and became 1.98 dB and 2.23 dB
after 300 trials and 0.30 dB and 0.52 dB after 1,200
trials, respectively. The average standard deviations of
the qVFM and qYN estimates were 1.55 dB and 0.95
dB after 300 trials and 0.30 dB and 0.47 dB after 1,200
trials, respectively.

Comparison with staircase-based algorithms

Most of the existing algorithms for static automated
perimetry are based on the staircase strategy (Weijland,
Fankhauser, Bebie, & Flammer, 2004). In these
algorithms, stimulus intensities are varied according to
an up-and-down bracketing procedure in each location.
The threshold values are estimated directly or scaled
from the last seen stimulus intensity or the average of
the last seen and unseen stimulus intensities in each
location. In addition, the test procedures usually start
from measuring thresholds at four primary points, one
in each quadrant of the visual field, followed by
measurement of thresholds in the rest of the visual field
with initial values derived from the primary points.

Staircase-based perimetries are generally classified
into conventional and reduced time-saving methods.

The conventional method with the Humphrey Field
Analyzer is Full Threshold, which is currently regarded
as the standard technique in static automated perim-
etry. With initial stimulus intensity levels determined
from a normative data set, the stimulus intensity at
each test location is varied in steps of 4 dB until the first
response reversal occurs, and then subsequently varied
in steps of 2 dB. The stimulus intensity of the last-seen
presentation is taken as the final threshold estimate,
after a second response reversal has occurred at a given
location (Artes et al., 2002). The other conventional
method implemented in Octopus perimeters uses a 4-2-
1-dB staircase procedure, which further reduces the
step size to 1 dB after two reversals. The mean value of
the dimmest stimulus seen and the brightest stimulus
not seen is defined as the threshold (Morales, Weitz-
man, & González de la Rosa, 2000).

The reduced method with the Humphrey Field
Analyzer is FASTPAC. A step size of 3 dB is used, and
the bracketing procedure stops after a single reversal.
In half of the test locations, the first stimulus is 1 dB
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brighter than the expected threshold, whereas for the
other half the first stimulus is presented 2 dB dimmer
than the expected threshold (Flanagan et al., 1993;
O’Brien, Poinoosawmy, Wu, & Hitchings, 1994). Some
reduced methods used in Octopus perimeters include
the dynamic strategy and TOP (tendency-oriented
perimetry; Johnson, 2002; Morales et al., 2000). In the
dynamic strategy, the step size increases with the depth
of visual defect and varies between 2 and 10 dB; the
threshold is crossed only once. In TOP, each test
location is assessed only once, and the subject’s
responses in neighboring locations are used to deter-
mine the threshold in each location (King, Taguri,
Wadood, & Azuara-Blanco, 2002; McKendrick, 2005).
Another algorithm, German Adaptive Threshold Esti-
mation, compares the threshold obtained from the
primary locations to the age-corrected normal hill of
vision, then uses the smallest absolute deviation from
the normal hill of vision to translate the values of the
entire hill of vision. For the rest of the visual-field
locations, testing starts slightly above the expected
normal threshold and a 4-2-dB staircase is used to
estimate the threshold after two reversals (Schiefer et
al., 2009).

In our study, staircase procedures with both the 4-2
and 4-2-1 algorithms were implemented, with the initial
stimulus intensity at each location matched with the
true threshold of the simulated observer. The results
show that staircase algorithm used in conventional
procedures can have large biases and variabilities.

Comparison with SITA algorithms

The SITA algorithm, developed by Bengtsson,
Olsson, Heijl, and Rootzén (1997), reduces the test time
through more efficient threshold estimation based on
Bayesian principles, whereas the stimulus intensities are
varied according to simple staircase rules (similar to
those of the Full Threshold strategy). It takes
advantage of age-corrected healthy and glaucomatous
prior probability distributions of threshold values to
calculate the Bayesian posterior probability distribu-
tions based on participant’s responses. The maximum
posterior estimate is used to determine the best
classification (healthy or glaucomatous) and calculate
the threshold value in each visual-field location. The
threshold value calculated in real time is used to
determine when testing stops at each location.

The SITA family, including SITA Standard, SITA
Fast, and SITA Faster, all share a similar framework,
but with slight differences in the following features:

� Stimulus intensities: Whereas SITA Standard and
SITA Fast both start the test sequence with a 25-
dB stimulus intensity at the primary test locations,
SITA Faster uses age-corrected healthy threshold

levels as initial stimulus intensity at the primary
test locations, reducing the number of stimulus
presentations for most eyes.
� Step size: Whereas SITA Standard uses 4-2-dB
staircases, SITA Fast and SITA Faster alter
stimulus intensities in 4-dB steps with one reversal
in all test locations, except in the four primary
locations in SITA Fast (Heijl et al., 2019).
� Priors: The prior threshold distribution in each test
location is important for test efficiency. Whereas
the priors in SITA Standard and SITA Fast are
based on threshold distributions of healthy subjects
obtained with the original Full Threshold method,
SITA Faster uses threshold distributions of healthy
subjects obtained with SITA Fast (Bengtsson,
Heijl, & Olsson, 1998; Heijl et al., 2019).
� Stop rules: The test sequence of SITA Standard
stops when the measurement error of the test
locations reaches the error-related factor cutoff. In
SITA Fast and SITA Faster, testing stops earlier
with an increased cutoff value and therefore lower
test accuracy (Bengtsson, Olsson, Heijl, &
Rootzén, 1997; Heijl et al., 2019).
� Blind spot: Blind-spot catch trials are replaced by
use of the Humphrey gaze tracker in SITA Faster.
Retesting at perimetrically blind points, false-
negative catch trials, and stimulus timing are
slightly different in the SITA family (Bengtsson,
Heijl, & Olsson, 1998; Bengtsson, Olsson, Heijl, &
Rootzén, 1997; Heijl et al., 2019).

Although it is also based on a Bayesian adaptive
testing framework, the qVFM method is quite different
from the SITA algorithm.

Stimulus selection in the SITA family follows the
conventional up-down staircase algorithm in each
location with a step size equal or larger than 2 dB, and
the test procedure follows the ‘‘growth pattern’’ proce-
dure across the visual field (Bengtsson, Olsson, Heijl, &
Rootzén, 1997). In the qVFM method, the step size in
the stimulus space grid can be as small as 0.12 dB. Both
global and local modules use the one-step-ahead search
strategy across the entire visual field to determine the
optimal stimulus in the next trial that would lead to the
minimum expected entropy, equivalent to maximizing
information gain on the next trial. More precise stimulus
intensity and location selection in qVFM potentially
lead to more accurate threshold estimation.

The frequency-of-seeing curve (a YN psychometric
function) in SITA is not adjusted with the observer’s
decision criterion (Bengtsson, Olsson, Heijl, &
Rootzén, 1997). Previous studies have shown that
conventional YN threshold estimates exhibit approxi-
mately 25%–50% more variability (i.e., standard
deviation) than criterion-free forced-choice threshold
estimates (King-Smith, Grigsby, Vingrys, Benes, &
Supowit, 1994; McKee, Klein, & Teller, 1985). In this
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study, we implemented the qVFM method based on the
qYN procedure, which combines elements of signal
detection theory and Bayesian adaptive inference to
concurrently estimate thresholds associated with a d0

level (rather than a percent yes level) and decision
criterion (Lesmes et al., 2015). Our study shows that
this method can deliver criterion-free thresholds on a
light-detection YN perimetric task with significant
improvement in performance.

The prior distribution for SITA is optimized only for
healthy and glaucoma observers, not for people with
other eye diseases (Bengtsson & Heijl, 1998). In qVFM,
the global module is an individualized test that takes
into account the population properties in its prior but
continues to optimize the test for each individual,
including those with abnormal visual-field maps.
Because the method is completely systematic and not
oriented toward any particular pathological patterns,
qVFM is not limited to a specific eye disease.

Because locations with defective visual sensitivity
tend to appear in clusters in glaucomatous visual fields,
the prior threshold distribution in each test location in
SITA is calculated with interlocation correlations
(Bengtsson, Olsson, Heijl, & Rootzén, 1997). Such
correlations may not be present in other eye diseases. In
qVFM, the local module is used to estimate visual
threshold in each visual-field location independently,
making it possible to detect steep visual-sensitivity
changes in the visual field, such as scotoma resulting
from optic neuropathies or visual-field islands in
retinitis pigmentosa.

Since the age-corrected healthy and glaucomatous
priors need enormous data collection to generate,
SITA’s development has so far been focused on light-
sensitivity maps with Goldmann size III stimulus for
the 30-2, 24-2, and 10-2 test patterns in the Humphrey
Field Analyzer (Bengtsson, Olsson, Heijl, & Rootzén,
1997; Phu, Khuu, Zangerl, & Kalloniatis, 2017).
Whereas the test area in SITA is limited to the central
308 of the visual field, with less than 76 test locations,
qVFM can map larger areas of the visual field with
different types of stimulus and a flexible number of test
locations, without restrictions from prior knowledge as
are found in SITA.

Ways to inform priors

A proper informative prior can further speed up the
estimation process (Baek et al., 2016; H. Gu et al.,
2016; Hou et al., 2010; Kim, Pitt, Lu, Steyvers, &
Myung, 2014; Lesmes et al., 2006; Lesmes et al., 2010).
The prior in qVFM can be informed by prior
knowledge obtained in four different ways:

� Structure-based prior: We can use the structural
images such as fundus images or OCT SLO

(OSLO) images (Landa, Rosen, Garcia, & Seiple,
2010; Menke, Sato, Van De Velde, & Feke, 2006;
Okada et al., 2006) to localize scotomas, anatomic
fovea, and preferred retinal locus and inform the
prior in qVFM.
� Prior derived from statistical or machine learning:
Statistical and machine-learning algorithms can be
used to classify patients (Kononenko, 2001) and
derive informative priors for different types of
patients.
� Prior derived from the hierarchical adaptive
approach: A hierarchical Bayesian extension of
qVFM can provide a judicious way to exploit two
complementary schemes of inference (with past
and future data) to achieve even greater accuracy
and efficiency in information gain (H. Gu et al.,
2016; Kim et al., 2014). In this approach, each
incoming subject is assigned to several possible
patient categories with probabilities. Each category
of patients has its own learned prior. The
hierarchical qVFM simultaneously updates the
probabilities of patient classification and the VFM
throughout the testing process, and updates the
priors of the categories after testing each new
subject.
� Priors informed by other VFMs: For each new
VFM (e.g., VFM of visual acuity), one can
generate a prior using results from a previous VFM
(e.g., VFM of light sensitivity).

Alternative algorithms and methods

In the current implementation of qVFM, we
evaluated the rate of information gain in the global
module and decided to switch to the local module when
the rate of information gain was lower than a criterion
value. Alternatively, the switching point can be
practiced with other methods, such as comparison of
the information gain from the global and local
modules, the convergence of parameters of visual
function in the global module, or a fixed trial number
for prediagnosed eye diseases. Constrained by the
number of computations required to maintain and
update both the global and local modules, we
implemented only a one-time switch from the global
module to the local module in this study. It is possible
to combine information from both modules in each
trial with additional computational resources. Instead
of a switch module, one can construct a communication
module that provides constraints from both the top-
down (global module) and the bottom-up (local
module) views of the visual field.

In the current implementation of the qVFM method,
the optimal test stimulus is selected based on maximum
expected information gain, equivalent to the minimum
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expected entropy, in each trial (Baek et al., 2016;
Kujala & Lukka, 2006). Other metrics on information
gain can be used, such as Fisher information, mutual
information, or measures of the variability of the
posterior distribution. Stimulus selection can also be
practiced with other methods beyond the one-step-
ahead strategy, such as multiple-steps-ahead search
based on dynamic programming (Kim, Pitt, Lu, &
Myung, 2017) or ‘‘region growing’’ techniques used in
Humphrey and Octopus perimeters (Dua, Acharya, &
Ng, 2011; Lee, 2019).

In this study, an exhaustive search algorithm was
used. More advanced sampling methods, such as
Markov-chain Monte Carlo, can be used to more
efficiently search the stimulus space (Kujala & Lukka,
2006).

The qVFM procedure terminates after a fixed
number of trials in this study. Alternatively, it can stop
after it achieves a certain defined objective (e.g., after
reaching a criterion level of precision). The dynamic
stopping rule has been reported to be more efficient
than the fixed-length procedure, especially in experi-
ments with short runs (Alcala-Quintana & Garcia-
Perez, 2007; Tanner, 2008).

Slope of psychometric function

Chauhan, Tompkins, LeBlanc, and McCormick,
(1993) found that the slope of the frequency-of-seeing
curve (a YN psychometric function) was highly
correlated with the threshold or threshold deviation in
conventional perimetry (Chauhan et al., 1993). The
correlation was even higher for healthy subjects than
those with suspected or actual glaucoma.

Due to the well-known difficulty and large number
of trials required in estimating the slope of the
psychometric function, a fixed-slope assumption is
often used in parametric adaptive test procedures
(Lesmes et al., 2015; Lu & Dosher, 2013; Watson &
Pelli, 1983). King-Smith et al. (1994) found that when
the fixed slope in the adaptive procedure was twice the
real slope, the mismatch caused only a modest
reduction in performance: After 20 trials with the
mismatched slope, the overall weighted error was
comparable to that after 17 trials with the matched
slope, and the average bias was relatively small
compared to the overall error of the threshold estimate.
The authors suggest that, if optimal conditions are
required for the study of subjects with impaired vision,
it would probably be advantageous to use a relatively
low slope value.

Another recent study (Lu, Zhao, Lesmes, Dorr, &
Bex, 2019) shows that even under mismatched slope
conditions, Bayesian adaptive methods with a fixed
slope can generate unbiased threshold estimates for

certain d0 performance levels. The results provide a
theoretical basis to use psychometric functions with fixed
slopes in parametric Bayesian adaptive procedures.

Uncertainty and decision criterion

In SAP, the signal location is not known in advance;
the observer cannot isolate the relevant location, and
must monitor all locations. Such uncertainty lowers
performance levels and leads to underestimated per-
ceptual sensitivities (Lu & Dosher, 2013; Palmer, Ames,
& Lindsey, 1993; Palmer, Verghese, & Pavel, 2000;
Shaw, 1980). The test results can only be interpreted
with complicated models based on signal detection
theory that consider the responses from many detec-
tors, one at each spatial location (Lu & Dosher, 2013).
In this study, we used a circle to cue the target location
and eliminated its location uncertainty. This greatly
simplified the signal detection model.

Integrating qVFM with other assessments

The qVFM procedure can be integrated with a fundus
camera or OCT SLO (OSLO) system to provide both
structural and functional assessment of the visual field
(Landa et al., 2010; Menke et al., 2006; Okada et al.,
2006). Eye tracking can be integrated into a qVFM
system to monitor fixation stability and measure subject’s
responses to the stimuli (Murray et al., 2009; Murray et
al., 2013). Deep-learning networks can be used to learn
the spatiotemporal VFM changes and generate predic-
tions for disease progression (Wen et al., 2019).

Developing methodology for measuring VFM for a
number of visual functions can allow us to analyze the
relationships among all the metrics, such as thresholds
or sensitivities of visual acuity, CSF, color, stereovision,
temporary frequency, motion sensitivity, reading speed,
and crowding maps. It would be helpful to evaluate and
model the relationships between these metrics and
performance in everyday visual tasks, and to identify the
core metrics of functional vision in patients.

Conclusion

In this study, we developed a solution to address the
major technological challenges in assessing VFM.
Existing VFM assessment methods are too time
consuming and unstable for clinical applications. The
qVFM method based on the Bayesian adaptive testing
framework will allow us to thoroughly characterize
residual vision of ophthalmic patients and identify the
core metrics of functional vision. The general framework
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developed in this study can be potentially translated into
clinical practice to examine visual deficits in patients,
and extended to examine a broad range of eye diseases
such as age-related macular degeneration, glaucoma,
diabetic retinopathy, and retinitis pigmentosa.

Keywords: Bayesian adaptive testing, automated
perimetry, visual-field map, peripheral vision, light
sensitivity
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Noonan, C. P., Howard, C., Smith, J., & Adeoye, J.
(2015). Detection of visual field loss in pituitary
disease: Peripheral kinetic versus central static.
Neuro-Ophthalmology, 39(3), 116–124, https://doi.
org/10.3109/01658107.2014.990985.

Sample, P. A., & Weinreb, R. N. (1990). Color
perimetry for assessment of primary open-angle
glaucoma. Investigative Ophthalmology & Visual
Science, 31(9), 1869–1875.

Sample, P. A., & Weinreb, R. N. (1992). Progressive
color visual field loss in glaucoma. Investigative
Ophthalmology & Visual Science, 33(6), 2068–2071.

Schiefer, U., Pascual, J. P., Edmunds, B., Feudner, E.,
Hoffmann, E. M., Johnson, C. A., . . . Paetzold, J.
(2009). Comparison of the New Perimetric GATE
Strategy with Conventional Full-Threshold and
SITA Standard Strategies. Investigative Opthal-
mology & Visual Science, 50(1), 488. https://doi.
org/10.1167/iovs.08-2229

Schulzer, M., Airaksinen, P. J., Alward, W. L., Amyot,
M., Anderson, D. R., Balazsi, G., . . . Desjardins,
D. (1994). Errors in the diagnosis of visual field
progression in normal-tension glaucoma. Ophthal-
mology, 101(9), 1589–1595.

Sharma, P., Sample, P. A., Zangwill, L. M., &
Schuman, J. S. (2008). Diagnostic tools for
glaucoma detection and management. Survey of
Ophthalmology, 53(6), S17–S32.

Shaw, M. L. (1980). Identifying attentional and
decision-making components in information pro-
cessing. Attention and performance VIII (pp. 277–
295). Hillsdale, NJ: Lawrence Erlbaum Associates.

Shepard, T. G., Hou, F., Bex, P. J., Lesmes, L. A., Lu,
Z.-L., & Yu, D. (2019). Assessing reading perfor-

Journal of Vision (2019) 19(14):16, 1–32 Xu, Lesmes, Yu, & Lu 25

https://doi.org/10.1136/bjo.78.7.516
https://doi.org/10.1136/bjo.78.7.516
https://doi.org/10.1007/s00417-007-0644-z
https://doi.org/10.1111/opo.12355
https://doi.org/10.1167/7.11.7
https://doi.org/10.1167/7.11.7
https://www.ncbi.nlm.nih.gov/pubmed/17997662
https://jov.arvojournals.org/article.aspx?articleid=2192992
https://doi.org/10.3109/01658107.2014.990985
https://doi.org/10.3109/01658107.2014.990985
https://doi.org/10.1167/iovs.08-2229
https://doi.org/10.1167/iovs.08-2229


mance in the periphery with a Bayesian adaptive
approach: The qReading method. Journal of Vision,
19(5):5, 1–14, https://doi.org/10.1167/19.5.5.
[PubMed] [Article]

Simpson, W. A. (1989). The step method: A new
adaptive psychophysical procedure. Perception &
Psychophysics, 45(6), 572–576.

Smith, S. D., Katz, J., & Quigley, H. A. (1996).
Analysis of progressive change in automated visual
fields in glaucoma. Investigative Ophthalmology &
Visual Science, 37(7), 1419–1428.

Smythies, J. (1996). A note on the concept of the visual
field in neurology, psychology, and visual neuro-
science. Perception, 25(3), 369–371.

Sperling, G. & Lu, Z.-L. (1998). A systems analysis of
visual motion perception. In T. Watanabe (Ed.),
High-level motion processing: Computational, neu-
robiological, and psychophysical perspectives (pp.
154–183). Cambridge, MA: MIT Press.

Stewart, W. C., & Hunt, H. H. (1993). Threshold
variation in automated perimetry. Survey of Oph-
thalmology, 37(5), 353–361.

Strasburger, H., Rentschler, I., & Jüttner, M. (2011).
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Appendix A: Additional
experimental results (Subjects 2–6)

The estimated light-sensitivity visual-field maps of
the left and right eyes from Subjects 2 through 6 are
shown in Figures A1 through A5.
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Figure A1. Experimental results for Subject 2 (both left and right eyes). Estimated visual-field maps (VFMs) are presented in the first

row with achromatic color maps and the second row with numerical values (unit: dB). For each visual-field location of the estimated

VFM, the 68.2% half width of the credible interval is presented in the third row, and the standard deviations from four sessions of the

qVFM method and the RMSEeyes between the qVFM and qYN methods are presented in the fourth row. The results obtained from the

left eye are displayed in the first and second columns, and from the right eye in the third and fourth columns. The results from the

qVFM and qYN methods are displayed in different columns.
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Figure A2. Experimental results for Subject 3. Details are the same as in Figure A1.
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Figure A3. Experimental results for Subject 4. Details are the same as in Figure A1
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Figure A4. Experimental results for Subject 5. Details are the same as in Figure A1.
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Figure A5. Experimental results for Subject 6. Details are the same as in Figure A1.
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