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Abstract

Recognizing that microbial community composition within the human microbiome is associ-

ated with the physiological state of the host has sparked a large number of human micro-

biome association studies (HMAS). With the increasing size of publicly available HMAS

data, the privacy risk is also increasing because HMAS metadata could contain sensitive pri-

vate information. I demonstrate that a simple test statistic based on the taxonomic profiles of

an individual’s microbiome along with summary statistics of HMAS data can reveal the

membership of the individual’s microbiome in an HMAS sample. In particular, species-level

taxonomic data obtained from small-scale HMAS can be highly vulnerable to privacy risk.

Minimal guidelines for HMAS data privacy are suggested, and an assessment of HMAS pri-

vacy risk using the simulation method proposed is recommended at the time of study

design.

Introduction

Humans have coevolved with an immense number of diverse microorganisms that inhabit our

bodies, collectively referred to as the human microbiome [1]. Together with the development

of metagenomics, recognizing that microbial community composition within the microbiome

is associated with the physiological state of the host has sparked a large number of human

microbiome association studies (HMAS), which are also referred to as human metagenome-

wide association studies (MWAS) [2] in analogy to genome-wide association studies (GWAS)

[3]. As in the field of GWAS [4–7], the privacy risk is increasing with the increasing size of

publicly available HMAS data.

The privacy threats of HMAS data are based on the fact that individual microbiomes harbor

personally identifiable information in the form of microbial community composition. Several

prominent studies demonstrated that individual identity can be revealed using the human

microbiome. Fierer et al. [8] showed that an individual who touched an object (e.g., computer

keyboard) could be identified by matching the compositional profile of the microbiome on the

surface of the object to that of the individual’s skin microbiome. While the authors’ approach

can be properly applied to forensic analyses, similar microbiome-based approaches can also be

used to reveal an individual’s location or intimate partner as shown by Lax et al. [9] and Kort
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et al. [10]. Besides, Franzosa et al. [11] presented the possibility of a different type of privacy

threat that uses information stored in databases; the authors showed that metagenomic codes,

as sets of differentiable features of any given microbiome, can be used to identify individuals

in the Human Microbiome Project dataset.

Although the development of biological as well as computational/statistical tools for analyz-

ing individual microbiomes helps us to better understand human microbiomes, such tools can

be viewed as double-edged swords. The more a tool has resolving power, the more privacy

risks confront people as described above. Unfortunately, we might not be able to prevent pri-

vacy threats by attackers who utilize microbiome-based forensic techniques because the attack-

ers only need to seize microbiomes from victims. On the other hand, privacy threats by data

breaches can be prevented when the HMAS community develops privacy-preserving methods

for HMAS data analysis as shown by Wagner et al. [12] and by storing HMAS data in access-

controlled databases such as the dbGaP [13], which is currently used as a secure database of

human-related genotypic and phenotypic data. However, there is another type of privacy

threat that can be caused by the publication of HMAS data. Although raw or detailed data are

not presented, summary statistics (e.g., mean frequencies of prokaryotic taxa in study micro-

biomes) are frequently provided in tables and figures contained in HMAS-based papers. Con-

cerns over privacy breaches due to publishing summary statistics was first raised by Homer

et al. [14] with respect to GWAS privacy, and this type of privacy attack was later termed ’attri-

bute disclosure attacks under the summary statistic scenario’ by Erlich and Narayanan [15].

To my knowledge, there have been no reports evaluating the privacy risk of HMAS summary

statistics, which led me to perform a simple, foundational study in order to urge the HMAS

community to be aware of privacy risks associated with HMAS dataset summary statistics.

In this paper, I demonstrate that the membership of an individual in the samples of an

HMAS (e.g., case group or control group) can be revealed easily in the summary statistics of

taxonomic compositions calculated from the microbiomes of the samples. Using a simple test

statistic that was calculated from binary (presence/absence) taxonomic profiles, my simulation

studies showed that publication of species-level taxonomic data obtained from small-scale

HMAS can be highly vulnerable to privacy risk. This study asserts that the taxonomic profiles

of the human microbiome should be treated as sensitive biometric information in that the

HMAS metadata could contain the behavioral history of individuals in addition to medical

conditions. I propose minimal guidelines for HMAS privacy and suggest that researchers use

the simple simulation presented here to assess the privacy risk at the time of study design with

the acknowledgment that a more advanced method could have greater resolving power for pri-

vacy breach.

Methods

Development of the test statistic

Suppose two samples R and C, each with size nR and nC, were drawn independently from pop-

ulationP of human microbiomes. In HMAS, these samples may correspond to the sets of

microbiomes of volunteers in the reference group (f! yRi g
nR
i¼1

) and case group (f! yCi g
nC
i¼1

),

respectively; each microbiome is a vector of which the elements represent relative frequencies

ySj of j = 1,2,� � �,t, where t is the number of operational taxonomic units (OTUs) at different tax-

onomic levels from phylum to strain and S2{R, C}. The summary statistics are vectors! r
and! c, of which the elements are the mean frequencies rj and cj of the OTUs in the pooled

data obtained from R and C, respectively. Now consider the microbiome of an individual q,

! yq, of which the elements are simple binary measures of presence/absence of OUT j (i.e.,

yqj 2 f0; 1g), and suppose we want to determine whether! yq is a member of R or C using
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! r and! c. First, calculate a distance d for OUT j using the absolute difference between yqj
and cj and the absolute difference between yqj and rj as follows:

dj ¼ jy
q
j � rjj � jy

q
j � cjj

Assuming that OTUs are independent and invoking the central limit theorem for the large

number of OTUs (t>50) examined in the HMAS, z-score of dj across all OTUs will follow the

standard normal distribution, N(0, 1).

Z ¼
�d � m0ffiffiffiffiffiffiffiffiffiffiffi

Vð�dÞ
q ¼

�d � m0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðdÞ=t

p �
�d � m0

s=
ffiffi
t
p � N 0; 1ð Þ

Since the t = max(tR, tC, ty) is large, the variance of d can be estimated reliably by the sample

variance s2. The test statistic Z was inspired by Homer et al. [14] and Braun et al. [16]. The

authors used a similar test statistic calculated from the single nucleotide polymorphism (SNP)

genotyping data to identify an individual’s genotype in GWAS samples. I modified the original

test statistic in order to use the binary taxonomic data in HMAS. Because an individual micro-

biome randomly drawn from populationP should be equally distant from R and C, μ0 was

presumably expected to be zero, i.e., N(0, 1) was a putative null distribution. Thus, under the

null hypothesis H0 : Z ¼ 0ð! yq is a random draw fromP), the alternative hypothesis HR :

Z < 0ð! yq is a member of R) or HC : Z > 0 ð! yq is a member of C) can be tested with an

appropriate significance level α. For example, Z>1.65 rejects H0 in favor of HC at α = 0.05

(one-tailed test).

Distribution simulations

I examined the feasibility of the test statistic Z in identifying the presence of an individual’s

microbiome in an HMAS sample with simulated datasets. Suppose that the OTUs correspond

to species-level affiliations of microorganisms. Then, the presence of species j inP is a Ber-

noulli random variable with parameter pj. To model the probability distribution of pj ð! pÞ, I

used four different Beta(π1, π2) distributions. ForP with a small number of high-frequency

species, π1 = 0.1 and π2 = 1.0 were assumed, and forP with a large number of high-frequency

species, π1 = 1.0 and π2 = 0.1 were assumed. ForP with a high number of high-frequency spe-

cies as well as a high number of low-frequency species, π1 = 0.1 and π2 = 0.1 were assumed,

which might be more realistic than the above two distributions in that the high-frequency spe-

cies may correspond to constitutional or autochthonous prokaryotic populations and the low-

frequency species may correspond to opportunistic or heterochthonous prokaryotic popula-

tions across individual microbiomes. In addition, a Beta(1, 1) (uniform) distribution was also

used, which represents our ignorance of the distribution of pj according to the principle of

indifference.

Because the individual microbiome in R or C is a set of t random draws of yj~Bernoulli(pj),
i.e.,! y � Bernoullið! pÞ, the summary statistics for samples R and C were simulated using

! r � BinomialðnR;! pÞ=nR and! c � BinomialðnC;! pÞ=nC, respectively. To construct

density curves of true positives for samples R and C, random draws of! yRþ and yCþj from

samples R and C were used to calculate the test statistics ZR+ and ZC+ ðnRþ
Z ¼ nCþ

Z ¼ 100Þ,

respectively. Density curves were estimated using the Gaussian kernel density estimator. To

construct density curves of the true null distribution, random draws of! yP fromP were

used to calculate test statistics ZP ðnP
Z ¼ 100Þ. Python code for the simulation is available at

https://colab.research.google.com/drive/1dOZi8OSo5qHmF7JPyGAP1I_BQdBVSSiC?usp=

sharing.
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Results and discussion

Overview of simulation results

A simulation study was started with the number of OTUs t =2,000, which roughly reflects the

number of species (including uncultivated candidate species) in the human gut microbiome

[17], and with nR = nC = 10, which could correspond to small-scale HWAS, under the assump-

tion that pj follows uniform distribution (Fig 1). The null distribution estimated using ZP was

very close to N(0, 1) and crisply separated from the distributions of true positives (ZR+ and ZC
+), indicating the feasibility of the microbiome-based identification. The distributions of true

positives moved toward the null distribution with increasing n or with decreasing t but moved

away from the null distribution with decreasing n or with increasing t. Similar distribution pat-

terns were observed for all the underlying distributions of pj assumed (S1–S3 Figs).

For numerical interpretation of the simulation results, I focused on the probability of type

II error at α = 0.05 (βR = P(ZR+>zα|HR) or (βC = P(ZC+<zα|HC); the probability that the test

statistic is not in the H0 rejection range, given that the alternative hypothesis is true). The

power of the test (1−β) is important to a privacy attacker because it would be especially difficult

for the attacker with a high β to determine whether the individual under investigation belongs

to a particular HMAS sample due to the high false negative rate. α level critical values were

obtained from percentiles of ZP distribution because the true null distribution might diverge

from N(0, 1). As expected in the density curves, β was far less than 0.01 for the experiments

with a large t or small n (S1–S4 Tables).

To formulate the guidelines for human microbiome privacy, the initial simulation study

was expanded for virtual HMAS samples with nR = nC = 10, 20,. . .,100,. . .,1000 and with

t = 20, 30,. . .,100,. . .,1000,. . .,20000. The method was in general slightly more powerful for pj
under the uniform distribution (Fig 2) than for pj under other beta distributions (S4 and S5

Figs). In the resulting contour plots, the yellowish area represents higher β (i.e., lower test

power); thus, the HMAS samples located in the dark blue area are considered to be vulnerable

to privacy risk. The power of the test decreased notably with increasing HMAS sample size (n)

or with a decreasing number of OTUs (t) from which the HMAS summary statistics are calcu-

lated, and it is possible to notice a borderline where β decreases considerably, which could help

in assessing the privacy risk of the HMAS data.

Effect of sample size

Samples of a large size approximate the populationP because limnR!1
rj ¼ pj or limnC!1

cj ¼ pj
(hence, limnR;nC;!1

dj ¼ 0), and the distribution of ZR+ or ZC+ would overlap with the null dis-

tribution as shown in the selected density curves, indicating that a large sample size will make

the classifying method ineffective. Contrarily, for the samples of a small size, �d significantly

deviates from μ0 even if the difference between rj and pj or between cj and pj is very small. Note

that the sample size does not increase with the number of technical replicates used in HMAS

data, since the sample points in technical replicates are not independent.

For an unequal sample size (e.g., nR = 1,000 and nC = 10), the samples with a larger size

would approximate the null distribution, but the test power for identifying a microbiome in a

sample with a smaller size would not be affected (S6 Fig). Considering that taxonomic profiles

of individual microbiomes in the case sample could be more homogeneous than those in the

control sample, the effective size of the case sample might be smaller than the census size of the

case sample. This would result in much higher statistical power for testing whether an individ-

ual is a member of the case sample, which is a primary interest of the attackers.
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Fig 1. Distributions of the test statistic Z under the assumption that the population OTU frequencies follow a uniform (Beta(1, 1)) distribution. Density curves for

true positives of samples R (ZR+) and C (ZC+) are denoted by green and red lines, respectively. Density curves of simulated null distribution and standard normal

distribution are denoted by black and gray lines, respectively. Single and double asterisks represent type II error probabilities β<0.05 and β<0.01, respectively.

https://doi.org/10.1371/journal.pone.0249528.g001
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Effect of the number of OTUs

With the sample size fixed, an increased number of OTUs would increase the test power. This

situation can happen when the HMAS data contains taxonomic profiles with a resolution finer

than species level. Under the arbitrary speculation that each species is comprised of ca. 10

strains (t = 20,000), the method was very powerful (β�0.01) even for a moderate sample size.

This is because the denominator of the test statistic shrinks by increasing t compared to the

sample mean �d, which results in a large ZR+ or ZC+. In the same vein, a reduced number (e.g.,

t = 20) of OTUs (roughly corresponding to near phylum-level) would decrease the power of

the test.

Effect of correlation among OTUs

The occurrence of many OTUs in the human microbiome could be correlated, since the

microbiome itself is an ecological community [18]. If the correlation among OTUs is signifi-

cant, the violation of the assumption that OTUs are independent could change the test power.

I analytically evaluated the effect of the OUT correlation on test power. If OTUs are not inde-

pendent, the variance of �d includes covariance (Cov) terms as follows:

V �d
� �
¼

1

t
V dð Þ þ

2

t2

Xt

j

Xt

j0
Covðdj; dj0 Þ;

where j<j0. By letting ~r be the average correlation among dj such that Vð�dÞ � 0, the above

equation can be written as follows:

V �d
� �
¼

VðdÞ
t=ð1þ ~rt � ~rÞ

;

where 1þ ~rt � ~r � 0. Thus, Vð�dÞ increases if ~r is positive

Fig 2. Contour plot representations of the type II error probabilities (β) for true positives of samples R and C under the assumption that the population OTU

frequencies follow a uniform (Beta(1, 1)) distribution. Sample size and the number of OTUs are log-scaled. Dotted line denotes suggested minimal guidelines for

HMAS privacy.

https://doi.org/10.1371/journal.pone.0249528.g002
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(0 < ~r � 1¼)VðdÞ=t < Vð�dÞ � VðdÞÞ or decreases if ~r is negative ð� 1=ðt � 1Þ � ~r <

0¼)0 � Vð�dÞ � VðdÞ=tÞ:One can imagine that the changes in Vð�dÞ result in changes in the

distribution of test statistic Z. But the effect of ~r on test power is not easy to see with changes

in Vð�dÞ. Rather, we can view the denominator term of Vð�dÞ as an effective number of inde-

pendent OUTs (te) as follows:

te ¼
t

1þ ~rt � ~r

Note that te = t if ~r ¼ 0, 1�te<t if 0 < ~r � 1, and t<te if � 1=ðt � 1Þ � ~r < 0 (te!1 as

~r ! � 1=ðt � 1Þ). For example, if three of 10 OTUs show a strong positive correlation, two of

these OTUs cannot contribute to the number of OTUs as equally as other independent OTUs.

Thus, the effect of a positive ~r could be similar to the effect of a decreased number of OTUs,

resulting in decreased test power as in the case of linkage disequilibrium among SNPs [16].

However, ~r can also be negative if negative interactions among OTUs are more prevalent than

positive interactions among OTUs, which could subsequently increase test power. Even very

small negative correlations (e.g., ~r ¼ � 0:001) among a moderate number of OTUs (t = 1000)

would increase te to 106, while very small positive correlations (e.g., ~r ¼ þ0:001) decrease te to

500. The negative correlation overwhelmingly affects te because te is a reciprocal function of ~r

when t is fixed (S7 Fig). Nonetheless, because ~r cannot be measured from summary statistics

unless provided or assumed, the effect of ~r should be investigated more comprehensively in

the future.

Additional considerations

I used the binary vector as a query microbiome because it was considered that the binary data

is less prone to experimental variations. If a frequency vector is used, the �d could increase

because small differences between jyqj � rjj and |yqj � cj| can accumulate across a large number

of OTUs. However, it would not always result in a larger ZR+ or ZC+ because the increased

sample variance could counteract the increase in �d. Thus, the use of a frequency vector might

not guarantee more test power, rather it could make �d more prone to errors in OTU

frequencies.

It was assumed that R and C were samples drawn independently from the population of

human microbiomes (P). Violation of this assumption could shift the location of the null dis-

tribution (μ0). Suppose that populations underlying samples R and C (denoted by R and C,

respectively) are all different from the population underlying! yqðPÞ. If the systemic differ-

ence between R and C is significant, the difference between summary statistics can deviate

from zero, i.e., E(Δ) = E(r−c)6¼0. Let d�j be the distance metric that includes Δ term as follows:

d�j ¼ jy
q
j � Dj � cjj � jy

q
j � cjj ¼

Dj for yqj ¼ 0

� Dj for y
q
j ¼ 1

(

Then, according Braun et al. [16] and using Pðyqj ¼ 0jpjÞ ¼ 1 � pj and Pðyqj ¼ 1jpjÞ ¼ pj,
the expected value of the distance metric under the null hypothesis is as follows:

m�
0
¼ EðD � 2DpÞ ¼ EðDÞ � 2EðDÞEðpÞ

Because −1�E(Δ)�1 and 0 < EðpÞ � 1;m�
0

ranges from -1 to 1 which is quite small com-

pared to the distance between the distributions of ZP and ZR+ or between the distributions of

ZP and ZC+ in the cases where the test power is very high (e.g., t�2000 and n = 10 or t�20000
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and n = 100) (Fig 1). Moreover, as E(p) deviates from its two extreme values (0 or 1) which are

highly unrealistic in microbiome composition, the 2E(Δ)E(p) term counteracts the deviation

of m�
0

from zero (i.e., m�
0
! 0 as E(p)!0.5). Thus, I considered that the violation of the assump-

tion that underlying populations are all different would not alter the main results of this study.

In fact, if R (reference/control group) and C (case/treatment group) are assumed to be samples

drawn fromP and C, respectively, the test statistic would become very similar to that used for

a two-tailed z-test (or t-test) which can be used to test the null hypothesis that yqj is not a mem-

ber of C.

Although it might be virtually impossible for the HMAS community to develop an almighty

shield that protects data against all possible privacy breaching methods, we do not need to

overreact to HMAS privacy concerns since the taxonomic profile of the individual’s micro-

biome could not be a permanent identifier, while a subset of an individual’s microbiome may

endure for most of the lifetime. Nonetheless, the HMAS community should have guidelines

for reducing the privacy risk, which could be kept minimal in order not to obstruct our under-

standing of the human microbiome.

Concluding remarks

This study showed the possibilities of privacy breaches using the summary statistics drawn

from HMAS data. The key finding was that the publication of species composition data

obtained from small-scale HMAS (e.g., t�1,000 and nR = nC = 10) easily exposes the privacy of

the victims. The HMAS samples with moderate size (nR = nC�100) and t�1000 were on the

vicinity of the borderline. I suggest these figures as a basis for HMAS data release policy while

acknowledging a sophisticated test statistic that employs better distance metric along with the

violation of underlying assumptions could improve the power of the privacy breaching meth-

ods. I propose minimal guidelines for HMAS data release as follows: i) increase the sample size

as much as manageable, ii) do not publish species composition data even in the form of sum-

mary statistics if the sample size is less than 10, iii) avoid publishing subspecies- or strain-level

data unless the sample size is far larger than 100. I also suggest that HMAS researchers evaluate

the privacy risk at the time of study design using the simulation method presented in this

study. Because the test statistic used was relatively robust against the variations in the models

for the distribution of pj, HMAS researchers can simply use uniform distribution and their

intended t, nR, and nC to estimate the ‘minimal’ power of the privacy-breaching method.

This study focused only on attribute disclosure attacks under the summary statistic scenario

[15]. However, HMAS data privacy concerns are not limited to summary statistics; privacy

breaches can occur in various manners at any stage of HMAS data management as described

by Wagner et al. [12]. Thus, it is timely that the HMAS community begins comprehensive dis-

cussions on HMAS data privacy risks and developing privacy-preserving algorithms for data

storage and release.

Supporting information

S1 Fig. Distributions of test statistic Z under the assumption that population OTU fre-

quencies follow a Beta(0.1, 1) distribution. Density curves for true positives of samples R (ZR
+) and C (ZC+) are denoted by green and red lines, respectively. Density curves of simulated

null distribution and standard normal distribution are denoted by black and gray lines, respec-

tively. Single and double asterisks represent type II error probabilities β<0.05 and β<0.01,

respectively.

(PDF)
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S2 Fig. Distributions of the test statistic Z under the assumption that population OTU fre-

quencies follow a Beta(1, 0.1) distribution. Density curves for true positives of samples R (ZR
+) and C (ZC+) are denoted by green and red lines, respectively. Density curves of simulated

null distribution and standard normal distribution are denoted by black and gray lines, respec-

tively. Single and double asterisks represent type II error probabilities β<0.05 and β<0.01,

respectively.

(PDF)

S3 Fig. Distributions of the test statistic Z under the assumption that population OTU fre-

quencies follow a Beta(0.1, 0.1) distribution. Density curves for true positives of samples R
(ZR+) and C (ZC+ are denoted by green and red lines, respectively. Density curves of simulated

null distribution and standard normal distribution are denoted by black and gray lines, respec-

tively. Single and double asterisks represent type II error probabilities β<0.05 and β<0.01,

respectively.

(PDF)

S4 Fig. Contour plot representations of the type II error probabilities (β) for true positives

of sample R under the assumptions that population OTU frequencies follow Beta(1, 1),

Beta(0.1, 1), Beta(1, 0.1) and Beta(0.1, 0.1) distributions. Sample size and the number of

OTUs are log-scaled. Dotted line denotes suggested minimal guidelines for HMAS privacy.
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S5 Fig. Contour plot representations of the type II error probabilities (β) for true positives

of sample C under the assumptions that population OTU frequencies follow Beta(1, 1),

Beta(0.1, 1), Beta(1, 0.1) and Beta(0.1, 0.1) distributions. Sample size and the number of

OTUs are log-scaled. Dotted line denotes suggested minimal guidelines for HMAS privacy.
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S6 Fig. Distributions of the test statistic Z with unequal sample sizes under the assumption

that population OTU frequencies follow a Beta(1, 1) distribution. Density curves for true

positives of samples R (ZR+) and C (ZC+) are denoted by green and red lines, respectively. Den-

sity curves of simulated null distribution and standard normal distribution are denoted by

black and gray lines, respectively. Single and double asterisks represent type II error probabili-

ties β<0.05 and β<0.01, respectively.
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S7 Fig. Relationship between the effective number of OTUs and the average correlation

among OTUs.
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S1 Table. Summary statistics of simulation results obtained under the assumption that the

population OTU frequencies follow a Beta(1, 1) distribution. Type II error probabilities less

than 0.05 are in bold.

(PDF)

S2 Table. Summary statistics of simulation results obtained under the assumption that the

population OTU frequencies follow a Beta(0.1, 1) distribution. Type II error probabilities

less than 0.05 are in bold.
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S3 Table. Summary statistics of simulation results obtained under the assumption that the

population OTU frequencies follow a Beta(1, 0.1) distribution. Type II error probabilities
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