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Purpose: Myocardial infarction (MI) is a common cardiovascular disease, and its underlying pathological mechanism remains 
unclear. We aimed to develop a diagnostic model to distinguish different subtypes of MI.
Patients and Methods: The gene expression profiles of MI from the GEO database and hypoxia-related genes (HRGs) from 
MSigDB were downloaded. Then, the different MI subtypes based on HRGs were identified with unsupervised clustering. The 
difference of expression patterns and hypoxic-immune status among different subtypes of MI were investigated. The diagnostic model 
to distinguish the different subtypes of MI was developed and validated.
Results: Based on HRGs, MI samples were divided into two subtypes, cluster A and cluster B. A total of 211 genes showed 
significant changes in expression between the two subtypes. Cluster A was characterized by high hypoxia status and low immunity 
status. Based on weighted gene co-expression network analysis, ROC analysis and LASSO regression algorithm, 5 genes were 
identified as potential diagnostic markers. Finally, a diagnostic model based on these 5 genes was established, which can distinguish 
the two subtypes well.
Conclusion: The five hub genes, including ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A, may be associated with the different 
subtypes of MI.
Keywords: myocardial infarction, hypoxia, immune, diagnostic model

Introduction
Myocardial infarction (MI) is one of the leading causes of human mortality.1 MI is characterized by myocardial ischemia 
and hypoxia caused by coronary artery occlusion, which in turn triggers inflammation and apoptosis.2 Extensive studies 
support that the inflammatory response and myocardial apoptosis are important in the pathogenesis of acute MI.3 When 
MI occurs, hypoxia leads to injury and necrosis of cardiomyocytes, which release pro-inflammatory chemokines to 
recruit inflammatory cells to the infarcted area and remove necrotic cardiomyocytes.2 Although early treatment with 
reperfusion and pharmacological approaches significantly reduced mortality after MI, in-hospital mortality remained 
high.4 Therefore, it is desperately warranted to illustrate the underlying pathogenesis of MI.

Hypoxia plays an important role in MI. Myocardial cells undergo ischemia and hypoxia, followed by apoptosis, 
inflammation of the damaged tissue, and infiltration of immune cells.5 Hypoxia was demonstrated to serve as a possible 
regulator of the activity of epicardial mesothelial cells after MI.6 Hypoxia can promote neutrophil survival after acute 
MI.7 Kologrivova et al indicated that cells of the immune system are involved in resolution of inflammation and repair in 
MI.8 Immunoregulatory therapy may have great potential to accelerate cardiac repair and improve ventricular remodeling 
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after MI. Hence, it is important to explore the relationship between hypoxia, immunity and MI for providing new 
therapeutic methods.

In this study, we identified different MI subtypes based on hypoxia-related genes and investigated the differences 
among these MI subtypes. A diagnostic model was developed to distinguish different subtypes of MI, which may be 
conducive to understand the molecular mechanisms underlying MI and potentially provide an approach for personalized 
therapy of MI patients.

Materials and Methods
Datasets Selection and Data Preprocessing
The gene expression profiles of MI were acquired from the GEO database by searching keywords “MI (myocardial 
infarction)” and “Homo sapiens”. The datasets that met the following criteria were included in our study: no less than 5 
samples and including control samples. After filtering, two datasets (GSE59867 and GSE62646), treated as training sets, 
and two datasets (GSE123342 and GSE48060), served as validation sets, were included in the study. GSE59867 
consisted of 111 patients with MI and 46 controls, and GSE62646 included 28 MI cases and 14 controls. GSE123342 
consisted of 67 patients with MI and 22 controls, and GSE48060 included 26 MI cases without recurrent events and 21 
controls. All these four datasets examined the blood samples. For the MI group, samples with the earliest sampling time 
(<48h) available in each dataset were selected for analysis. In addition, 200 hypoxia-related genes (HRGs) in 
“HALLMARK_HYPOXIA” were retrieved from MSigDB.

Differentially Expressed Genes (DEGs) Analysis
The “limma” package in R was applied to acquire the DEGs between MI and controls with adj_p < 0.05 and |log2 (Fold 
Change)| > 0.4. The ggplot2 R package was used to draw volcano plot and heatmap. David was employed to perform GO 
classification and KEGG pathway enrichment analysis (p < 0.05).

Unsupervised Clustering and DEG Analysis Among Different MI Subtypes
Based on the expression levels of HRGs, the “ConsensusClusterPlus” package was used to classify the patients with MI 
into different subtypes. With adj_p < 0.05 and |log2 (Fold Change)| > 0.4, DEGs among different MI subtypes were 
identified by “limma” package in R. To investigate the difference on biological process among groups, GSVA enrichment 
analysis was performed using “GSVA” R packages. The gene sets of “c2.cp.kegg.v7.2. symbols” were downloaded from 
MSigDB database for running GSVA analysis. Differentially expressed pathways were identified using the “limma” 
package in R, and FDR < 0.05 was considered as statistically significant.

Estimation of Immune Microenvironment (IME) Cell Infiltration
The ssGSEA algorithm was applied to quantify the relative abundance of each cell infiltration in the IME of MI. The 
gene set for marking each IME infiltration immune cell type was acquired from a previous study.9 ImmPort database was 
applied to acquire immune response-related mRNAs. The enrichment scores calculated by ssGSEA analysis were used to 
represent the relative abundance of each TME infiltrating cell and activity of specific immune responses in each sample. 
The Wilcox test was used to compare the differences in immune cell infiltration and immune response activity among 
different MI subgroups. Furthermore, the expression of HLA-related genes was also compared among different MI 
subgroups.

Weighted Gene Co-Expression Network Analysis (WGCNA)
To construct a scale-free gene co-expression network, the top 25% genes were subjected to the subsequent analysis with 
WGCNA package in R. First, the samples were clustered with “hclust” function to eliminate the samples with obvious 
outliers. Then, the “pickSoftThreshold” function is used to select an appropriate soft threshold power regulator to build 
the scale-free topology. The height is set to 0.90. Then, the adjacency matrix is calculated according to the kernel value, 
and the adjacency matrix is transformed into topological overlap matrix and the corresponding dissimilarity matrix. 
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Genes with similar expression patterns were grouped together, and modules were divided according to the 
“cutreeDynamic” function with default parameters. The minimal gene module size was set to 100 to obtain appropriate 
modules, and the threshold to merge similar modules was set to 0.25.

Identification of Hub Genes
The gene significance (GS) and module membership (MM) were calculated to select candidate hub genes. We defined the 
genes with |GS| > 0.3 and |MM| > 0.5 in hub modules as MI subtype-associated genes. The intersection of MI subtype- 
associated genes and DEGs between MI and controls was defined as hub genes. The GO and KEGG enrichment analyses 
were conducted for hub genes with David (p < 0.05).

Drug Prediction
We intersected the DEGs between MI group and control group with the DEGs among different MI subtypes. Then, 
potential candidate drugs were predicted based on intersection genes using the DGIbd database (https://dgidb.org) to 
offer novel insights for disease diagnosis, treatment and research.

Construction of Diagnostic Model for MI Subtype
The “pROC” package in R was used to draw ROC curve for each hub gene in training sets and validation sets. Then, the 
genes with area under the ROC curve (AUC) >0.85 in all subtypes were subjected to the subsequent analysis. The 
LASSO regression using “glmnet” package in R was utilized to develop a diagnostic model for MI subtype. ROC 
analysis was performed to determine the accuracy of the diagnostic model.

Real-Time qPCR (RT-qPCR)
A total of 28 blood samples were obtained from 13 patients with MI and 15 normal controls for RT-qPCR. Every 
individual provided the written informed consent. Relative gene expression was analyzed by 2−ΔΔCT method. GAPDH 
and ACTB were used as internal reference. The study was approved by the ethics committee of the university.

Results
Differentially Expressed Analysis
Compared with normal controls, 389 DEGs, including 191 up-regulated mRNAs and 198 down-regulated mRNAs, were 
identified in MI with adj_p < 0.05 and |log2 (Fold Change)| > 0.4 (Figure 1A and B). These 389 DEGs were enriched in 
protein binding, transmembrane signaling receptor activity, RNA processing, signal transduction and plasma membrane 
(Figure 1C). KEGG analysis revealed several significantly enriched pathways, including cytokine–cytokine receptor 
interaction, human T-cell leukemia virus 1 infection and complement and coagulation cascades (Figure 1D).

Identification of Two Different Subtypes in MI
Consensus clustering revealed that the k = 2 was identified with optimal clustering stability (Figure 2A and B). Then, 139 
patients in training sets were clustered into two subtypes, namely, cluster A (n = 82) and cluster B (n = 57) (Figure 2C). 
Consistent with analysis in training sets, the validation in validation sets displayed the similar results (Figure 2D and E). 
Then, 93 patients in validation sets were clustered into two subtypes, including cluster A (n = 30) and cluster B (n = 63) 
(Figure 2F). Consensus clustering revealed significant differences in molecular features between the two MI subtype. 
A total of 211 DEGs, including 180 up- and 31 down-regulated mRNAs, between two subtypes were identified in 
training sets (Figure 3A and B). GSVA analysis indicated that several pathways, including ECM receptor interaction, 
phenylalanine, metabolism, and complement and coagulation cascades, were activated in cluster A, and several path-
ways, including mismatch repair, DNA replication, aminoacyl tRNA, and biosynthesis, were activated in cluster 
B (Figure 3C).
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The Difference of Immune Characteristics Between Two Subtypes
The results of ssGSEA analysis indicated that cluster A group has a higher level of infiltrated macrophage, activated dendritic 
cell, MDSC, eosinophil, mast cell, and monocyte, while activated CD4 T cell, activated B cell, and activated CD8 T cell are 
enriched in cluster B (Figure 4A). Meanwhile, more immune response activity was increased in cluster A, while significantly 
higher immunoscore in cluster B was detected (Figure 4B and C). Similarly, the expression of several HLA-related genes, such 
as HLA-A, HLA-C, HLA-DRB1 and HLA-DRB, were increased in cluster A (Figure 4D). As for the hypoxia and EMT 
status, we found that the enrichment scores of hypoxia and EMT2 were significantly higher in cluster A, while EMT1 and 
EMT3 were statistically nonsignificant between the two groups (Figure 4E). The same analysis for infiltrating immunocytes, 
activity of specific immune responses, immunoscore, HLA gene expression, hypoxia and EMT status were performed in 
validation sets. Similar trends were observed in validation sets (Figure S1A–E).

Figure 1 Differentially expressed gene (DEG) analysis. (A) The volcano plot of DEGs between MI and control group. (B) The heatmap of top 25 up- and down-regulated 
DEGs between MI and control group. (C) GO enrichment analysis of DEGs between MI and control group. (D) The KEGG analysis of DEGs between MI and control group.
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WGCNA and Identification of Hub Genes
A co-expression network analysis was performed using the WGCNA R package. The power β = 13 was screened to 
ensure a scale-free network (Figure 5A). A total of 8 modules were determined, including a red module, green module, 
pink module, turquoise module, grey module, yellow module, brown module, and black module (Figure 5B). The 
correlation between module eigengenes and MI subtypes was analyzed. Compared with the other modules, the turquoise 
module and brown module had higher correlations with MI (Figure 5C). The results indicated that the turquoise module, 
including 880 genes, was positively associated with cluster B (r = 0.62, p = 3e-16) and the brown module, including 414 
genes was negatively associated with cluster B (r = −0.58, p = 8e-14) (Figure 5D and E). Thus, the turquoise module and 
brown module were selected for further analysis. With |GS| > 0.3 and |MM| > 0.5, 1085 genes were identified as MI 
subtype-associated genes. Then, 211 hub genes were obtained by overlapping MI subtype-associated genes and DEGs 
between two subtypes. GO analysis indicated that these 211 hub genes were enriched in transcription factor activity, 
sequence-specific DNA binding, RNA processing, regulation of cholesterol efflux, and positive regulation of transcrip-
tion from RNA polymerase II promoter (Figure S2A). KEGG analysis revealed that these 211 hub genes were enriched in 
Herpes simplex virus 1 infection and NF-kappa B signaling pathway (Figure S2B and C).

Drug Prediction
The potential drugs for MI were analyzed with the DGIbd database by overlapping the DEGs between the MI group and 
the control group with the DEGs between two subtypes. The results indicated that 11 genes were observed as targets of 
the 60 predicted drugs, such as testosterone, pinocembrin and cilostazol (Figure S3).

Figure 2 Consensus clusters by HRGs in training sets (A–C) and validation sets (D–F). (A and D) Consensus clustering cumulative distribution function (CDF) for k = 2 to 
5. (B and E) Relative change in area under the CDF curve for k = 2 to 5. (C and F) Consensus clustering matrix for k = 2.
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Construction of Diagnostic Model for MI Subtype
A total of 9 genes with AUC > 0.85 in both two MI subtypes were obtained. Then, 5 genes, ANKRD36, HLTF, KIF3A, 
OXCT1 and VPS13A, were further identified as potential diagnostic markers (Figure 6A and B). Based on these 5 genes, 
we established logistic regression model for the diagnosis of MI subtypes. The ROC analysis revealed that the AUC of 

Figure 3 Differentially expression analysis between two different subtypes in training sets. (A) The volcano plot of DEGs between cluster A and cluster B. (B) The heatmap 
of top 25 up- and down-regulated DEGs between cluster A and cluster B. (C) GSVA enrichment analysis showing the activation states of biological pathways between cluster 
A and cluster B.
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the diagnostic model is 0.975 in training sets, and the AUC is 0.920 in validation sets, proving that the diagnostic model 
has high credibility (Figure 6C and D).

Correlation of Candidate Genes and Immune
The expression levels of 5 hub genes in training sets and validation sets were displayed in Figure S4A and B. The results 
exhibited that compared with control group, these 5 genes were significantly lowly expressed in cluster A, VPS13A, 
OXCT1 and HLTF were significantly decreased in cluster B in training sets; while compared with cluster B, these 5 gene 
expression levels were decreased in cluster A. In the validation sets, a similar situation exists. Compared with the control 
group, they were also significantly lower expressed in cluster A, but no significant difference was found in cluster 
B. Compared with cluster B, these 5 genes were also significantly lower expressed in cluster A. Correlation analysis of 5 
hub genes was performed, suggesting that there was a strong positive correlation between the five genes (Figure S5). 
VPS13A had the strongest correlation with OXCT1 (0.88). The correlation between ANKRD36 and HLTF was the 
smallest, but also 0.65. Furthermore, correlation analysis of 5 hub genes and immune cells and immune score was 
performed (Figure 7). The results indicated that all five genes had strong positive correlations with immune scores and 
various immune cells, such as Activated B cell, Activated CD4 T cell, Activated CD8 T cell, Immature B cell, and Type 2 

Figure 4 Characteristics of IME cell infiltration between cluster A and cluster B group in training sets. (A) The abundance of each IME infiltrating cell in cluster A and cluster 
B group. (B) Difference activity of specific immune responses between cluster A and cluster B group. (C) Difference in immune score between cluster A and cluster B group. 
(D) Difference in the HLA-related gene expression between cluster A and cluster B group. (E) Differences in EMT pathways and hypoxia condition between cluster A and 
cluster B group. *Indicates p < 0.05; **Indicates p < 0.01; ***Indicates p < 0.001; ****Indicates p < 0.0001; ns indicates p > 0.05.
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T helper cell, and strong negative correlations with other immune cells, such as Monocyte, Macrophage, Activated 
dendritic cell, Regulatory T cell, Neutrophil, Mast cell, Plasmacytoid dendritic cell, MDSC, and CD56bright natural 
killer cell. Among them, VPS13A had the strongest positive correlation with Activated CD4 T cell and the strongest 
negative correlation with Monocyte.

RT-qPCR Validation
The expression of ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A were validated by RT-qPCR. As shown in Figure S3A, 
compared with control group, the expression of ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A were reduced in cluster 

Figure 5 Hub module selection. (A) Determination of soft thresholding power in the WGCNA. (B) The cluster dendrogram of module eigengenes. (C) The module trait 
relationships. (D) A scatter plot of gene significance for MI versus the module membership in the turquoise module. (E) A scatter plot of gene significance for MI versus the 
module membership in the brown module.
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Figure 6 Construction of diagnostic model. (A) LASSO coefficient profiles of 9 hub genes. (B) Selection of the optimal parameter (lambda) in the LASSO model. (C) ROC 
curves showing the predictive efficiency of diagnostic model in training sets. (D) ROC curves showing the predictive efficiency of diagnostic model in validation sets.

Figure 7 Correlation of candidate genes and immune cells and immune score. *Indicates p < 0.05; **Indicates p < 0.01; ***Indicates p < 0.001.
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A and cluster B. Consistent with the results in Figure S3A, all five genes were down-regulated in the MI group compared 
with the control group (Figure 8).

Discussion
The underlying pathological mechanism of MI remains unclear, and needs to be clarified urgently. In this study, we 
identified two different subtypes of MI, and the two subtypes showed different expression patterns and hypoxic-immune 
status. The diagnostic model, which can well distinguish the two subtypes of MI, was developed and validated.

Consensus clustering divided MI samples into two subtypes, each with its own unique immune characteristics. The 
results of ssGSEA analysis showed that more immune cell infiltration and more active immune responses were detected 
in cluster A, while pronouncedly higher immunoscore in cluster B was detected. In addition, the expression levels of 
several HLA-related genes were increased in cluster A. Hypoxia is a central pathophysiological component in MI, which 
can promote the activation of epithelial-to-mesenchymal transition (EMT) regulatory genes.6 The epicardium is 
a potential source of cardiac progenitors to support reparative angiogenesis after MI through EMT.10 Hence, we 
compared the differences of hypoxia and EMT status between two subtypes and found that the enrichment scores of 
hypoxia and EMT2 were significantly higher in cluster A. All the above results indicated that compared with cluster B, 
cluster A was characterized by high hypoxia status and low immunity status.

As for potential drugs, 11 genes were observed as targets of the 60 predicted drugs, such as testosterone, pinocembrin 
and cilostazol. Previous studies had explored the relationship between testosterone and cardiovascular disease. A review 
suggested that testosterone may perform a critical function in the treatment of angina, heart failure, and myocardial 
ischemia.11 Low endogenous bioavailable testosterone levels had been associated with higher rates of cardiovascular- 
related mortality.12 A Mendelian randomisation study indicated that endogenous testosterone was positively associated 
with thromboembolism, heart failure, and MI in men.13 Lungkaphin et al reported that pinocembrin can reduce cardiac 
arrhythmia and infarct size in acute myocardial ischemia/reperfusion rats.14 Similarly, Zhang et al indicated that 
pinocembrin can decrease cardiac infarction area.15 Ye et al suggested that pinocembrin can ameliorate atrial electrical 
remodeling, attenuate autonomic dysfunction, and suppress MI-induced inflammatory responses in a MI rat model.16 

Tanaka et al suggested that cilostazol might be used for temporary adjunctive treatment of ST-segment elevation MI.17 

Lee et al reported that cilostazol has protective effects on myocardial function and myocardial remodeling in MI with 
restrained stress rat model.18 The above findings may suggest a potential novel strategy for MI treatment.

Figure 8 Expression validations of ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A by RT-qPCR. (A) ANKRD36, (B) HLTF, (C) KIF3A, (D) OXCT1, (E) VPS13A. *p < 0.05.
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A total of five genes, including ANKRD36, HLTF, KIF3A, OXCT1 and VPS13A, were included in the diagnostic 
model, and showed good diagnostic effect in distinguishing the two subtypes. Yan et al found that Ankyrin repeat domain 
36 (ANKRD36) was significantly lower expressed in hypertension.19 An integrated genomic analysis indicated that 
ANKRD36 was a novel biomarker of early chronic myeloid leukemia progression.20 Helicase-like transcription factor 
(HLTF) encodes a member of the SWI/SNF family, which has helicase and ATPase activities. Liu et al indicated that 
HLTF is associated with the migration and invasion of colorectal cancer.21 Kinesin family member 3A (KIF3A) 
overexpression was related to tumor recurrence, lymph node metastasis and chemoresistance.22 The gene, 3-oxoacid 
CoA-transferase 1 (OXCT1) has been associated with tumor proliferation and metastasis. A review showed that the 
elevation of OXCT1 expression was detected in different categories of cancer cells and considered OXCT1 as a novel 
target for cancer therapy.23 A bioinformatics analysis on pan-cancer suggested that VPS13A is associated with the tumor 
development.24 Elevated VPS13A might contribute to increased risk of stroke in current smokers.25 In addition, the 
VPS13A and OXCT1 are the most correlated hub genes, indicating that they may function together in MI. Our findings 
indicated that the model that included five genes had a better diagnostic effect than each individual gene.

The results of correlation analysis of hub genes and immune cells showed that VPS13A had the strongest positive 
correlation with activated CD4 T cell and strongest negative correlation with monocyte, indicating that the expression of 
VPS13A was associated with activated CD4 T cell and monocyte. Inflammation has been reported to be involved in the 
initiation and progression of numerous diseases, including MI.26 Regulatory T cells (Tregs) can prevent the accumulation 
of proinflammatory cells and the secretion of proinflammatory cytokines, and Tregs cell activity might be pivotal for the 
maintenance of cardiovascular homeostasis.27 In addition, Zhao et al indicated that activated CD4+ T cells promote 
cardiac remodeling following MI.28 Monocytes play an integral role in the innate immune system in human and 
participate in inflammation.29 Previous study suggested that monocytes are involved in both initiation and resolution 
of inflammation and are critical mediators of the inflammatory response following MI and ischemia-reperfusion injury.30

Conclusion
In conclusion, we divided MI samples into two subtypes, cluster A and cluster B, based on the expression levels of 
HRGs. Among them, cluster A was characterized by high hypoxia status and low immunity status. In addition, some 
drugs (testosterone, pinomicin, cilostazol, etc.) have been found to be effective in the treatment of MI but may produce 
different results in the two different subtypes. Finally, a diagnostic model, including ANKRD36, HLTF, KIF3A, OXCT1 
and VPS13A, was established, which can distinguish the two subtypes well.
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