
© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(9):6294-6310 | https://dx.doi.org/10.21037/qims-24-578

Original Article

A brain structure learning-guided multi-view graph representation 
learning for brain network analysis

Tao Wang1^, Zenghui Ding1, Xianjun Yang1, Yanyan Chen1, Changhua Lu2, Yining Sun1

1Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China; 2School of Computer and Information, Hefei University of 

Technology, Hefei, China

Contributions: (I) Conception and design: T Wang, Z Ding; (II) Administrative support: Z Ding, C Lu, Y Sun; (III) Provision of study materials 

or patients: X Yang, Y Chen; (IV) Collection and assembly of data: T Wang, Z Ding; (V) Data analysis and interpretation: T Wang, Z Ding; (VI) 

Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Zenghui Ding, PhD. Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hubin Building, 350 Shushanhu Road 

Hefei 230031, China. Email: dingzenghui@iim.ac.cn.

Background: Resting-state brain networks represent the interconnectivity of different brain regions during 
rest. Utilizing brain network analysis methods to model these networks can enhance our understanding 
of how different brain regions collaborate and communicate without explicit external stimuli. However, 
analyzing resting-state brain networks faces challenges due to high heterogeneity and noise correlation 
between subjects. This study proposes a brain structure learning-guided multi-view graph representation 
learning method to address the limitations of current brain network analysis and improve the diagnostic 
accuracy (ACC) of mental disorders.
Methods: We first used multiple thresholds to generate different sparse levels of brain networks. Subsequently, 
we introduced graph pooling to optimize the brain network representation by reducing noise edges and data 
inconsistency, thereby providing more reliable input for subsequent graph convolutional networks (GCNs). 
Following this, we designed a multi-view GCN to comprehensively capture the complexity and variability 
of brain structure. Finally, we employed an attention-based adaptive module to adjust the contributions of 
different views, facilitating their fusion. Considering that the Smith atlas offers superior characterization of 
resting-state brain networks, we utilized the Smith atlas to construct the graph network.
Results: Experiments on two mental disorder datasets, the Autism Brain Imaging Data Exchange (ABIDE) 
dataset and the Mexican Cocaine Use Disorders (SUDMEX CONN) dataset, show that our model 
outperforms the state-of-the-art methods, achieving nearly 75% ACC and 70% area under the receiver 
operating characteristic curve (AUC) on both datasets.
Conclusions: These findings demonstrate that our method of combining multi-view graph learning 
and brain structure learning can effectively capture crucial structural information in brain networks 
while facilitating the acquisition of feature information from diverse perspectives, thereby improving the 
performance of brain network analysis.
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Introduction

Research on mental disorders has become a crucial 
direction in neuroscience and clinical medicine over the 
past few decades. Traditionally, clinical analysis primarily 
focused on patients’ apparent symptoms, such as changes 
in behaviour, emotion, and cognitive function (1). Data 
collection methods mainly include interviews, behavioural 
observations, neuropsychological tests, questionnaires, 
and physiological measurements (2). However, these 
approaches often rely heavily on subjective assessments (3), 
making them susceptible to the influence of the clinician’s 
experience and observation perspective, which can result 
in inadequate reliability and consistency of results. 
Additionally, these methods often provide only limited static 
information, making it challenging to fully comprehend the 
dynamic changes and development trends of these diseases. 

With the ongoing development of research methods, 
clinical analysis has gradually transitioned from focusing 
on apparent symptoms to exploring deeper neurobiological 
foundations. Among these methods, brain network 
analysis stands out as a powerful tool, offering avenues for 
comprehending mental disorders (4). The resting-state 
brain network represents the brain activity recorded when 
a subject is not engaged in specific cognitive tasks. It is 
typically measured using neuroimaging techniques such as 
resting-state functional magnetic resonance imaging (rs-
fMRI) (5). Unlike brain activity during specific tasks, the 
resting-state brain network reflects intrinsic functional 
connections and interactions without explicit external 
stimuli. Research on the resting-state brain network 
facilitates comprehension of the coordination among 
diverse brain regions and reveals the neural mechanisms 
involved in the development of mental diseases. 

Traditional statistical analysis methods have played 
a crucial role in resting-state brain network research, 
especially in understanding differences in brain network 
structure and disease states. These methods typically 
include statistical hypothesis tests, such as t-tests, analysis 
of variance (ANOVA), correlation analysis, regression 
analysis and non-parametric tests, which aimed at 
discerning distinctions between patient groups and healthy 
controls (6,7). Their advantage lies in their intuitive and 
interpretable nature, which facilitates the identification 
of significant alterations in specific brain regions or 
connections. However, traditional statistical analysis 
methods are limited in their capacity to model individual 
differences, thereby hindering the in-depth exploration of 

brain networks. Furthermore, these methods often overlook 
the dynamic and intricate nature of brain networks, making 
them less suitable for handling high-dimensional and 
nonlinear relationships.

In contrast, machine learning methods offer the capability 
to process high-dimensional data and mine potential 
patterns, including nonlinear relationships, dynamic 
changes, and multimodal information (8-10). Concurrently, 
these methods can also model individual variability. For 
instance, in Alzheimer’s disease diagnosis, Shahparian 
et al. (11) proposed a method based on latent low-rank 
features and a support vector machine (SVM). This 
method enables efficient diagnosis of healthy categories, 
mild stages of disease, or Alzheimer’s disease stages by 
calculating time series of anatomical regions, extracting 
features using latent low-rank representations, and 
applying SVM classifiers. Similarly, Lama and Kwon (12)  
used Node2vec graph embedding to convert graph 
features into feature vectors, and applied a combination 
of regularized extreme learning machines (RELM) and 
linear support vector machine (LSVM) to achieve effective 
Alzheimer’s disease detection.

In recent years, deep learning methods, a rapidly 
developing branch of machine learning, have aroused 
widespread interest in neuroscience. These methods, 
characterized by multi-layered neural network structures, 
simulate the human brain’s information processing 
mechanisms, offering new perspectives and approaches 
to brain network research. Their successes in image, 
speech and natural language processing (NLP) (13,14) 
have inspired the interest in applying deep learning to 
neuroscience. By using deep learning models to brain 
imaging data, researchers can more accurately predict 
neural activity, cognitive task, and even the onset of mental 
disorders. For instance, Huang  et al. (15) proposed a 
functional brain network analysis method based on a static-
dynamic convolutional neural network (CNN). Haweel  
et al. (16) presented an early autism diagnosis method based 
on discrete wavelet transform (DWT) and CNN. 

However, deep learning methods often overlook the 
local structure of nodes, which is crucial for understanding 
the functions and interactions within brain networks. 
Graph convolutional networks (GCNs) are a type of deep 
learning model that processes graph-structured data (17).  
Compared with traditional deep learning methods, GCN 
can naturally handle graph-structured data, adapt to 
irregularities, capture node structures, consider dynamics, 
and handle heterogeneous nodes and edges. For instance, 
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in a schizophrenia recognition study conducted by Yin  
et al. (18), they found that compared to CNN, GCN could 
better identify schizophrenia patients from healthy controls. 
Likewise, Liu et al. (19) demonstrated that hierarchical 
GCN constructed using multi-scale atlases were more 
effective in diagnosing brain disorder using graph-
structured data. However, in constructing brain functional 
networks, current approaches often convert continuous 
functional connectivity strength into binary relationships 
(connected or disconnected) (20), simplifying the network 
structure and reducing computational and storage 
demands. Nevertheless, this approach may overlook crucial 
information, particularly in cases with rich connectivity 
strength gradients. Additionally, threshold selection is 
subjective, and different researchers or studies may choose 
different thresholds, leading to result inconsistencies.

To address these problems, the paper proposes a brain 
structure learning-guided multi-view graph representation 
learning method to enhance the flexibility of current brain 
network analysis and improve the diagnosis accuracy (ACC) 
of mental disorders. Specifically, to address the inflexibility 
of simple thresholds in brain network binarization, multiple 
thresholds are used to generate brain networks at various 
sparsity levels. This approach enhances modeling capability 
for brain structural diversity by integrating information 
from different network sparsities. Considering noise 
edges and data inconsistency in brain networks, the study 
introduces graph pooling to optimize the brain network 
representation, providing more reliable input for GCNs. 
Subsequently, the study designs a multi-view GCN to 
capture the complexity and variability of brain structure. 
Finally, an attention mechanism is used to enhance or 
weaken the contributions of different views, improving the 
integration of information and the model’s performance in 
multi-view learning. It is noteworthy that this study uses 
the Smith atlas (21) instead of the Automated Anatomical 
Labeling (AAL) atlas. The Smith atlas is derived from rs-
fMRI data via independent component analysis (ICA). 
Compared with the traditional AAL atlas, the Smith atlas 
can offer a superior characterization of resting-state brain 
networks. Meanwhile, considering the impact of the number 
of supernodes on graph pooling, an in-depth analysis is 
conducted in the results section. The main contributions of 
this study can be summarized as follows:

(I)	 We build a multi-view brain network for each 
subject using multiple thresholds, which can 
consider the diversity of brain structures and 
improve the modeling capability.

(II)	 We introduce a graph structure learning algorithm 
that adopts a supervised learning scheme and can 
adaptively build a clean coarsened-graph network. 
Compared with the original brain network, using 
the coarsened-graph network facilitates brain 
network representation learning and disease 
diagnosis.

(III)	 We propose an attention-based adaptive multi-
view fusion method, which dynamically adjusts 
the contributions of different views through an 
attention mechanism. This enhances the model’s 
utilization of information from each view, further 
improving the classification performance of mental 
disorders.

Experiments conducted on the Autism Brain Imaging 
Data Exchange (ABIDE) (22) and the Mexican Cocaine Use 
Disorders (SUDMEX CONN) (23) datasets demonstrate 
the proposed framework’s applicability and superior 
performance in various scenarios.

The rest of the paper is organized as follows: in Section 
“Related work”, we present related work. Section “Methods” 
describes the detailed mathematical formulation and 
framework of the proposed method. In Section “Results”, 
the experimental design, evaluation metrics, and datasets 
are introduced, and the effectiveness and robustness of the 
proposed method are demonstrated through quantitative 
and qualitative analyses. Section “Discussion” discusses 
the proposed method and future work. Finally, Section 
“Conclusions” concludes our work.

Related work

Graph neural network (GNN)
As an emerging deep learning model, GCN was first 
proposed by Kipf and Welling in 2016 (24). GCN draws 
inspiration from traditional CNNs and graph theory, 
aiming to address the limitations of CNNs in handling 
graph-structured data. Traditional deep learning models 
are typically designed for regular data structures, such as 
images and sequences, and perform poorly when applied to 
irregular graph-structured data (25). GCNs were proposed 
to adaptively handle irregular graph structures so that 
the neural network can better capture the topological 
relationships and characteristics between nodes. This 
capability is crucial in many practical applications, such as 
social networks (26), where nodes represent users and edges 
define relationships between users. Through GCNs, the 
associations between users in social networks can be more 
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effectively analyzed to infer potential social circles and 
user interests. As research on GCNs progressed, several 
improved models, including inductive representation 
learning on large graphs (GraphSAGE) (27) and Graph 
Attention Network (GAT) (28), were introduced, enriching 
the GCN family. These models enhance the modeling 
capabilities for graph-structured data by introducing 
attention mechanisms, aggregation strategies and 
more, making GCNs more flexible and practical across  
diverse fields.

Due to their superior performance in handling graph-
structured data and capturing complex relationships, GCNs 
are becoming increasingly popular in mental disorder 
research (29,30). The human brain functional network 
is a large and complex graph, where brain regions can 
be represented as nodes and their connections as edges. 
Traditional analytical methods often fail to capture the 
intricate interactions and information transfer within the 
brain, focusing instead on specific regions and overlooking 
the highly interconnected nature of the entire brain 
network. GCNs, through multi-layer graph convolution 
operation, can update each node’s representation and 
integrate local and global information. This allows for 
a more comprehensive understanding of brain region 
relationships, which is crucial for revealing the global 
features of mental disorders and understanding how the 
brain works as a whole. Furthermore, in the study of mental 
disorders, the advantage of GNNs lies not only in their 
ability to fuse global information, but also in their powerful 
capability for individualized modeling. Due to individual 
variations, this has significant implications for the etiology 
and treatment of mental disorders. GCNs can more 
accurately analyze individual variations by modeling the 
brain functional network of each person (31). 

Multi-view brain network analysis
In neuroscience and medical imaging, brain network analysis 
is gaining increasing attention. Traditional methods often 
fail to capture the full diversity of the brain’s complex 
networks (32). To overcome these limitations, researchers are 
increasingly turning to multi-view approaches to gain a more 
comprehensive and accurate understanding of the nervous 
system’s complex structure and function. Current multi-
view brain network analysis methods primarily include two 
categories: multi-modal network research based on different 
imaging methods (31) and multi-view network research 
based on single imaging to construct different brain networks 
(32,33). Multimodal network research aims to integrate 

brain image data from various imaging techniques, such as 
structural magnetic resonance imaging (sMRI), functional 
magnetic resonance imaging (fMRI), electroencephalography 
(EEG) and positron emission tomography (PET), to obtain 
a more comprehensive representation of brain networks. 
For instance, Zhou et al. (34) utilized multimodal data from 
sMRI, fMRI, and PET to propose a sparse interpretable 
GCN for identifying and classifying Alzheimer’s disease. 
By integrating multimodal data, this method can more 
accurately identify brain network characteristics related to 
Alzheimer’s disease, offering a new perspective for diagnosis 
and understanding of the disease.

The second type, multi-view network research using 
single imaging to construct different brain networks, 
focuses on using different brain atlases or constructing 
brain networks with varying sparsities to capture the brain 
network’s complex characteristics and improve diagnostic 
ACC (33,35). This approach better captures the full picture 
of the data by integrating information from multiple views, 
enhancing the model’s generalization ability and robustness, 
and enabling more reliable diagnosis and prediction with 
new data. For instance, Zhang et al. (33) constructed 
different brain networks based on multiple brain atlases 
and used multi-task learning algorithms for joint feature 
selection, thereby improving the diagnosis of mild cognitive 
impairment (MCI). This study aims to enhance the 
performance of the second type of multi-view network 
diagnosis using single imaging to construct different brain 
networks.

Attention mechanism
Inspired by neuroscience, the attention mechanism was 
initially applied in NLP to simulate the human visual and 
cognitive systems’ selective attention mechanism (36). 
In deep learning, the attention mechanism began with 
the Neural Turing Machine in 2014 (37) and has since 
been developed in numerous subsequent works. In 2015, 
Bahdanau et al. (38) introduced the attention mechanism 
to neural machine translation, enabling the model to assign 
different weights to information at different input sequence 
positions, thereby improving translation effectiveness. 
Since then, the attention mechanism has been extensively 
used in computer vision and speech processing. In 
particular, the emergence of the self-attention mechanism 
and the multi-head attention mechanism (39) has 
further expanded their applications. The self-attention 
mechanism allows the model to allocate weights based on 
the internal data relationship when processing sequences, 
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while the multi-head attention mechanism enhances 
the model’s ability to handle multi-level information by 
operating multiple attention heads in parallel. Due to 
its excellent characteristics, the attention mechanism 
has also been widely used in GCNs. At the node level, 
attention mechanisms calculate the correlation and weights 
between nodes, allowing the model to focus on neighbors 
relevant to the current node for better adaptation to local 
information. At the edge level, attention mechanisms 
enhance the understanding of graph topology by focusing 
on the weights of different edges, especially when dealing 
with heterogeneous graphs or multiple relationships within 
a graph. Additionally, the graph-level attention mechanism 
enables the model to comprehend global information by 
considering the overall structure and characteristics of the 
entire graph.

Methods

The framework of the proposed method is shown in 
Figure 1. We first construct a multi-view resting-state 
brain network. Then, we apply graph pooling for graph 
structure learning to eliminate noise edges as well as data 
inconsistencies, and design a multi-view GCN to extract 
rich information. Furthermore, we apply an attention-
based adaptive module for the view fusion process. Since 
views are correlated, it is reasonable to assume that different 
views share a common representation. Therefore, the view 
attention mechanism is shared among the views. Finally, we 
introduce the learning objectives. 

Multi-view graph construction

For the rs-fMRI time-series 
( ) ( ) ( ){ }1 2 1

, ,
Nn n n

I n
T t t t

=
=  , ( )n L

it R∈  
represents the blood oxygen level-dependent (BOLD) 
signal of the i-th region of interest (ROI) for the n-th 
subject, N denotes the total number of subjects, and I 
represents the number of brain regions/ROIs. This study 
employs the atlas derived from rs-fMRI using ICA by Smith 
et al. (21) to extract the ROIs, resulting in I=70. The initial 
step involves calculating the functional connectivity of all 
ROIs using Pearson correlation (PC). Let ( ) ( )( )n n I I

ijB b R ×= ∈  
be the functional connectivity matrix for the x subject, then 

the element ( ) [ ]1,1n
ijb ∈ −  in the matrix ( )nB  represents the PC 

coefficient between the i-th ROI and the j-th ROI, defined 
as follows:

( )
( ) ( )( ) ( ) ( )( )
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ij T Tn n n n n n n n
i i i i j j j j

t t t t
b

t t t t t t t t

− −
=
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[1]

where ( )n
it  and ( )n

jt  represent the mean vector corresponding 
to ( )n L

it R∈  and ( )n L
jt R∈ , respectively. Considering brain 

regions/ROIs as nodes { }1, , IV v v=  ,  and functional 
connectivity ( )n

ijb  between the paired nodes iv  and 
jv  as edge 

ije , we can take each brain functional connectivity matrix as 
a graph { },G V E= .

Due to the density caused by PC, there is a lot of noisy/
redundant information in the graph. In this study, we use 
K-nearest neighbor (KNN) to sparsify the constructed 
graph (40). Specifically, we prioritize the edges according 
to the functional connectivity strength of each node and 

Figure 1 The framework of our proposed method. rs-fMRI, resting-state functional magnetic resonance imaging; FC, functional 
connectivity; KNN, K-nearest neighbor; avg, average.
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retain only the top V important edges. Therefore, the 
topology of graph G can be described by an adjacency 
matrix ( ) I I

ijA a R ×= ∈ , where 1ija =  if there is a connection 
between the i-th ROI and the j-th ROI, otherwise 0ija = .  
However, different V values determine different levels of 
graph topology. To avoid the information loss and bias 
caused by a single threshold, this study constructs a multi-
view brain network with different dense connections 
( { }7,14, 21V = ). In general, smaller V values retain fewer 
connections, resulting in sparser graphs, while larger V  
values yield denser graphs. 

Graph structure learning

The constructed brain network still suffers from noise 
edges and data inconsistencies (41). Graph pooling, a 
technique in GCN graph representation learning, is used 
to coarsen original graphs with high-level noisy edges. In 
this study, we utilize graph pooling (42) as an initial step 
to acquire a clean coarsened-graph structure that provides 
reliable input for subsequent GCN analysis, as shown 
in Figure 2. Let A be the adjacency matrix, and X be the 
feature matrix. To merge the nodes and edges in the graph 
while retaining its structure and characteristics, we adopt a 
soft cluster assignment matrix S and an embedding matrix 
E to generate a new coarsened adjacency matrix A', and 
the feature matrix X' of the nodes/clusters in the coarsened 
graph. Mathematically, this process is expressed as: 

T C FX S E R ×′ = ∈ 	 [2]
T C FA S AS R ×′ = ∈ 	 [3]

where C represents the number of supernodes (or clusters), 
and F is the dimension of the coarsened graph feature 
matrix. The matrices S and E are generated through two 
independent GNN modules. The embedding matrix E is 
generated by the GNN module ,l embedGNN  with A and X as 
inputs. Simultaneously, the soft cluster assignment matrix 
S is computed via the SoftMax operation applied to the 
outputs of the GNN module ,l poolGNN  utilizing A and X as 
inputs. This is expressed as follows:

( ), ,l embedE GNN A X=
	

[4]

( )( ), ,l poolS softmax GNN A X= 	 [5]

Multi-view GCN 

After graph structure learning, we can obtain three 
coarsened graphs { }1 2 3, ,G G G′ ′ ′ , where kA′  and kX ′ represent 
the adjacency matrix and feature matrix of k-th coarsened 
graph, respectively. We adopt GCN to aggregate the 
graph structure kA′  and node features kX ′  to obtain the 
latent representation kZ . GCN is a graph-based deep 
learning model, which is a first-order approximation of 
graph convolutions in the spectral domain. The objective 
of GCN is to learn node representations so that adjacent 
nodes in the graph have similar representations. Multi-
layer GCN learns layer-by-layer transformation by stacking 
multiple spectral graph convolutional layers. The spectral 
graph convolutional of each layer is represented by the 
nodes of the previous layer and information is transferred 
through the structure of the graph. This layer-by-layer 
transformation enables the model to gradually focus on 
more abstract and global graph structure features, thereby 
improving the modeling ability of complex relationships.

The propagation of GCN can be expressed as:

( ) ( ) ( )
1 1

1 2 2l l lZ D AD Z Wσ
− −+  

=  
 

 

	

[6]

where ( )lW  is the weight matrix, ( )σ ⋅  represents the 
activation function, NA A I= +  is the adjacency matrix with 
self-connection added, D  is a node degree matrix with 
diagonals ( )ii ij

j
d a=∑

 , ( )lZ  is the node feature matrix, and 
( )0Z X= . 
In the study, we stack two graph convolutional layers as 

employed in (43). Hence, the formula can be represented as:

( ) ( )( ) ( )( )0 1
1 0,k k k kZ GCN A X A AX W Wσ σ= ′ ′ =

	
[7]

where 
1 1
2 2A D AD

− −
=   , 0σ  and 1σ  are ReLU activation functions.

Figure 2 An illustration of graph structure learning.
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Attention-based adaptive view fusion

Fusing view-specific representations is a crucial step 
for achieving multi-view collaboration. Traditional 
methods usually combine the representations by simply 
concatenating or adding them, which may not capture 
complex relationships between views. To address this, 
we introduce an attention mechanism to assign different 
weights to different views, making them focused on 
information that plays a key role in collaboration. For each 
representation kZ , we associate a query matrix C P

kQ R ×∈  and 
a key matrix C P

kK R ×∈  with it as follows:

k k QQ Z W= ⋅
	

[8]

k k KK Z W= ⋅ 	 [9]

Due to the observations from multiple views being 
varied but highly related, we make QW  and KW  shared by all 
views. To obtain the important information across different 
views, we compute the average of all query matrices kQ  and 
concatenate the key matrices kK :

[ ]1 2 3, ,Q avg Q Q Q=
	

[10]

{ }1 2 3, ,K K K K= 	 [11]

Then, the propagated information among all views is as 
follows:

{ } ( ) 3
3

1
1

ˆ
T
k k

k k
k

softmax Q K Z
Z

p=
=

 ⋅ ⋅ =  
   	

[12]

To fuse the propagated information, we construct a 
fusion layer that learns adaptive weights:

3

1

ˆ̂
k k

k
Z w Z

=

=∑ 	
[13]

( )ˆ
k k f fw Z W bσ= + 	

[14]

where kw  is the weight of k-th view, learned by a single-layer 
multilayer perceptron (MLP) with the k-th embeddings as 
input. Figure 3 illustrates our attention-based adaptive view 
fusion on three views.

Learning objective

The objectives of the model mainly include graph structure 
learning and graph classification.

Graph structure learning 
The aim of graph structure learning is to learn the graph 
structure to remove the noisy connections in the brain 
network. To achieve this goal, two losses, auxiliary link 
prediction loss and entropy loss, are employed:

( )
1

, , 1
k k c

C
T

LP k k k E kF
c

L A S S L H S
C =

= = ∑ 	 [15]

( )
3

1
k kGSL LP E

k
L L L

=

= +∑
	

[16]

where F
⋅  denotes the Frobenius norm, H  denotes the 

entropy function, and 
ckS  is the c-th row of kS .

Graph classification 
For graph classification, we use cross-entropy as the loss, 

Figure 3 An illustration of attention-based adaptive view fusion. MLP, multilayer perceptron.
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thus the loss can be formulated as:

( ) ( )
1

log 1 log 1
N

GC i i i i
i

L y p y p
=

= + − −  ∑
	

[17]

where iy  is the truth value of i-th subject, and ip  is the 
predicted SoftMax probability for the i-th subject. In this 
way, the final learning objective is: 

( )1GSL GCL L Lα α= + −
	

[18]

where α is a hyper-parameter that balances the importance 
of the two losses.

Results

Datasets

We evaluate our proposed framework on two mental 
disorder datasets: the ABIDE dataset (22) and the 
SUDMEX CONN dataset (23). The study was conducted 
in accordance with the Declaration of Helsinki (as revised 
in 2013).

ABIDE
ABIDE contains data collected from multiple sites, 
each with differing data collection protocols and 
participant demographics. This heterogeneity can 
impact the performance of the algorithm and thus affect 
the accurate verification of its effectiveness (44). To 
mitigate these external factors, we chose the site with 
the largest number of samples (NYU site) for our study. 
This is intended to enhance the internal consistency of 
the dataset and minimize inter-site differences, thereby 
allowing a more accurate evaluation of the performance 
of our algorithm. The Configurable Pipeline for the 
Analysis of Connectomes (CPAC) (45) is used for image 
preprocessing. We obtained 172 high-quality rs-fMRI 
images, including 74 patients with autism spectrum 
disorder (ASD) and 98 normal controls.

SUDMEX CONN
SUDMEX_CONN is a cocaine use disorder dataset 
collected at the National Psychiatric Institute in Mexico 
City by Dr. Eduardo A. Garza-Villarreal and Jorge J. 
Gonzalez Olvera (23). The dataset contains 72 patients 
with cocaine use disorder and 63 normal controls. We used 
fMRIPrep (46) to process rs-fMRI. fMRIPrep consists 
of standard preprocessing steps, including head motion 
correction, spatial transformation, removal of non-neural 

signal components (such as respiratory, cardiac and motion-
related signals), and intensity normalization of MRI signals, 
ensuring that researchers obtain consistent results. By 
examining the results of fMRIPrep preprocessing, we found 
that a large number of abnormal images in the rs-fMRI 
of a patient with cocaine use disorder, perhaps due to the 
patient’s abnormal head movement during data collection. 
We excluded this abnormal rs-fMRI, and obtained  
71 cocaine use disorder data and 63 normal controls data.

Experimental setup

All experiments in this section are conducted on a Linux 
server running the Ubuntu operating system. The 
server has two 12th Gen Intel(R) Core (TM) i9-12900K 
processors, each with a clock frequency of 3.20 GHz, and 
a total memory capacity of 64 GB RAM. Additionally, the 
server is configured with two NVIDIA GeForce RTX 
3,090 GPUs, each with 24 GB of RAM. In terms of model 
training, we selected the Adam optimizer with a learning 
rate set to 0.001 to ensure rapid convergence during the 
training process. To fully consider the diversity of data,  
10-fold cross-validation is adopted to evaluate the model. 
The number of supernodes is a key parameter for specifying 
node clustering in graph pooling, which largely determines 
the scale of graph coarsening. Supernodes help simplify 
the graph structure and mitigate noisy edges and data 
inconsistencies by reducing the number of nodes in the 
original graph. The number of supernodes is empirically 
set to half the number of input nodes. The impact of the 
number of supernodes on the model will be discussed later. 
To evaluate the performance of the method, we use ACC 
as the main measurement (gold standard) and combine 
it with three other widely used indicators for analysis. 
These indicators include: sensitivity (SEN), specificity 
(SPE), and area under the receiver operating characteristic 
curve (AUC). By combining these indicators, we can 
more comprehensively evaluate all aspects of the method’s 
performance, and ensure its reliability and effectiveness in 
different application scenarios.

The impact of the brain atlas

Unlike most existing works that use the AAL atlas provided 
by the Montreal Neurological Institute (MNI) (47), the 
study uses the Smith atlas extracted from rs-fMRI images by 
Smith et al. (21) using ICA to construct the brain network. 
To verify the advantages of the Smith atlas, we compare 
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Figure 4 The effect of brain atlas on graph classification performance. ABIDE, Autism Brain Imaging Data Exchange; SUDMEX CONN, 
Mexican Cocaine Use Disorders; AUC, area under the receiver operating characteristic curve; SPE, specificity; SEN, sensitivity; ACC, 
accuracy; AAL, Automated Anatomical Labeling. 

the performance of our method on two atlases. The results 
of two atlases are shown in Figure 4. It can be found that 
Smith Atlas can achieve better performance on two datasets. 
Specifically, except for SPE on ABIDE, the performance of 
Smith atlas is better than the AAL atlas on other metrics. 
For example, compared with the AAL atlas, the Smith atlas 
achieves an average ACC/AUC of 74.48%/72.34% on 
ABIDE, and an average ACC/AUC of 76.15%/68.6% on 
SUDMEX CONN, resulting in a 1.73%/8.34% increase in 
ACC/AUC on ABIDE, and 4.56%/5.14% on SUDMEX 
CONN. It reveals that the brain atlas extracted from rs-
fMRI is more conducive for graph representation learning.

The impact of the supernode number

In graph structure learning, the number of supernodes for 
graph pooling is an important hyperparameter. To show the 
impact of different numbers of supernodes on performance, 
we employ different percentages of supernodes, ranging 
from 10% to 90%, to test our proposed method. The 
ACC and AUC are shown in Figure 5. It can be found that 
the number of supernodes has little impact on ACC, but 
the AUC value increases with the number of supernodes 
until it reaches half of the input nodes and then shows a 
downward trend. This suggests that a moderate number 
of supernodes helps to better capture key graph structural 
features. However, when the number of supernodes is too 
large, noise nodes and edges will inevitably be introduced, 
thus reducing the performance of the model. Therefore, 

there are trade-offs to consider when choosing the number 
of supernodes. Too few supernodes may fail to capture 
important features of the graph structure, while too many 
supernodes may introduce unnecessary noise and affect the 
generalization ability of the model.

Comparison with the prior works on brain network 
analysis

To evaluate the effectiveness of the proposed method, we 
perform a comparative analysis with current state-of-the-art 
approaches, including SVM (48), long short-term memory 
(LSTM) (49), GCN (50), dynamic graph convolutional 
neural network (EDGE-CONV) (51), hierarchical graph 
representation learning with differentiable pooling 
(DiffPool-GCN) (52) and GraphSAGE (53), on the 
ABIDE and SUDMEX CONN datasets. To ensure 
the comparability of results, we adopted the same gold 
standard and constructed the brain network based on the 
Smith atlas. The comparison results in terms of ACC, 
SEN, SPE and AUC are shown in Table 1. We can see that 
our method achieves better or comparable performance 
on both tasks compared with previous brain network 
classification approaches. The ACC, SEN, SPE and AUC 
of our method are 74.48%, 57.68%, 88.00%, 72.34% 
respectively on ABIDE and 76.15%, 86.07%, 64.76%, 
68.60% respectively on SUDMEX CONN. Specifically, 
our method achieves significant improvements compared 
to the traditional SVM, demonstrating the effectiveness of 
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Figure 5 The impact of different numbers of supernodes on graph classification performance. ABIDE, Autism Brain Imaging Data 
Exchange; SUDMEX CONN, Mexican Cocaine Use Disorders; ACC, accuracy; AUC, area under the receiver operating characteristic 
curve. 

deep learning methods. Compared with the basic LSTM, 
GCN and EDGE-CONV, on the ABIDE dataset, our 
method achieves comparable performance in SEN and 
SPE, but the ACC/AUC is significantly improved by about 
6.90%/11.67%, 6.47%/13.22% and 3.47%/6.72%. On 

the SUDMEX CONN dataset, the performance of SPE 
is comparable, but the ACC/SEN/AUC are increased by 
approximately 4.45%/8.75%/3.88%, 7.41%/2.50%/8.60% 
and 6.75%/4.46%/8.87%. Remarkable results demonstrate 
the advantages of multi-view brain networks. DiffPool-

Table 1 The performance comparison of our method with the prior works 

Method
ABIDE SUDMEX CONN

ACC (%) SEN (%) SPE (%) AUC (%) ACC (%) SEN (%) SPE (%) AUC (%)

SVM 63.82 56.61 69.44 66.40 65.49 71.61 58.57 64.24

LSTM 67.58 37.32 90.67 60.67 71.70 77.32 65.71 64.72

GCN 68.01 36.96 92.00 59.12 68.74 83.57 51.90 60.00

EDGE-CONV 71.01 59.82 79.33 65.62 69.40 81.61 54.52 59.73

DiffPool-GCN 71.01 61.25 78.67 62.57 73.96 87.14 58.10 66.39

GraphSAGE 67.48 37.32 90.89 71.26 68.02 87.14 45.71 62.42

Our method 74.48 57.68 88.00 72.34 76.15 86.07 64.76 68.60

ABIDE, Autism Brain Imaging Data Exchange; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating 
characteristic curve; SUDMEX CONN, Mexican Cocaine Use Disorders; SVM, support vector machine; LSTM, long short-term memory; 
GCN, graph convolutional network; EDGE-CONV, dynamic graph convolutional neural network; DiffPool-GCN, hierarchical graph 
representation learning with differentiable pooling; GraphSAGE, inductive representation learning on large graphs.
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GCN and Graph-SAGE are two graph models that obtain 
the new nodes/graphs representation through graph 
pooling or clustering. Compared with DiffPool-GCN and 
Graph-SAGE, our method also shows better performance 
on most indicators for these two tasks. The main reason 
is that the noise connections in the initially constructed 
brain network are not considered, which poses a challenge 
to learning a good representation. Tables S1,S2 also show 
the impact of the AAL atlas on the performance of existing 
methods. The experimental results show that our method 
has achieved significant improvements in most indicators, 
which is consistent with the above research results. This 
further verifies the effectiveness and superiority of our 
method. Besides, to enhance the transparency of the 
model training process, we show one round of training 
loss in Figure S1. It can be seen from the figure that as the 
iteration epoch increases, the loss gradually decreases. This 
shows that the model is constantly learning and gradually 
improving its predictive capabilities. At the same time, the 
figure also shows the ACC of the model. It can be observed 
that during the training process, the ACC improves 
significantly, indicating that the performance of the model 
is continuously optimized. After reaching a certain number 

of epochs, the training loss tends to be stable, accompanied 
by certain fluctuations.

Ablation study

In this section, we employ an ablation study to demonstrate 
the effectiveness of our framework design. Specifically, we 
compare the proposed method with a basic or a combination 
of multiple intermediate component methods. Table 2 lists 
the experimental results and resource consumption [params, 
floating-point operations per second (FLOPs)] of different 
methods. We can find that the ACC/AUC of GSL-GCN 
is better than GCN by 2.39%/6.15% and 3.79%/6.21% 
on ABIDE and SUDMEX CONN datasets, respectively, 
which proves our hypothesis that the original complex 
graph structure hinders GCN’s graph embedding learning, 
through graph structure learning, can construct a common 
and clean brain network to improve the classification 
performance of the model. Compared with GCN, GCN-
mv achieves an average ACC/AUC of 71.01%/69.36% on 
ABIDE, and an average ACC/AUC of 70.93%/67.54% 
on SUDMEX CONN, resulting in a 4.77% and 11.28% 
increase in ACC and AUC on ABIDE, and 4.50% and 

Table 2 The effectiveness of the proposed components 

Dataset Method GCN GSL Mv. Vf. ACC (%) SEN (%) SPE (%) AUC (%) Params FLOPs

ABIDE GCN √ – – – 66.24 33.21 90.67 58.08 12.99K 9.09K

GSL-GCN √ √ – – 68.63 55.71 78.00 64.23 36.18K 41.29K

GSL-GCN-mv √ √ √ – 72.75 61.61 81.56 63.01 69.34K 50.25K

GCN-mv √ – √ – 71.01 44.64 92.00 69.36 38.72K 27.01K

GCN-mv-vf √ – √ √ 73.33 64.82 80.44 71.78 64.65K 45.35K

GSL-GCN-mv-vf √ √ √ √ 74.48 57.68 88.00 72.34 88.54K 58.19K

SUDMEX 
CONN

GCN √ – – – 66.43 91.43 37.14 59.71 12.99K 9.09K

GSL-GCN √ √ – – 70.22 66.25 75.00 65.92 36.18K 41.29K

GSL-GCN-mv √ √ √ – 73.90 85.71 60.00 66.05 69.34K 50.25K

GCN-mv √ – √ – 70.93 90.18 49.05 67.54 38.72K 27.01K

GCN-mv-vf √ – √ √ 74.73 84.64 62.86 69.48 64.65K 45.35K

GSL-GCN-mv-vf √ √ √ √ 76.15 86.07 64.76 68.60 88.54K 58.19K

GCN, normal graph convolutional network; GSL, graph structure learning; Mv., the use of multi-view graphs; Vf., the use of attention-
based adaptive view fusion; ACC, accuracy; SEN, sensitivity; SPE, specificity; AUC, area under the receiver operating characteristic 
curve; Params, Parameters; FLOPs, floating-point operations per second; ABIDE, Autism Brain Imaging Data Exchange; GSL-GCN, graph 
structure learning-based graph convolutional network; GSL-GCN-mv, graph structure learning-based multi-view graph convolutional 
network; GCN-mv, multi-view graph convolutional network; GCN-mv-vf, multi-view graph convolutional network with attention-based 
adaptive view fusion; GSL-GCN-mv-vf, graph structure learning-based multi-view graph convolutional network with attention-based 
adaptive view fusion; SUDMEX CONN, Mexican Cocaine Use Disorders.

https://cdn.amegroups.cn/static/public/QIMS-24-578-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-578-Supplementary.pdf
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Figure 6 t-SNE visualization of features learned in the last hidden layer before and after training. (A) t-SNE visualization on the ABIDE 
dataset. (B) t-SNE visualization on the SUDMEX CONN dataset. t-SNE, T-distributed Stochastic Neighbor Embedding; ABIDE, Autism 
Brain Imaging Data Exchange; SUDMEX CONN, Mexican Cocaine Use Disorders.

7.83% on SUDMEX CONN. The observation implies 
the effectiveness of the multi-view brain network 
embedding learning scheme. With the attention-based 
adaptive view fusion, GCN-mv-vf outperforms GCN-mv  
by 2.32%/2.42% and 3.8%/1.94% regarding ACC/AUC 
on ABIDE and SUDMEX CONN, respectively. The 
improvement benefits from the attention-based adaptive 
view fusion module that can effectively capture inherent 
correlations of different views. Furthermore, by integrating 
all modules (i.e., multi-view brain network, graph structure 
learning and attention-based adaptive view fusion) into 
GCN, we can see that the ensemble method yields better 
results on most metrics for both tasks. In terms of resource 
consumption, with the integration of modules, both the 
number of params and FLOPs of the model show significant 
growth. Compared with the basic GCN, the number of 
params and FLOPs of the final integrated GSL-GCN-
mv-vf model increased by nearly 7 times. Nonetheless, the 

final number of params and FLOPs are still considered 
lightweight and within acceptable limits in current deep 
learning methods. In addition, to further demonstrate 
the effectiveness of the final integrated GSL-GCN-mv-
vf model, we used T-distributed Stochastic Neighbor 
Embedding (t-SNE) to visualize the features learned in 
the final hidden layer, as shown in Figure 6. By observing 
Figure 6, we can find that in the raw data, different types 
of data are mixed. After feature learning, different types of 
data show clear aggregation, indicating that our method 
effectively learns the inherent patterns of the data.

Discussion

Summary

This paper proposes a brain structure learning-guided 
multi-view graph representation learning method, aiming 
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to enhance flexibility in brain network analysis and improve 
the ACC of mental disorder diagnosis. The main reason 
why this method is superior to existing methods is that 
it comprehensively considers multi-view information 
and effectively captures the complexity and variability 
of brain networks through graph structure learning and 
attention mechanisms. Specifically, the multi-view graph 
representation learning method improves the ability to 
model the diversity of brain structures by integrating brain 
network information at different sparsity levels. Graph 
structure learning further optimizes the representation 
of brain networks, using graph pooling technology to 
remove noise edges and data inconsistencies, thereby 
providing more reliable input to subsequent GCNs. This 
method can more accurately reflect the actual structure of 
brain networks and improve the ACC of mental disorder 
diagnosis. Compared with the traditional AAL atlas, the 
Smith atlas based on rs-fMRI data better characterizes the 
resting-state brain network and provides a more reliable 
input for graph representation learning. Experimental 
results show that the performance of the model using the 
Smith atlas on the ABIDE and SUDMEX CONN datasets 
is significantly better than that of the model using the 
AAL atlas, which is specifically reflected in the significant 
improvement in ACC and AUC. This shows that the 
Smith atlas extracted based on ICA can more effectively 
capture the resting state characteristics of the brain 
network and provide more representative data for mental 
disorder diagnosis. In addition, the reasonable selection 
of the number of supernodes also optimizes the model 
performance to a certain extent and effectively avoids the 
introduction of noise nodes and edges. Experiments show 
that a moderate number of supernodes can better capture 
key graph structural features, thereby improving the AUC 
of the model, while too many or too few supernodes may 
lead to a decline in model performance. By rationally 
selecting the number of supernodes, this method can 
reduce the computational complexity of the model while 
maintaining a high classification ACC, further improving 
the practicality and robustness of the model. 

Future work

Despite achieving certain results, there are still some areas 
worth exploring. First, although this study successfully 
used the Smith atlas to extract information from rs-fMRI, 
there are other atlases (54-56). Comparative studies of 
these atlases can provide a comprehensive understanding 

of their impact on model performance, thereby providing 
more options and implications for brain network analysis. 
Secondly, this study proposes a supervised learning 
scheme to adaptively construct coarsened graph networks. 
However, how to use more complex graph structure 
learning models or combine other advanced deep learning 
techniques to improve the modeling capabilities and 
robustness of coarsened graph networks is a problem that 
needs further research. With the continuous development 
of deep learning, we can introduce more model structures 
(57,58) into the construction process of coarsened graph 
networks to obtain better modeling effects. Furthermore, 
this study also proposes an adaptive multi-view fusion 
method based on an attention mechanism, aiming to 
dynamically adjust the contributions of different views, 
thereby improving the model’s utilization efficiency of 
each view. However, there are still limitations in the 
design and application of attention mechanisms. Future 
research can explore how to better capture the correlation 
between different perspectives and how to effectively 
balance different perspectives, thereby further improving 
the performance and applicability of multi-view fusion 
methods.

Conclusions

Although GCN has made significant progress in brain 
network analysis, providing opportunities for in-depth 
exploration and understanding of mental disorders, the 
construction of brain networks and the presence of noise 
edges and data inconsistencies pose challenges for GCN 
graph embedding learning. This paper proposes a brain 
structure learning-guided multi-view graph representation 
learning for brain network analysis. The core idea is 
to integrate graph structure learning and multi-view 
graph embedding learning to improve the classification 
performance of brain network data. Multi-view graph 
embedding learning enables us to acquire data from 
different perspectives and integrate them into a unified 
representation, thereby deepening our understanding 
of brain networks. Graph structure learning can capture 
important structural information in the brain network 
and provide more accurate feature representation for 
classification tasks. Extensive experiments on the public 
ABIDE and SUDMEX CONN datasets show that our 
method outperforms traditional methods and state-of-the-
art techniques in brain network classification tasks. This 
indicates that the proposed brain structure learning-guided 
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multi-view graph representation learning has potential 
applications in brain network analysis. In the future, we will 
continue to improve the method and explore its application 
in other neuroscience tasks.
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