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Background: Myotonic dystrophy type 1 (DM1) is the most common and

dominant inherited neuromuscular dystrophy disease in adults, involving

multiple organs, including the brain. Although structural measurements

showed that DM1 is predominantly associated with white-matter damage,

they failed to reveal the dysfunction of the white-matter. Recent studies

have demonstrated that the functional activity of white-matter is of great

significance and has given us insights into revealing the mechanisms of brain

disorders.

Materials and methods: Using resting-state fMRI data, we adopted a

clustering analysis to identify the white-matter functional networks and

calculated functional connectivity between these networks in 16 DM1 patients

and 18 healthy controls (HCs). A two-sample t-test was conducted between

the two groups. Partial correlation analyzes were performed between the

altered white-matter FC and clinical MMSE or HAMD scores.

Results: We identified 13 white-matter functional networks by clustering

analysis. These white-matter functional networks can be divided into a

three-layer network (superficial, middle, and deep) according to their spatial

distribution. Compared to HCs, DM1 patients showed increased FC within

intra-layer white-matter and inter-layer white-matter networks. For intra-

layer networks, the increased FC was mainly located in the inferior longitudinal

fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer

networks, the increased FC of DM1 patients is mainly located in the superior

corona radiata and deep networks.
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Conclusion: Results demonstrated the abnormalities of white-matter

functional connectivity in DM1 located in both intra-layer and inter-layer

white-matter networks and suggested that the pathophysiology mechanism

of DM1 may be related to the white-matter functional dysconnectivity.

Furthermore, it may facilitate the treatment development of DM1.

KEYWORDS

myotonic dystrophy type 1, resting-state fMRI, white-matter functional networks,
white-matter, functional connectivity

Introduction

Myotonic dystrophy type 1 (DM1) is the most common and
dominant inherited neuromuscular dystrophy disease in adults
(Emery, 1991). This multi-systemic disorder is characterized
by muscular impairment but affects different organs, including
the brain (Meola and Sansone, 2007). Neuroimaging studies
revealed widespread abnormalities in the brain structure of
DM1 patients, particularly white-matter damage (Minnerop
et al., 2011; Caso et al., 2014; Wozniak et al., 2014; Baldanzi
et al., 2016; Gourdon and Meola, 2017). The abnormalities of
white-matter in DM1 patients manifested have increased white-
matter hyperintensity load, decreased microstructural integrity,
and significant diffusivity alterations (Cabada et al., 2017; Lopez-
Titla et al., 2021). These white-matter abnormalities in DM1
patients may be associated with episodic memory, executive
function, and visuo-spatial impairments, which impact the
quality of their life (Meola et al., 1996; Modoni et al., 2008;
Rakocevic-Stojanovic et al., 2014; Gallais et al., 2015; Schneider-
Gold et al., 2015; Baldanzi et al., 2016; Okkersen et al.,
2017). These findings provided evidence for subtle white-matter
changes in DM1 patients (Minnerop et al., 2011).

However, these studies only explored the details of white-
matter architectures using the diffusion tensor imaging (DTI)
technique, they cannot accurately reflect changes in brain
function. Resting-state functional magnetic resonance imaging
(rs-fMRI) techniques, based on blood oxygen level-dependent
(BOLD) signals, are widely used for investigating brain
functional activity in brain diseases (Biswal et al., 1995; Meda
et al., 2014). In the past, most fMRI studies focused on BOLD
signal changes in the gray-matter while ignoring the white-
matter since it has limited postsynaptic potentials that cause
BOLD signals (Logothetis et al., 2001). Thus, they considered
white-matter a nuisance regressor and removed the BOLD
signals of white-matter despite taking up half of the brain
volume (Behzadi et al., 2007; Caballero-Gaudes and Reynolds,
2017).

Recent studies, however, showed strong evidence that
functional information in white-matter could be feasibly and
reliably revealed by BOLD-fMRI, ranging from multistate

(tasks and resting-state) to multimodal MRI (fMRI and
DTI) findings for different brain types (healthy, patients,
and primate monkeys). The fMRI activation in white-matter
(internal capsule and corpus callosum) can be identified
across perceptual, language, and motor tasks (Fabri et al.,
2011; Gawryluk et al., 2011, 2014; Fabri and Polonara, 2013).
Within these white-matter tracts, studies further confirmed
that the changes in low-frequency BOLD fluctuations could
be modulated by various stimuli and indicated that they
are involved in neural coding and information processing
(Marussich et al., 2017; Wu et al., 2017; Ding et al., 2018; Huang
et al., 2018; Li et al., 2019b). In addition to task-based fMRI, rs-
fMRI studies also found that BOLD signals within white-matter
were not random noise but carried functional information
and showed an intrinsic functional organization (Ding et al.,
2013, 2016, 2018; Peer et al., 2017; Li et al., 2019a). Moreover,
using clustering methods, BOLD-fMRI signals in white-matter
can be organized into large-scale functional networks, which
showed a similar pattern to the white-matter tracts obtained
from DTI in healthy participants (Marussich et al., 2017; Peer
et al., 2017). Furthermore, in primate monkeys, Wu and his
colleagues reconfirmed the significance of functional activities
in white-matter (Wu et al., 2019). Based on these evidence,
the white-matter functional networks thus were widely used to
explore the neural mechanisms of neuropsychiatric disorders
(Jiang et al., 2019b; Bu et al., 2020; Fan et al., 2020; Li
et al., 2020; Lu et al., 2021). For instance, Jiang et al.
found that patients with schizophrenia showed increased FC
in the perception-motor white-matter network (Jiang et al.,
2019a). More recently, the abnormalities of FC in the white-
matter functional network were also revealed in other diseases,
including epilepsy, attention deficit hyperactivity disorder,
bipolar disorder, schizophrenia, Parkinson’s, and depression
(Jiang et al., 2019a,b; Bu et al., 2020; Fan et al., 2020; Li et al.,
2020; Lu et al., 2021) and even in participants with orthodontic
pain or jet lag (Zhang et al., 2021a,b). Taken together, these
studies provided strong evidence of the existence of functional
brain activity in the white-matter and suggested that the
functional information from white-matter can be detected by
fMRI. We thus can construct white-matter functional networks
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and estimate functional connectivity in white-matter in a
suitable way (Ding et al., 2013, 2016; Ji et al., 2017; Marussich
et al., 2017; Huang et al., 2018; Li et al., 2019a).

As a predominant white-matter disease, only a few studies
suggested that DM1 patients had increased FC in the default
mode network (DMN) and theory-of-mind (ToM) network
related to the higher-level cognitive function (Serra et al., 2014,
2016). The aberrant integration properties of brain functional
networks, primarily focused on the gray-matter, provided
evidence for the complex pathophysiological mechanisms of
DM1 (Serra et al., 2014, 2016). However, they overlooked
the significance of the white-matter functional activity. We
remain unclear about the contribution of white-matter function
in the pathophysiology of DM1. Therefore, we anticipated
that exploring the altered white-matter functional networks in
DM1 patients may contribute to understanding its underlying
pathological mechanisms.

This study aimed to construct white-matter functional
networks by a clustering method and then evaluate FC between
these networks in 16 DM1 patients and 18 HCs. We expected
to reveal the role of white-matter functional networks in DM1
patients by comparing the differences in FC between the two
groups. To our knowledge, this study is a first attempt to
examine the white-matter functional networks abnormalities
in DM1 to better understand the pathological mechanism of
myotonic dystrophy.

Materials and methods

Participants

Diagnosis of DM1 was based on clinical features, together
with electromyographic evidence of myopathy and myotonia.
Eighteen DM1 patients were enrolled and genetically confirmed.
After two patients were excluded for large head motion, two
groups were matched on age, gender, and education. This
study included 16 patients with DM1 (gender: 10 males and 6
females; age: 48.00 ± 14.14 years) and eighteen healthy controls
(gender: 9 males and 9 females; age: 41.50 ± 10.65 years).
The inclusion criteria for patients were as follows: (1) right-
handed according to Edinburgh Handedness Inventory (EHI)
(Oldfield, 1971); (2) age ranging from 20 to 80 years; (3)
Confirmed by genetic testing. Genomic DNA was isolated from
peripheral blood, with consent from each individual, using the
Wizard genomic DNA purification kit (Promega, Madison, WI,
United States). Polymerase chain reaction (PCR) with primers
DM1-F and DM1-R was used to amplify the region of the
DMPK gene, including the CTG repeat. The GeneScan analysis
program on an automated sequencer (ABI Prism 3130 Genetic
Analyzer, Applied Biosystems) was used to estimate the allele
size. Southern blot analysis was performed to detect the larger
allele of the CTG expansion. CTG expansion equal to or larger

than 50 was considered positive. Exclusion criteria included:
(1) history of drug and alcohol abuse; (2) brain damage, such
as head trauma or history of stroke; (3) other diseases that
cause muscle weakness, such as myositis, myasthenia gravis,
peripheral neuropathy, etc.; (4) MRI incompatibility. All the
participants were evaluated by neurologists. Cognition and
depression were assessed by Mini-mental state examination
(MMSE) and Hamilton depression scale-17 (HAMD-17).

All participants were fully informed and signed written
consent forms. This study was approved by the ethics committee
of Ruijin Hospital Affiliated to Shanghai Jiao Tong University
School of Medicine, and registered on the Chinese clinical trial
registry (ChiCTR2000032978).

Image acquisition

All participants were instructed to remain awake, close their
eyes, and think of nothing while underwent Tesla GE Medical
System (GE Healthcare, Little Chalfont, United Kingdom)
scans. High-resolution T1-weighted anatomical images were
acquired by a three-dimensional fast spoiled gradient-echo (T1-
3D FSPGR) sequence. The main scanning parameters include:
repetition time (TR) = 5.5 ms, echo time (TE) = 1.7 ms, flip angle
(FA) = 12◦, matrix size = 256 × 256, and slice thickness = 1 mm.
Resting-state functional images were obtained using an echo-
planar imaging (EPI) sequence. The main scanning parameters
were: TR = 2,000 ms, TE = 30 ms, FA = 90◦, matrix
size = 64 × 64, slice thickness = 4 mm, slice number = 35, and
scanning time = 420 s (210 volumes). We confirmed that all
participants did not fall asleep during the scanning.

Resting-state fMRI data preprocessing

The preprocessing of resting-state data was performed
using the Statistical Parametric Mapping software (SPM12,
www.fil.ion.ucl.ac.uk/spm), Data Processing & Analysis for
Brain Imaging (DPABI_V4.11), and open MATLAB scripts2, and
the data preprocessing steps were similar to prior studies (Peer
et al., 2017; Jiang et al., 2019a). Briefly, the structural image,
which was co-registered to functional images after motion
correction, was segmented into WM, GM, and cerebrospinal
fluid (CSF) using the SPM12’s New Segment algorithm
and then spatially normalized to the Montreal Neurological
Institute standard (MNI) template with the DARTEL algorithm
(Ashburner, 2007).

The functional image preprocessing steps consisted of the
following steps: (1) Removal of the first 10 time points. (2)
Slice-time correction. (3) Realignment. According to previous

1 http://rfmri.org/dpabi

2 http://mind.huji.ac.il/white-matter.aspx
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studies, two participants with maximum head motion > 2 mm
or 2◦ were excluded (Jiang et al., 2019a,b; Zhang et al.,
2021a). (4) Nuisance regression (regressors: linear trends, 24-
parameter motion correction (Friston et al., 1996) and the
mean CSF signals). The WM matter and global brain signals
were not regressed out for avoiding eliminating signals of
interest. (5) Temporal scrubbing was also performed with
motion “spikes” (framewise displacement (FD) > 1) as separate
repressors. (6) Band-pass filtering (0.01–0.15 Hz). (7) Spatial
smoothing (full width at half maximum (FWHM) = 4 mm).
Notably, smoothing was performed separately within white-
matter functional images to avoid mixing signals of white-
matter and gray-matter. Specifically, for each participant, T1
segmentation images were co-registered to the functional space
to identify white-matter or gray-matter masks (To show the
segmentation effects of patients, we provided the segmentation
effect maps of seven DM1 patients in the supplementary
material; see Supplementary Figures S1–S7), and then the
individual functional images were smoothed respectively on the
two masks. In this study, we used only the smoothed data on the
WM mask. (8) Normalization. The images were normalized to a
standard EPI template with a voxel size of 3 × 3 × 3 mm using
the DARTEL algorithm.

Clustering white-matter networks in
the white-matter mask

The construction of WM functional networks was similar
to previous studies (Peer et al., 2017) and briefly described in
the following steps. First, group-level unified white-matter and
gray-matter masks were obtained from the T1 segmentation
images. For each subject, we identified each voxel as WM,
GM, or CSF based on its maximum probability from the
segmentation results, and thus obtained individual white-
matter, gray-matter, and CSF masks. These masks were averaged
across all the participants, and the percentage of each voxel
classified as WM or GM was calculated. Voxels with a
percentage > 60% were then identified as the group-level WM
mask (Peer et al., 2017). Then, the subcortical areas based on the
Harvard-Oxford Atlas (Desikan et al., 2006) were removed from
the WM mask. This mask was co-registered to the functional
space and resampled for the processing of the functional image.

Second, for each subject, the voxel-level correlation matrix
was constructed by calculating Pearson’s correlation coefficients
between voxels restricted in the group-level unified WM mask.
To reduce the computational complexity, we subsampled 12,747
voxels in the white-matter mask to 3,201 nodes with an
interchanging grid strategy (Craddock et al., 2012). In detail,
any second voxels along the rows and columns were taken and
then moved by one between the two slices. Pearson’s correlation
coefficients between each WM voxel and subsampled node were

computed and resulted in a correlation pattern (12,747 × 3,201
matrix) for each subject.

Finally, the clustering approach was used to identify the
white-matter networks. K-means clustering (distance metric-
correlation, 10 replicates) was performed on the averaged
correlation matrices. The correlation matrix was first averaged
across the participants in each group and then averaged again
between the DM1 and HCs groups. To obtain the most stable
number of networks, we measured the stability of the number
of each cluster according to the method previously described
(Buckner et al., 2011). The number of clusters ranges from
2 to 22. We randomly divided the whole connectivity matrix
(12,747 × 3,201) into 4-folds (12,747 × 800). For each number
of clusters, the same clustering computation was performed
on each fold separately. To measure the similarity between the
clustering in 4-folds, an adjacency matrix and averaged Dice?s
coefficient across these folds were calculated for comparison,
and the stability of the number of clusters was assessed. The
steps of the construction of functional white-matter networks
are shown in Figure 1.

Functional connectivity of
white-matter networks

To evaluate the functional connectivity between each
identified WM network, we extracted the average time courses
from each WM network by averaging across all voxels belonging
to one network for each participant. The Pearson’s correlation
was computed for each subject between any two WM networks
and then transformed to the Fisher’s z-score. The two-sample
t-test was performed on the z-score of Pearson’s correlation
coefficient to identify the differences between DM1 and HCs
groups. Age, education, gender and mean FD were regressed
as covariates in the two-sample t-test to avoid their influence.
Notably, the p-value was estimated by adopting a permutation
test with the number set at 1,000. The statistical significance
level was set at p < 0.05, and network-based statistic (NBS)
was adjusted for multiple testing. A previous study showed that
connected subnetworks of edges, showing a particular effect of
a size larger than which would be expected by chance, can be
identified by this NBS statistical method (Zalesky et al., 2010).

Correlations between abnormal
functional connections and clinical
variables

We further investigated the relationships between clinical
variables (disease duration, MMSE, and HAMD-17 scores) and
altered functional connectivity. The partial correlation analyzes
were performed for the DM1 group, controlling for age, gender,
education, and mean FD.
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FIGURE 1

Flow chart of the processing of the resting-state functional magnetic resonance imaging (Rs-Fmri) data and the clustering of white-matter.

Result

Demographic and clinical
characteristics

The demographics and clinical data are shown in Table 1.
There were no significant between-group differences in age
(p = 0.11), sex distribution (p = 0.51), or educational level
(p = 0.12). DM1 patients showed significantly lower scores
in MMSE (p < 0.001) and higher scores in HAMD-17
(p < 0.001) than HCs. We also computed mean the Framewise
Displacement (mean FD) (Power et al., 2012) and the mean
frame-to-frame root mean square (RMS) motion of each subject,
respectively (Van Dijk et al., 2012). The former is calculated
by summing the absolute value of displacement changes in
the x, y, and z directions and rotational changes about those
three axes (Power et al., 2012), the latter calculated by the
mean frame-to-frame root mean square (RMS) motion in x, y,
and z directions (Van Dijk et al., 2012). Although mean FD
was slightly significantly higher in the DM1 group relative to
HCs (Power et al., 2012), there was no RMS relative motion
difference between DM1 and HCs individuals (p = 0.48). We
also accounted for motion by including mean FD as a group-
level covariate.

White-matter functional networks

To evaluate the stability of the number of functional white-
matter networks, we calculated the Dice’s coefficient across

four folds. The result showed that K = 13 is the largest number
with high stability (Dice’s coefficient > 0.85). Therefore, 13
white-matter networks were used in the subsequent analyzes.
The spatial visualization and the detailed information of these
networks are presented in Figure 2 and Table 2 separately.
According to the spatial location, we named them WM1
(superior longitudinal fasciculus network), WM2 (inferior
longitudinal fasciculus network), WM3 (anterior corpus
callosum network), WM4 (corpus callosum network), WM5
(occipital network), WM6 (inferior temporal), WM7 (prefrontal

TABLE 1 Participant demographics.

DM1 (N = 16)
(Mean ± SD)

HCs (N = 18)
(Mean ± SD)

Group
comparison
(P-value)

Age (years) 48 ± 14.14 41 ± 10.65 0.11a

Education (years) 13 ± 3.16 14.55 ± 2.52 0.12a

Gender (male/female) 10/6 9/9 0.51b

Mean FD 0.11 ± 0.04 0.08 ± 0.03 0.03a

Mean relative RMS 0.02 ± 0.01 0.01 ± 0.01 0.43a

Mean RMS 0.21 ± 0.11 0.34 ± 0.24 0.06a

Duration 6.19 ± 4.82 – –

HAMD-17 6.00 ± 4.23 2.06 ± 0.80 <0.001

MMSE 27.06 ± 1.84 29.17 ± 0.92 <0.001

DM1, Myotonic Dystrophy Type 1; HCs, healthy controls; Mean FD, framewise
displacement computed following Power; RMS Mean Displacement, frame-to-frame root
mean square motion in the x, y, and z directions measured following Van Dijk; MMSE,
Mini-Mental State Examination; HAMD-17, Hamilton Depression Scale-17.
aTwo-sample t-test.
bChi-square test.
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network), WM8 (superior corona radiata network), WM9
(post-central network), WM10 (cerebellar network), WM11
(posterior callosum network), WM12 (inferior frontoparietal
network), and WM13 (deep network). The present networks
WM3, WM4, WM5, WM7, WM8, WM9, and WM13 are
similar to the results of the previous researches (Jiang et al.,
2019a; Li et al., 2022), while the other WM networks can also be
obtained in some studies (Peer et al., 2017; Zhang et al., 2021b).
Consistent with previous studies, these WM networks can be
divided into three layers (superficial, middle, and deep) (Jiang
et al., 2019a; Fan et al., 2020) (shown in Figure 3A).

Group differences of functional
connectivity between white-matter
functional networks

To investigate the differences in white-matter networks
between DM1 and HCs, we adopted a two-sample t-test
for the functional connectivity within white-matter functional
networks between the two groups. We identified that the
between-network connectivity of DM1 was significantly higher
than HCs (p < 0.05, NBS corrected; Figure 4). To better
illustrate FC patterns of abnormalities in DM1, we summarize
the increased FC in both intra-layer networks and inter-layer
networks (shown in Figure 3B). The connections of intra-layer
networks are mainly involved in adjacent WMs. They thus were
named as short-range connectivity. Long-range connectivity
comprised connections that linked superficial networks with
middle networks and with deep networks or between the
latter two. Anatomically speaking, the superficial white-matter
networks may interact indirectly through the gray-matter
network, while the middle and deep white-matter networks
communicate more directly through axon-axon interactions.

As for intra-layer networks, within superficial networks,
results showed that DM1 had increased functional connectivity
mainly related to the inferior longitudinal fasciculus network
(WM2) and prefrontal network (WM7). The abnormalities
of paired interactions included WM2–WM1 (superior
longitudinal fasciculus network), WM2–WM9 (post-central
network), W2–WM10 (cerebellar network), and WM2–WM7,
WM7–WM9, and WM7-WM12 (inferior frontoparietal
network). Meanwhile, within middle networks, DM1 also
showed increased FC between the corpus callosum network
(WM4) and WM8 (superior corona radiata network). In
addition, we observed increased FC in inter-layer networks.
Specifically, between superficial and middle networks, we found
increased FC mainly located in the superior corona radiate
network (WM8), which showed abnormal interactions with
the superior longitudinal fasciculus network (WM1), occipital
network (WM5), post-central network (WM9), cerebellar
network (WM10), and inferior frontoparietal network (WM12).
We also demonstrated that DM1 had increased functional

connectivity not only between deep and superficial networks
but also in the middle network, and the former was mainly
located in the prefrontal network (WM7), the latter was mainly
located in the superior corona radiata network (WM8). No
significant decrease in functional connections was observed.
DM1 showed widespread dysfunctions across three layers
within white-matter functional networks (shown in Figure 3B).

Correlations of abnormal functional
connectivity with clinical variables

After false discovery rate (FDR) correction for multiple
comparisons, we failed to find significant correlations
between abnormal functional connectivity and the
MMSE or HAMD scores.

Discussion

In this study, we identified 13 white-matter functional
networks consisting of three layers (superficial, middle, and
deep) by using a clustering method, which is consistent with
previous studies (Peer et al., 2017; Jiang et al., 2019a,b, 2020; Lu
et al., 2021; Li et al., 2022). The interactions between these white-
matter functional networks were estimated by FC. Compared to
HCs, DM1 showed increased FC in both intra-layer and inter-
layer white-matter networks. Specifically, for intra-layer white-
matter networks, DM1 had increased FC within superficial
white-matter networks mainly related to the default mode
network and the perception-motor network. We also found
increased FC in inter-layer white-matter networks (dominated
by middle and deep networks). The widely distributed
abnormalities of white-matter functional networks provide
a new perspective to understand the underlying intricated
pathological mechanism of DM1. This echoed previous evidence
that DM1 patients showed widespread white-matter alterations
(Minnerop et al., 2011; Wozniak et al., 2011; Serra et al., 2015).

The disturbing connection of intra-layer networks was
mainly related to three white-matter networks, namely, the
inferior longitudinal fasciculus network (WM2), prefrontal
network (WM7) related to the default-mode network, and
post-central network (WM9) related to the perception-motor
network. A most significantly increased FC was observed
between the inferior longitudinal fasciculus network (WM2)
and the superior longitudinal fasciculus network (WM1). The
inferior longitudinal fasciculus (ILF) plays an important role in
a wide range of brain functions related to the visual modality,
including object recognition, face recognition, reading, lexical
and semantic processing, emotion processing, and visual
memory (Herbet et al., 2018). The superior longitudinal fascicle
(SLF) is a major intrahemispheric fiber tract that connects
the occipital, parietal, and temporal lobes with the frontal
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FIGURE 2

The optimal K-value and functional white-matter networks. WM1 (superior longitudinal fasciculus network), WM2 (inferior longitudinal
fasciculus network), WM3 (anterior corpus callosum network), WM4 (corpus callosum network), WM5 (occipital network), WM6 (inferior
temporal), WM7 (prefrontal network), WM8 (superior corona radiata network), WM9 (post-central network), WM10 (cerebellar network), WM11
(posterior callosum network), WM12 (inferior frontoparietal network), and WM13 (deep network).

TABLE 2 White-matter functional networks.

Name White-matter network Layer Correlation with gray-matter network (r value)

WM1 Superior longitudinal fasciculus network Superficial Dorsal attention network (0.73)

WM2 Inferior longitudinal fasciculus network Superficial –

WM3 Anterior corpus callosum network Superficial Salience/Ventral attention (0.46)

WM4 Corpus callosum network Middle Salience/Ventral attention (0.77)

WM5 Occipital network Superficial Visual network (0.87)

WM6 Inferior temporal network Superficial Sensor-motor network (0.73)

WM7 Prefrontal network Superficial Default-mode network (0.78)

WM8 Superior corona radiate network Middle –

WM9 Post-central network Superficial Sensor-motor network (0.87)

WM10 Cerebellar network Superficial –

WM11 Posterior callosum network Middle Default-mode network (0.78)

WM12 Inferior frontoparietal network Superficial Control network (0.91)

WM13 Deep network Deep –

‘–’ implies that the value of functional connectivity below 0.4 (r < 0.4).

cortex (Schmahmann et al., 2008; Kamali et al., 2014; Ramos-
Fresnedo et al., 2019). It is a multi-functional white-matter
pathway mainly involved in the function of language, attention,
memory, and emotions (Kamali et al., 2014). The present finding
that increased FC between WM1 and WM2 might suggest the
corresponding cognitive function of DM1 patients is impaired.
Previous DTI studies have also reported the reduced fractional
anisotropy (FA) of the inferior and superior longitudinal fascicle

in DM1 patients, and the alterations of FA were correlated with
genetic, clinical disability, and global cognitive performance
(Serra et al., 2015; Okkersen et al., 2017). The prefrontal cortex
is strongly implicated in higher-level cognitive and behavior
functions (Ruby and Decety, 2003; Ranganath and Jacob, 2016).
DM1 patients showed more connections between prefrontal and
cerebellar regions that were also highlighted by one study before,
which identified the relationship between these regions and the
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FIGURE 3

Three layers of functional white-matter networks. (A) Three layers were defined based on the spatial distance to the gray-matter (superficial,
middle, and deep). (B) The increased intra-layer and inter-layer connections of functional white-matter networks showed in myotonic
dystrophy type 1 (DM1). The blue dashed boxes represent increased FC between functional white-matter networks in the intra-layer, while the
orange dashed boxes represent increased FC between functional white-matter networks in the inter-layer.

FIGURE 4

Differences in functional connectivity between myotonic dystrophy type 1 (DM1) and healthy controls (HCs). (A,B) The color bar showed the
P-value and the T-value separately [two-sample t-tests with 1000 permutations, p < 0.05, network-based statistic (NBS) corrected]. *represents
significant differences after NBS corrected.

severity of patients’ deficits in cognitive function (i.e., Theory
of Mind) (Serra et al., 2016). Similarly, in DM1, increased FC
was also found in critical areas of the default mode network
correlated with the presence of atypical personality traits that
may account for overall cognitive dysfunction (Serra et al.,
2014). During motor task-evoked fMRI studies, DM1 patients
also showed greater activation in sensorimotor areas (Caramia
et al., 2010; Toth et al., 2015). Moreover, the increased FC of
superficial perception-motor networks has been found in other
brain disorders, especially schizophrenia (Jiang et al., 2019a). In

addition, increased FC also occurred in middle layer networks
between the corpus callosum network (WM4) and superior
corona radiata network (WM8). DTI studies confirmed reduced
volume of the corpus callosum in myotonic dystrophy patients
(Ota et al., 2006; Cabada et al., 2017). One study reported that
corona radiate might be associated with executive function,
attention, and processing of emotions (Yin et al., 2013). Zanigni
et al. (2016) also found correlations between alterations of the
posterior part of the corpus callosum and posterior corona
radiate and the global motor and cognitive function (measured
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by MMSE score) in DM1. Therefore, we speculated that the
enhanced FC within intra-layer networks might be associated
with primary motor impairment and the higher-level cognitive
dysfunction in DM1, and further study is needed to explore
the relationship.

Besides, increased connections of DM1 patients also
occurred within inter-layer WM networks, for instance,
increased FC between deep and superficial networks (the
prefrontal network, WM7) and middle networks (superior
corona radiata network, WM8). Notably, all increased FC
between middle and superficial networks were associated
with a superior corona radiata network. Combined with the
changes of FC within the inter-layer networks, it further
authenticates the importance of the prefrontal network and
the corona radiata network in DM1. In the DM1 animal
model, the prefrontal cortex was mainly observed for the
anatomical distribution of dopaminergic dysfunction (Ramon-
Duaso et al., 2019). Other studies demonstrated that the
prefrontal cortex might be related to maintaining and
manipulating cognitive information (Quinette et al., 2006;
Marchetti, 2014). The alterations across inter-layer suggested
dysfunctional interactions between white-matter functional
networks in DM1. The enhanced functional connectivity might
suggest an insufficient or ineffective informational integration
across white-matter functional networks. Meanwhile, these data
support a possible fundamental mechanism that the increased
brain connectivity might explain the high-level cognitive
manifestations observed in DM1 patients.

A previous study revealed a less distinct WM/GM boundary
in patients with autism, and it would bring the confusion of
WM and GM cells in the boundary (Andrews et al., 2017).
It also proposed that the fMRI signals of adjacent white-
matter/gray-matter voxels could be confused, and the functional
covariance between white-matter and gray-matter regions near
the boundary (Chen et al., 2021). In the present study, in
addition to the identified alterations of white-matter functional
connectivity in DM1 patients, we also examined the interactions
between white-matter and gray-matter networks. Similar to
previous results, the correlation between deep white-matter
network and gray-matter were weaker than the superficial
white-matter networks (Peer et al., 2017; Jiang et al., 2019a).
A study that measured the hemodynamic response function
(HRF) of white-matter also found that in superficial white-
matter voxels, the HRF showed a shape more similar to that of
gray-matter (Li et al., 2019b). The explanation of the phenomena
might be that superficial white-matter tracts connect distant
cortical neuron cell bodies engaged in different functions,
whereas deep white-matter tracts are less surrounded by gray-
matter (Peer et al., 2017; Ding et al., 2018; Fan et al., 2020).

To validate and extend our findings on the functional
connectivity of white-matter networks in DM1 patients, we
also performed a voxel-based morphological (VBM) analysis to
evaluate the alteration of white-matter in structure. The results

of these voxel-based analyzes are provided in Supplementary
material. Our results were in line with previous reports showing
that white-matter atrophy was observed in DM1 patients in the
splenium of the corpus callosum and middle cerebellar peduncle
(Minnerop et al., 2011; Meola and Cardani, 2015; Schneider-
Gold et al., 2015). Moreover, one DTI study found a significant
correlation between visuo-spatial deficit and posterior corpus
callosum (Cabada et al., 2017), and another DTI study found
that the cognitive performance in visuomotor coordination
and working memory tasks was associated with microstructural
damage of corpus callosum (Baldanzi et al., 2016). Together,
these studies demonstrate that corpus callosum atrophy might
be associated with worse cognitive function in DM1 patients.
Besides, we also found that compared to HCs, the volume of
the posterior limb of the internal capsule increased in DM1
patients. A study focused on assessing alteration in spontaneous
neural activity of the sensorimotor network in patients with
DM1 found that patients with DM1 had increased power
spectral density (PSD) in the anterior and posterior limbs
of the internal capsule, which is associated with the motor
function (Park et al., 2018). Anatomically, the anterior half of the
posterior limb of the internal capsule contains the corticospinal
tract, corticorubral tract, and corticopontine tract (Emos and
Agarwal, 2021). And these fibers play a major role in the
coordination of voluntary motor functions (Tredici et al., 1990).
Therefore, the abnormality of the posterior limb of the internal
capsule in DM1 patients might be related to the impaired motor
performance of DM1 patients.

The present study utilized the k-means clustering method,
which has been widely used in the fMRI data. However,
considering the high dimension of the fMRI data, studies have
proposed advanced methods, such as the regression mixture
modeling approach to cluster fMRI time series (Oikonomou
and Blekas, 2013; Oikonomou et al., 2020). The new method
achieved very promising results in both simulated and real fMRI
data. And the excellent performance in resting-state networks
(RSNs) reminds us that it could be a useful tool to reveal the
mechanism of DM1 I in future studies.

Although we did not find abnormal network connections
associated with clinical variables after correction, our
studies showed extensively increased FC across intra-layer
and inter-layer white-matter functional networks. One
possible explanation is that the cognitive and behavioral
manifestations of the DM1 are the result of multiple white-
matter network layer-integration changes rather than attributed
to abnormalities of the interactions between any two white-
matter networks alone. The MMSE and HAMD-17 scores focus
on broader cognitive and emotional domains. Future studies
should target more specific cognitive processes.

Overall, the current findings further demonstrated
the relevance between superficial white-matter networks
and gray-matter networks and provided evidence for the
dysfunctional connectivity of Myotonic Dystrophy Type 1 in
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the white-matter function network perspective. Moreover, these
findings may contribute to understand the pathophysiology of
DM1 and may guide the therapeutics development in the future.

Limitations

Our study had several limitations. First, we obtained a
relatively small sample size due to the relative scarcity of the
disease, which may also explain our failure to find abnormal
functional connectivity correlations with clinical variables in
our study. Future investigators must utilize a larger sample to
verify the stability and reproducibility of the results. Second,
our results were limited to cross-sectional comparisons, and the
participants were adults. Considering the finding showed that
DM1 may be a neurodegenerative disease, future researchers
could pay more attention to the variation of abnormalities in
the white-matter functional network in participants with DM1
at different ages. Third, a lesion mask would be applied in
the preprocessing to avoid bias in the tissue segmentation in
the future study.

Conclusion

In the current study, we investigated interactions between
white-matter functional networks in DM1. The current
findings uncovered increased inter-layer and intra-layer
interactions across superficial, middle, and deep white-matter
networks, tentatively providing additional information that
the pathophysiology of DM1 may be related to white-matter
functional networks engaged in sensory-motor perception and
cognitive functions. To some extent, the widespread disrupted
white-matter networks can underlie cognitive-behavioral
dysfunctions in DM1. In general, widespread dysfunction of
white-matter in DM1 may be accountable for its pathological
mechanism. Our findings supported and extended impairments
of white-matter dysfunction in DM1.
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