Deconjugative α-Alkylation of Cyclohexenecarboxaldehydes: An Access to Diverse Terpenoids

Rachid Chahboun,* José Manuel Botubol-Ares, María Jesús Durán-Peña, Fermín Jiménez, Ramón Alvarez-Manzaneda, and Enrique Alvarez-Manzaneda

Cite This: J. Org. Chem. 2021, 86, 8742-8754

Read Online

Abstract

A general and efficient method for the deconjugative α-alkylation of α, β-unsaturated aldehydes promoted by a synergistic effect between ${ }^{\dagger} \mathrm{BuOK}$ and NaH , which considerably increases the reaction rate under mild conditions, is reported. The β, γ-unsaturated aldehyde, resulting from the α-alkylation, is transformed in high yield into the corresponding allyl acetate via a lead(IV) acetate-mediated oxidative fragmentation. This strategy could be used for the construction of the carbon skeleton of a wide variety of alkyl or arylterpenoids.

therefore of interest to investigate new approaches to avoid this inconvenience.
The construction of the carbon skeleton of compounds such as $3-5$ and 7-9 could be achieved in an alternative way by performing the α-alkylation of the α, β-unsaturated terpenic aldehyde 1 with a suitable benzyl halide to afford the corresponding arylterpenylaldehydes, followed by cyclization. Despite its synthetic potential, the deconjugative α-alkylation of aldehydes has been studied very little (Scheme 2). In a pioneer work, De Graaf et al. described the direct alkylation of 1-cyclohexene-1-carbaldehyde with different agents in liquid ammonia at $-60{ }^{\circ} \mathrm{C}$ in the presence of potassium amide, affording a mixture of products. ${ }^{9}$ After that, a procedure to achieve the direct α-alkylation of acyclic aldehydes utilizing NaOH and a phase-transfer agent in an inert solvent has been patented. ${ }^{10}$ Additionally, the palladium- and nickel-catalyzed deconjugative α-allylation with allyl alcohols of aldehydes, including a few α, β-unsaturated aldehydes, has also been described (Scheme 2). ${ }^{11}$ Other indirect methods, such as the alkylation of the corresponding dimethylhydrazones, in the presence of lead lithium diisopropylamide (LDA), have been described. ${ }^{12}$ Recently, the copper-catalyzed deconjugative α alkylation of cyclic α, β-unsaturated nitriles has been reported. ${ }^{13}$

In this paper, we describe the deconjugative α-alkylation of cyclohexene-1-carboxaldehydes and its synthetic application as

[^0]

Scheme 1. Synthesis of Terpenoids from β-Cyclocitral (1) and Aryllithium Derivatives

Scheme 2. Previous Direct α-Alkylation of α, β-Unsaturated Aldehydes

a platform to access challenging terpene frameworks. In comparison to other existing direct α-alkylation of α, β unsaturated aldehydes (Scheme 2), this methodology occurs under milder metal-free reaction conditions with a wider scope and compatible with electrophilic groups (Scheme 3).

RESULTS AND DISCUSSION

Considering our working hypothesis, we initiated the study of the α-alkylation of β-cyclocitral (1) using allyl bromide (10a) as the electrophile. The reaction was performed in different solvents such as tetrahydrofuran (THF), acetonitrile, and toluene in the presence of ${ }^{\mathrm{t}} \mathrm{BuOK}$ as a base, and the desired α alkylated product (\pm)-11a, formed selectively from a trisubstituted dienolate, was obtained in poor to moderate yields (Table 1, entries $1-3$). A higher amount of ${ }^{t} \mathrm{BuOK}$ did not improve the yield either (Table 1, entry 4). The addition of 18 -crown- 6 -ether led to a mixture of (\pm)-11a and the corresponding O -alkylated derivative 12a in THF, acetonitrile, and toluene (Table 1, entries 5-7). Then, the effect of other bases was also considered in the model reaction. LiHMDS increased the C-/O-alkylation ratio [(\pm)-11a/12a ratio] up to 5:1 (Table 1 , entry 8). On the contrary, the deconjugative α alkylation of 1 with LDA did not work (Table 1, entry 9). In a similar fashion, NaH led to unreacted starting material in toluene, whereas a 1:1 mixture of (\pm)-11a/12a was obtained in THF at $60^{\circ} \mathrm{C}$ (Table 1, entries $10-11$). Gratifyingly, C-

Scheme 3. Synthetic Approaches to Terpenoids; (a) Conventional Methods for the Synthesis of Terpenoids from β-Cyclocitral (1) as an Electrophile; (b) Deconjugative α-Alkylation of Cyclohexene-1-carboxaldehydes for the Synthesis of Terpenoids
a)

Our previous work

b)

This work

nucleophile Key features:

- Compatible with electrophilic groups
- Mild conditions
- Free metals
- Wide scope

Table 1. Optimization of Deconjugative $\boldsymbol{\alpha}$-Alkylation of 1 with Allyl Bromide (10a) ${ }^{a}$

 1	1) base, s 2) Allyl brom (10a),		HO 11a	$+$	
entry	base	solvent	time (h)	yield 11a $(\%)^{b}$	yield 12a (\%) ${ }^{b}$
1	${ }^{t} \mathrm{BuOK}$	THF	16	8	0
2	${ }^{t} \mathrm{BuOK}$	$\mathrm{CH}_{3} \mathrm{CN}$	16	33	0
3	${ }^{t} \mathrm{BuOK}$	toluene	16	43	0
4^{c}	${ }^{t} \mathrm{BuOK}$	toluene	16	48	0
5^{d}	${ }^{t} \mathrm{BuOK}$	THF	6	20	56
6^{d}	${ }^{t} \mathrm{BuOK}$	$\mathrm{CH}_{3} \mathrm{CN}$	6	30	58
7^{d}	${ }^{t} \mathrm{BuOK}$	toluene	6	69	26
8	LiHMDS	THF	4	75	15
9^{e}	LDA	THF	4	0	0
10^{f}	NaH	toluene	16	0	0
$11^{f, g}$	NaH	THF	6	25	25
12^{f}	$\mathrm{NaH}-{ }^{\text {t }} \mathrm{BuOK}$	toluene	1	83	0
13	${ }^{t} \mathrm{BuONa}$	toluene	15	10	0
14^{h}	$\mathrm{NaH}-{ }^{\text {t }} \mathrm{BuONa}$	toluene	2	80	0
15^{i}	$\mathrm{KH}-{ }^{\text {b }} \mathrm{BuONa}$	toluene	3	73	0
$16^{f, j}$	$\mathrm{NaH}-{ }^{\text {b }} \mathrm{BuOK}$	toluene	13	30	0
$17^{f, j, k}$	$\mathrm{NaH}-{ }^{\text {b }} \mathrm{BuOK}$	toluene	5	78	0

${ }^{a}$ The reaction was carried out with $\mathbf{1}(1.0 \mathrm{mmol})$, the base (1.1 $\mathrm{mmol})$, and the solvent $(20 \mathrm{~mL})$. After 45 min , allyl bromide (1.5 mmol) was added. ${ }^{b}$ Isolated yields. ${ }^{c} 3$ equiv of ${ }^{t} \mathrm{BuOK}$ was used. ${ }^{d} 1$ equiv of 18 -crown-6-ether was used. ${ }^{e}$ The reaction was carried out at $-78{ }^{\circ} \mathrm{C}$ and allowed to warm to room temperature. f_{2} equiv of NaH 60% in the oil mineral was used. ${ }^{g}$ The reaction was carried out at 60 ${ }^{\circ} \mathrm{C}$. ${ }^{h}$ Isolated yield after addition of 2 equiv of $\mathrm{NaH} 60 \%$ in the oil mineral. ${ }^{i} 2$ equiv of $\mathrm{KH} 30 \%$ in the oil mineral was used. ${ }^{j} 0.5$ equiv of ${ }^{t} \mathrm{BuOK}$ was used. ${ }^{\mathrm{k}}$ Isolated yield after heating at $60{ }^{\circ} \mathrm{C}$.
alkylation was selective over O-alkylation by using NaH and ${ }^{t} \mathrm{BuOK}$ in toluene, affording (\pm)-11a in 83% yield (Table 1, entry 12). This result pointed out that NaH could facilitate a fast deprotonation of ${ }^{t} \mathrm{BuOH}$ formed from the enolization and shift the equilibrium toward its conjugate base. In order to rule out that the possible formation in situ of ${ }^{t} \mathrm{BuONa}$ in the reaction mixture from ${ }^{t} \mathrm{BuOK}$ and NaH could be responsible for the improvement of the reaction yield, a control experiment was carried out with just ${ }^{t} \mathrm{BuONa}$. A low conversion was observed for the reaction, which was increased after addition of NaH (Table 1, entries 13-14). The use of ${ }^{\mathrm{t}} \mathrm{BuONa} / \mathrm{KH}$ gave rise to a similar yield for (\pm)-11a to that observed with the pair ${ }^{t} \mathrm{BuOK} / \mathrm{NaH}$ (Table 1, entry 15). These results support that ${ }^{t} \mathrm{BuOH}$ generated in the reaction is quenched by a metal hydride. Finally, we also tested a decrease of the amount of ${ }^{t} \mathrm{BuOK}$ to 0.5 equiv, giving rise to the lowering of the reaction conversion in comparison with using a stoichiometric amount of the base. However, a similar yield was obtained after heating at $60^{\circ} \mathrm{C}$ for 1 h (Table 1 , entries $16-17$ vs entry 12).

The experiments shown in Table 1 confirm that the synergistic effect between ${ }^{t} \mathrm{BuOK} /{ }^{t} \mathrm{BuONa}$ and metal hydrides plays a crucial role in the conversion and selectivity of the deconjugative α-alkylation, influencing the kinetic and increasing the reaction rate. A cooperative interaction between ${ }^{t} \mathrm{BuOK}$ and strong bases has been previously reported for the synthesis of 1-indanones from β-alkynyl ketones. ${ }^{14}$

With the optimized reaction conditions in hand, the scope and limitations of the deconjugative α-alkylation of β cyclocitral (1) were evaluated with a series of activated alkyl and benzyl halides. In most cases, it undergoes α-alkylation in high to moderate yields under smooth conditions and short reaction times (Table 2). Methyl iodide (10b) and benzyl bromide (10e) promoted the deconjugative α-alkylation reaction in higher reaction yields (Table 2, entries 1 and 4) in comparison to the yields obtained when allylic or propargylic halides $\mathbf{1 0} \mathbf{c}-\mathbf{d}$ were used (Table 2, entries 2-3). However, the effect of the electron-withdrawing or electronreleasing character of the benzyl group as well as the position of the substituents in the aromatic ring appears to affect the reaction course significantly. Strongly electron-releasing methoxy groups at meta- or para-positions on the aromatic ring and 1,3-benzodioxole groups afforded the corresponding deconjugated aldehydes (\pm)-11f and (\pm)-11h-i in moderate to good yields (Table 2, entries 5-8), whereas ortho-methoxy groups furnished the corresponding products (\pm) $\mathbf{- 1 1 j} \mathbf{j} \mathbf{1}$ in moderate yields (Table 2, entries 9-11). Furthermore, the use of benzyl bromides $\mathbf{1 0 g}$ and 10 k gave slightly higher reaction yields than the corresponding benzyl chlorides $\mathbf{1 0 f}$ and $\mathbf{1 0} \mathbf{j}$ (Table 2, entry 5 vs entry 6 and entry 9 vs entry 10). Benzyl bromides bearing a bromo substituent at the ortho-position of the aromatic ring afforded the desired deconjugated aldehydes $(\pm) \mathbf{- 1 1 m}-\mathbf{n}$ in good yields (Table 2, entries 12-13). Finally, the reaction was also compatible with other electrophilic groups, such as NO_{2} or CN , on the aromatic ring. Thus, compounds ($\mathbf{\pm}$)-110-p were obtained in the range of 77$80 \%$ yields (Table 2, entries 14-15).

In order to demonstrate the general applicability of the deconjugative α-alkylation and to explore the further use of this reaction for getting access to other types of terpenoids, the alkylation of other α, β-unsaturated aldehydes with benzyl bromides has also been investigated (Table 3).

Cyclohex-1-ene-1-carboxaldehydes 13a and 13b, which lack substituents on carbon β, underwent benzylation in high yield in a short reaction time (Table 3, entries 1 and 2). The bicyclic sesquiterpene aldehydes 13c and 13d, whose absolute configuration is well known, also underwent this reaction in high yield, affording benzyl derivatives 14 c and 14 d , with complete diastereoselectivity (Table 3, entries 3 and 4). The disposition of the aldehyde group in both products has been confirmed by NOE experiments. The behavior of Δ^{8}-drimenals 13c and 13d indicates the possibility of using this type of sesquiterpene α, β-unsaturated aldehydes to synthesize a large group of terpenoids such as benzofluorene derivatives by reaction with the appropriate benzyl halide. ${ }^{21}$ Finally, the $\alpha, \beta, \gamma, \delta$-unsaturated aldehyde safranal (13e) gave the corresponding α-benzylated $\beta, \gamma, \delta, \varepsilon$-unsaturated aldehyde 14 e in moderate yield (Table 3 , entry 5).

The presence of the aldehyde group in these intermediates notably increases the synthetic potential of this new strategy. The formyl group can be removed and allow to introduce functionality in the final compounds. An interesting example of the latter would be the direct transformation of the β, γ unsaturated aldehyde type 11 into the allyl acetates 15 via a lead(IV) acetate-mediated oxidative fragmentation. LTA has been previously used for the oxidative transformation of homoallyl alcohols to afford allyl acetate derivatives. The reaction proceeded with complete stereoselectivity; the acetyloxy group of the rearranged product and the hydrox-

Table 2. Reaction of β-Cyclocitral (1) with Activated Alkyl and Benzyl Halides ${ }^{a}$

Table 2. continued
${ }^{a}$ Unless specified, the reaction was carried out with $\mathbf{1}(1.0 \mathrm{mmol})$, ${ }^{\text {t }} \mathrm{BuOK}(1.1 \mathrm{mmol}), \mathrm{NaH}(2 \mathrm{mmol})$, and toluene (20 mL). After 45 min, alkyl halide (1.5 mmol) was added. ${ }^{b}$ Isolated yields. ${ }^{c}$ Similar yields were obtained using 1 equiv of 18 -crown- 6 in the absence of NaH .
ymethyl group in the starting material are located at the same face of the molecule. ${ }^{22}$

To expand the scope of Preite's reaction and illustrate the usefulness of this transformation, some of the synthesized $\beta, \gamma-$ unsaturated aldehydes 11 were tested, and the results are shown in Table 4. The treatment of β, γ-unsaturated aldehydes $(\pm)-11 \mathrm{a},(\pm)-11 \mathrm{e},(\pm)-11 \mathrm{i},(\pm)-11 \mathrm{~m}$, and $(\pm)-11 \mathrm{o}$ with $\mathrm{Pb}(\mathrm{OAc})_{4}$ in refluxing benzene afforded the corresponding allyl acetates $(\pm)-15 \mathrm{a},(\pm)-15 \mathrm{e},(\pm)-15 \mathrm{i},(\pm)-15 \mathrm{~m}$, and $(\pm)-\mathbf{1 5 o}$, respectively, in high yields and short reaction times (Table 4). With the aim of confirming the stereoselectivity previously described for the similar oxidative cleavage of homoallyl alcohols, we carried out the reaction with compound 14c. Unfortunately, it failed and produced a complex mixture. However, our results are in agreement with the concerted mechanistic pathway proposed by Preite et al. where a syn stereoselectivity was observed, with the hydroxymethyl group of the starting material and the acetyloxy group of rearranged compounds located at the same side of the molecule. ${ }^{22}$

Based on our experimental results and the literature precsedents, ${ }^{22,23}$ Scheme 4 shows two tentative mechanistic pathways for the direct oxidative fragmentation of $\beta, \gamma-$ unsaturated aldehydes. In a first step, one of the acetate groups of $\mathrm{Pb}(\mathrm{OAc})_{4}$ would be exchanged by the oxygen atom of the β, γ-unsaturated aldehyde to give intermediate \mathbf{I}. Then, the released acetate ion could attack again the more accessible Pb (IV), with the simultaneous intramolecular nucleophilic addition of another $\mathrm{Pb}(\mathrm{IV})$ acetate group to the complexed aldehyde to afford intermediate II. The attack of one of the acetate groups to the olefin through a nine-membered cyclic transition state would generate the allyl acetate with the simultaneous removal of $\mathrm{Pb}(\mathrm{OAc})_{2}$ and mixed anhydride (pathway 1). However, a seven-membered cyclic transition state cannot be ruled out to give rise to intermediate III, which would be hydrolyzed to generate the allyl acetate (pathway 2).

CONCLUSIONS

In summary, a new alternative strategy for synthesizing a wide variety of terpenoid precursors is reported. This approach is based on the reaction of an electrophilic activated alkyl or benzyl halide with a nucleophilic terpenic α, β-unsaturated aldehyde. ${ }^{t} \mathrm{BuOK}$ and NaH interact synergistically, enhancing notably the kinetics and the selectivity for the C-alkylated derivatives. The β, γ-unsaturated aldehydes resulting from this alkylation undergo a lead(IV) acetate-mediated oxidative fragmentation, affording in high yield the corresponding allyl acetates. The deconjugative α-alkylation of α, β-unsaturated aldehydes and deformylation reaction described in this paper could serve as a platform to access in an efficient and simple manner to a wide variety of terpenoid skeletons.

EXPERIMENTAL SECTION

General Procedures. Aldehydes 1, 13a, 13b, and 13e were obtained from commercial suppliers and used without further purification. Unless stated otherwise, reactions were performed in

Table 3. Reaction of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Aldehydes with Benzyl Bromides ${ }^{a}$

entry
${ }^{a}$ Unless specified, the reaction was carried out with 1.0 mmol of aldehyde, ${ }^{t} \mathrm{BuOK}(1.1 \mathrm{mmol}), \mathrm{NaH}(2 \mathrm{mmol})$, and toluene (20 mL). After 45 min , alkyl halide (1.5 mmol) was added. ${ }^{b}$ Isolated yields. ${ }^{c}$ Similar yields were obtained using 1 equiv of 18 -crown- 6 in the absence of NaH. ${ }^{d} \mathrm{An}$ approximate $1: 1$ epimeric mixture of $\mathbf{1 4 b}$ was deduced from the ${ }^{13} \mathrm{C}$ NMR spectrum.
oven-dried glassware under an argon atmosphere using dry solvents. Solvents were dried as follows: THF, diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$), and toluene over Na -benzophenone; dichloromethane (DCM) over CaH_{2}; and acetonitrile over molecular sieves $4 \AA$. An oil bath was used as the heating source for the reactions that require heating. Thinlayer chromatography (TLC) was performed using F254 precoated plates (0.25 mm) and visualized by UV fluorescence quenching and phosphomolybdic acid solution in ethanol staining. Flash chromatography was performed on silica gel (230-400 mesh). Chromatography separations were carried out using a conventional column on silica gel 60 (230-400 mesh) using hexanes-AcOEt (AcOEt-hexane) or diethyl ether-hexane (ether-hexane) mixtures of increasing polarity. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at 600,500 , and 400 MHz and at 150,125 , and 100 MHz , respectively. CDCl_{3} was treated with $\mathrm{K}_{2} \mathrm{CO}_{3}$. Chemical shifts $(\delta \mathrm{H})$ are quoted in parts per million (ppm) referenced to the appropriate residual solvent peak and tetramethylsilane. Data for ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift ($\delta \mathrm{ppm}$) [multiplicity, coupling constant (Hz), and integration], with the abbreviations s , $\mathrm{br} \mathrm{s}, \mathrm{d}, \mathrm{br} \mathrm{d}, \mathrm{t}, \mathrm{dt}, \mathrm{dq}$, sept, and m denoting the singlet, broad singlet, doublet, broad doublet, triplet, doublet triplet, doublet quartet, septet, and multiplet, respectively. $J=$ coupling constant in hertz (Hz). Data for ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra are reported in terms of chemical shift relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$, and the signals were assigned utilizing DEPT experiments and on the basis of heteronuclear correlations. Infrared (IR) spectra were recorded as thin films or as solids on an FTIR spectrophotometer with samples between sodium chloride plates or as potassium bromide pellets and are reported in frequency of absorption $\left(\mathrm{cm}^{-1}\right)$. Only selected absorbances $\left(\nu_{\max }\right)$ are reported. $\left([\alpha]_{\mathrm{D}}\right)$ measurements were carried out in a polarimeter utilizing a 1 dm length cell and CHCl_{3} as a solvent. Concentration is expressed in $\mathrm{mg} / \mathrm{mL}$. High-resolution mass
spectra were recorded on a spectrometer utilizing a Q-TOF analyzer and ESI^{+}ionization.

General Procedure for the Preparation of Alkyl Bromides $10 \mathrm{~g}-\mathrm{i}, 10 \mathrm{n}$, and 10 p . To a solution of the corresponding commercially available alcohol (1 mmol) in diethyl ether (10 mL) was added $\mathrm{PBr}_{3}(1 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at this temperature, being monitorized by TLC. Then, it was quenched with water $(3 \mathrm{~mL})$ and diluted with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The organic layer was washed with water ($3 \times 10 \mathrm{~mL}$), dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was evaporated under reduced pressure to give the corresponding alkyl bromides $\mathbf{1 0 g}-\mathbf{i}, \mathbf{1 0 n}$, and $\mathbf{1 0 p}$.

1-(Bromomethyl)-4-methoxybenzene (10g). Yellow oil [yield 537 $\mathrm{mg}(89 \%)$ from $414.6 \mathrm{mg}(3 \mathrm{mmol})$ of (4-methoxyphenyl)methanol]. The spectroscopic data were in agreement with those described in the literature. ${ }^{15}$

1-Bromo-5-(bromomethyl)-2,3-dimethoxybenzene (10h). White solid [yield $790 \mathrm{mg}(85 \%)$ from $740.8 \mathrm{mg}(3 \mathrm{mmol})$ of (3-bromo-4,5dimethoxyphenyl)methanol]. The spectroscopic data were in agreement with those described in the literature. ${ }^{16}$
5-(Bromomethyl)benzo[d][1,3]dioxole (10i). White solid [yield $619 \mathrm{mg}(96 \%)$ from $456.2 \mathrm{mg}(3 \mathrm{mmol})$ of benzo[d][1,3]dioxol-5ylmethanol]. The spectroscopic data were in agreement with those described in the literature. ${ }^{17}$

5-Bromo-6-(bromomethyl)benzo[d][1,3]dioxole (10n). White solid [yield $776 \mathrm{mg}(88 \%)$ from $693.1 \mathrm{mg}(3 \mathrm{mmol})$ of (6-bromobenzo[d][1,3]dioxol-5-yl)methanol]. The spectroscopic data were in agreement with those described in the literature. ${ }^{18}$

4-(Bromomethyl)benzonitrile (10p). White solid [yield 531 mg (82%) from $439.8 \mathrm{mg}(3 \mathrm{mmol})$ of 4-(hydroxymethyl)benzonitrile]. The spectroscopic data were in agreement with those described in the literature. ${ }^{19}$

Table 4. Transformation of β, γ-Unsaturated Aldehydes 11 into Allyl Acetates $\mathbf{1 5}^{a}$
entry
${ }^{a}$ Unless specified, the reaction was carried out with β, γ-unsaturated aldehyde $(1 \mathrm{mmol}), \mathrm{Pb}(\mathrm{OAc}){ }_{4}(1.1 \mathrm{mmol})$, and benzene $(7 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$.
${ }^{b}$ Isolated yields.

Scheme 4. Tentative Mechanisms for the LTA-Mediated Transformation of β, γ-Unsaturated Aldehyde into Allyl Acetates

pathway 2

Preparation of 1-(Chloromethyl)-3-isopropyl-2-methoxybenzene (10 j). A round-bottom flask charged with 2 -isopropylphenol ($10 \mathrm{~g}, 73 \mathrm{mmol}$) and p-formaldehyde $(4.4 \mathrm{~g}, 88.8 \mathrm{mmol})$ in dry DCM $(150 \mathrm{~mL})$ under an argon atmosphere was cooled at $-30^{\circ} \mathrm{C}$. Then, $\mathrm{Et}_{2} \mathrm{AlCl}(25 \%$ wt solution in toluene, $47.6 \mathrm{~mL}, 87.6 \mathrm{mmol})$ was added dropwise, and the reaction mixture was allowed to warm to room temperature. The reaction mixture was stirred for 3 h and was quenched with water $(50 \mathrm{~mL})$. DCM was evaporated under reduced
pressure, and the aqueous layer was extracted with ethyl acetate ($3 \times$ 100 mL). The combined organic solution was dried over anhydrous sodium sulfate and filtered. The solvent was evaporated under reduced pressure to give a crude product which was purified by silica gel column chromatography ($20 \% \mathrm{AcOEt} /$ hexane), affording 2-(hydroxymethyl)-6-isopropylphenol. Colorless oil (10.97 g, 90\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 8.46(\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.14$ (dd, $J=7.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{br} \mathrm{s}, \mathrm{OH})$,
$4.87(\mathrm{~s}, 2 \mathrm{H}), 3.40($ sept $, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 154.5$ (C), 135.9 (C), $125.9(\mathrm{CH}), 125.8(\mathrm{C}), 125.5(\mathrm{CH}), 120.0(\mathrm{CH}), 64.4\left(\mathrm{CH}_{2}\right), 27.1$ $(\mathrm{CH}), 22.9\left(\mathrm{CH}_{3}\right)$. IR (film): 3053, 2965, 1456, 1421, 1264, 733, 704 cm^{-1}. HRMS (ESI/TOF) $\mathrm{m} / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$, 189.0891 ; found, 189.0887.
$\mathrm{K}_{2} \mathrm{CO}_{3}(13.65 \mathrm{~g}, 99 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of 2-(hydroxymethyl)-6-isopropylphenol ($10.97 \mathrm{~g}, 66 \mathrm{mmol}$) in acetone $(120 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{Me}_{2} \mathrm{SO}_{4}(6.3 \mathrm{~mL}, 66 \mathrm{mmol})$ was added and refluxed overnight. Then, water was added (50 mL) and the solvent was evaporated under reduced pressure. The aqueous layer was extracted with two portions of diethyl ether $(2 \times 80 \mathrm{~mL})$, dried over anhydrous sodium sulfate, and filtered. The solvent was evaporated under reduced pressure to give a crude product which was purified by silica gel column chromatography ($40 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane), affording (3-isopropyl-2-methoxyphenyl)methanol. Colorless oil ($8.18 \mathrm{~g}, 68.9 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.32$ (m, $1 \mathrm{H}), 7.22(\mathrm{dd}, J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J$ $=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{t}, J=5.7 \mathrm{~Hz}, \mathrm{OH}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{sept}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}(125 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 155.7$ (C), 142.0 (C), 135.9 (C), 126.9 (CH), 126.1 $(\mathrm{CH}), 125.0(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 59.9\left(\mathrm{CH}_{3}\right), 26.7(\mathrm{CH}), 24.1\left(\mathrm{CH}_{3}\right)$. IR (film): 3053, 2966, 1451, 1428, 1264, 1206, 1096, 733, $703 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na}$, 203.1048; found, 203.1048.

Thionyl chloride ($1.94 \mathrm{~mL}, 27 \mathrm{mmol}$) was slowly added to a solution of (3-isopropyl-2-methoxyphenyl)methanol ($3.2 \mathrm{~g}, 18 \mathrm{mmol}$) and pyridine (1 drop) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature for 5 h and quenched with water $(20 \mathrm{~mL})$. The aqueous phase was extracted with DCM $(3 \times 50$ mL), and the combined organic solutions were washed with brine (80 mL), dried over anhydrous sodium sulfate, and filtered. Evaporation of the solvent under reduced pressure yielded 1-(chloromethyl)-3-isopropyl-2-methoxybenzene ($\mathbf{1 0} \mathbf{j}$), which was used without chromatography purification. Colorless oil ($2.3 \mathrm{~g}, 65.0 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.33(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$, $3.93(\mathrm{~s}, 3 \mathrm{H}), 3.43(\mathrm{sept}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 155.5$ (C), 142.2 (C), 130.7 (C), $128.4(\mathrm{CH}), 127.4(\mathrm{CH}), 124.7(\mathrm{CH}), 62.5\left(\mathrm{CH}_{3}\right), 41.3\left(\mathrm{CH}_{2}\right)$, $26.2(\mathrm{CH}), 23.8\left(\mathrm{CH}_{3}\right)$. IR (film): 2972, 1467, 1429, 1264, 1208, 1094, 1049, 1006, 799, 734, $703 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m / z : [M$\mathrm{Cl}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}, 163.1123$; found, 163.1127 .

Preparation of 1-(Bromomethyl)-3-isopropyl-2-methoxybenzene (10k). The general procedure for the preparation of alkyl bromides was followed using (3-isopropyl-2-methoxyphenyl)methanol ($3.8 \mathrm{~g}, 21.1 \mathrm{mmol}$) to afford 1 -(bromomethyl)-3-isopropyl-2-methoxybenzene (10k), which was further used without chromatography purification. Yellow oil (4.3 g, 83.7\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.66(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{sept}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 156.6$ (C), $143.0(\mathrm{C}), 132.1(\mathrm{C}), 129.9(\mathrm{CH}), 128.3(\mathrm{CH}), 125.5(\mathrm{CH}), 62.5$ $\left(\mathrm{CH}_{3}\right), 29.4\left(\mathrm{CH}_{2}\right), 26.9(\mathrm{CH}), 24.1\left(\mathrm{CH}_{3}\right)$. IR (film): 2961, 2861, 2830, 1463, 1428, 1383, 1256, 1222, 1203, 1168, 1004, 795, 763 cm^{-1}. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-\mathrm{HBr}]^{+}$calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}$, 163.1123; found, 163.1126 .

Preparation of 5-(Bromomethyl)-6-methoxybenzo[d][1,3]dioxole (101). To sesamol ($5 \mathrm{~g}, 36 \mathrm{mmol}$) in water $(110 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added formaldehyde (37% wt in water, $5.5 \mathrm{~mL}, 72 \mathrm{mmol}$) and calcium oxide ($1.02 \mathrm{~g}, 18 \mathrm{mmol}$). After 1 h , saturated aqueous ammonium chloride was added and the aqueous layer was extracted with ether $(3 \times 150 \mathrm{~mL})$, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by column chromatography on silica gel (30\% AcOEt/hexane) to give 6-(hydroxymethyl)benzo[d][1,3]-dioxol-5-ol. Red solid ($5.3 \mathrm{~g}, 82 \%$), mp 183-185 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 2 \mathrm{H})$, $4.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 151.2(\mathrm{C})$, 148.2 (C), 141.6 (C), 120.5 (C), 108.5 (CH), 102.0 (CH), 98.9 $\left(\mathrm{CH}_{2}\right), 61.9\left(\mathrm{CH}_{2}\right)$. IR (film): $3500(\mathrm{br} \mathrm{s}), 2922,2853,1503,1484$,

1190, 1157, 1039, 937, 852, $821 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+$ $\left.\mathrm{H}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}, 151.0395$; found, 151.0399.

6-(Hydroxymethyl)benzo[d][1,3]dioxol-5-ol ($5.7 \mathrm{~g}, 34 \mathrm{mmol}$) was dissolved in acetone $(60 \mathrm{~mL})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(7.02 \mathrm{~g}, 50.9 \mathrm{mmol})$ was added and stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . Then, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}_{4}(3.2 \mathrm{~mL}, 34$ mmol) was added and refluxed overnight. The solvent was evaporated, and water $(40 \mathrm{~mL})$ was added and extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated, and purified by flash chromatography on silica gel (30\% $\mathrm{Et}_{2} \mathrm{O}$ /hexane) to give (6-methoxybenzo[d][1,3]dioxol-5$\mathrm{yl})$ methanol ($4.3 \mathrm{~g}, 64.5 \%$), which was used immediately. Spectroscopic data were consistent with those described in the literature. ${ }^{24}$

Finally, the general procedure for the preparation of alkyl bromides was followed to give 5-(bromomethyl)-6-methoxybenzo[d][1,3]dioxole (101). Amorphous yellow solid (4.1 g, 76.8\%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right): \delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H})$, $4.60(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$): $\delta 154.8(\mathrm{C}), 150.4(\mathrm{C}), 142.2(\mathrm{C}), 119.3(\mathrm{C}), 111.1(\mathrm{CH}), 102.8$ (CH), $96.1\left(\mathrm{CH}_{2}\right), 57.3\left(\mathrm{CH}_{2}\right), 31.2\left(\mathrm{CH}_{2}\right)$. IR (film): 3018, 1504, 1466, 1215, 1040, $745 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}-$ $\mathrm{HBr}]^{+}$calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3}, 165.0552$; found, 165.0547.

General Procedure for the Deconjugative α-Alkylation of α, β-Unsaturated Aldehydes with Alkyl Halides. To a solution of unsaturated aldehydes $\mathbf{1}$ or $\mathbf{1 3 a} \mathbf{- e}(1.0 \mathrm{mmol})$ in anhydrous toluene $(15 \mathrm{~mL})$ were added successively sodium hydride ($2 \mathrm{mmol}, 60 \%$ dispersion in mineral oil) and potassium tert-butoxide (1.1 mmol), and the mixture was stirred for 45 min at room temperature. Then, a solution of the corresponding alkyl halide (1.5 mmol) in toluene (5 mL) was added; the mixture was stirred under an inert atmosphere for the specified time, and the course of the reaction was monitored by TLC. When the starting material was consumed, water $(10 \mathrm{~mL})$ was carefully added and the aqueous layer was extracted with two portions of ethyl acetate $(2 \times 20 \mathrm{~mL})$. The combined organic solution was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered, and the solvent was evaporated under reduced pressure to give a crude, which was purified by silica gel column chromatography. Elution with petroleum ether/ ethyl acetate mixtures yielded compounds $(\pm)-\mathbf{1 1 a}-\mathbf{f},(\pm)-\mathbf{1 1 h}-\mathbf{j}$, $(\pm)-111-\mathbf{p}, 12 \mathrm{a}$, and $(\pm)-14 \mathrm{a}-\mathrm{e}$ in the yields indicated in Tables $1-3$.

(\pm)-1-Allyl-2,6,6-trimethylcyclohex-2-ene-1-carbaldehyde ((\pm)-11a) and (Z)-6-((Allyloxy)methylene)-1,5,5-trimethylcyclohex1 -ene (12a). To a solution of β-cyclocitral (1) $(200 \mathrm{mg}, 1.31 \mathrm{mmol})$ in toluene $(25 \mathrm{~mL}), \mathrm{NaH}(105 \mathrm{mg}, 2.62 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(162 \mathrm{mg}$, $1.45 \mathrm{mmol})$, and allyl bromide (10a) $(236 \mathrm{mg}, 1.96 \mathrm{mmol})$ were added and stirred for 1 h . Following the same workup used in the general procedure and after column chromatography, using 2% $\mathrm{EtOAc} /$ hexane, compound 11a was obtained as a colorless oil (209 $\mathrm{mg}, 83 \%) .((\pm)-11 \mathrm{a}):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.64(\mathrm{~s}, 1 \mathrm{H})$, $5.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.80(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}), 1.56(\mathrm{dt}, J=$ $13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{dt}, J=13.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.96$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 204.6(\mathrm{CH}), 136.9$ $(\mathrm{CH}), 130.1(\mathrm{C}), 127.9(\mathrm{CH}), 115.8\left(\mathrm{CH}_{2}\right), 59.2(\mathrm{C}), 35.7(\mathrm{C}), 33.8$ $\left(\mathrm{CH}_{2}\right), 33.3\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 20.7$ $\left(\mathrm{CH}_{3}\right)$. IR (film): 2916, 1717, 1674, 1447, 1378, 1225, 1051, 1025, $809 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}$, 193.1592; found, 193.1595. (12a) (see Table 1, entries 4-7 and 10): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.93$ (ddt, $J=17.2$, $10.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{dq}, J=17.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ $(\mathrm{dq}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dt}, J=5.2,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~m}$, $2 \mathrm{H}), 1.72(\mathrm{q}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 142.7(\mathrm{CH}), 134.1(\mathrm{C}), 130.6$ (C), $124.0(\mathrm{CH}), 123.6(\mathrm{CH}), 116.9\left(\mathrm{CH}_{2}\right), 73.2\left(\mathrm{CH}_{2}\right), 39.2$
$\left(\mathrm{CH}_{2}\right), 33.2(\mathrm{C}), 27.3\left(2 \times \mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right)$. IR (film): 2927, 1676, 1455, 1127, $929 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{O}, 193.1592$; found,193.1594.

(\pm)-11b
(\pm)-1,2,6,6-Tetramethylcyclohex-2-ene-1-carbaldehyde $((\pm)-11 b)$. To a solution of β-cyclocitral (1) $(145 \mathrm{mg}, 0.95 \mathrm{mmol})$ in toluene (15 mL), $\mathrm{NaH}(76 \mathrm{mg}, 1.9 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(123 \mathrm{mg}, 1.1$ $\mathrm{mmol})$, and iodomethane $(220 \mathrm{mg}, 1.55 \mathrm{mmol})$ were added and stirred for 1 h . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/ hexane, compound $\mathbf{1 1 b}$ was obtained as a colorless oil ($147 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.60(\mathrm{~s}, 1 \mathrm{H}), 5.74$ (br s, 1H), 2.10 $(\mathrm{m}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.38(\mathrm{dt}, J=12.8,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.6(\mathrm{CH}), 131.1(\mathrm{C}), 127.0(\mathrm{CH}), 56.5(\mathrm{C}), 34.4$ (C), $33.1\left(\mathrm{CH}_{2}\right), 24.9\left(\mathrm{CH}_{3}\right), 24.2\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 19.9\left(\mathrm{CH}_{3}\right)$, $12.6\left(\mathrm{CH}_{3}\right)$. IR (film): 2963, 2874, 1703, 1634, 1366, 1309, 1233, 1180, 1122, 1079, $1032 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}, 167.1436$; found,167.1443.

(\pm)-11c
(\pm)-2,6,6-Trimethyl-1-(3-methylbut-2-en-yl)cyclohex-2-ene-1carbaldehyde ((\pm)-11c). To a solution of β-cyclocitral (1) $(178 \mathrm{mg}$, 1.17 mmol) in toluene (20 mL), $\mathrm{NaH}(94 \mathrm{mg}, 2.34 \mathrm{mmol}),{ }^{\mathrm{t}} \mathrm{BuOK}$ $(154 \mathrm{mg}, 1.3 \mathrm{mmol})$, and $\mathbf{1 0 c}(261 \mathrm{mg}, 1.75 \mathrm{mmol})$ were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using 2% EtOAc/ hexane, compound 11c was obtained as a colorless oil ($239 \mathrm{mg}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.61$ (s, 1H), $5.82(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.62$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{q}, J=1.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $0.98(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 205.0 (CH), 130.9 (C), 130.6 (C), 127.9 (CH), 122.2 (CH), 59.3 (C), $35.5(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right)$, $25.3\left(\mathrm{CH}_{3}\right), 22.7\left(\mathrm{CH}_{2}\right), 20.7\left(\mathrm{CH}_{3}\right), 18.0\left(\mathrm{CH}_{3}\right)$. IR (film): 2923, 1715, 1676, 1453, 1381, 1365, 1138, 1035, $754 \mathrm{~cm}^{-1}$. HRMS (ESI/ TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}, 221.1905$; found, 221.1909.

(\pm)-11d
(\pm)-2,6,6-Trimethyl-1-(prop-2-yn-1-yl)cyclohex-2-ene-1-carbaldehyde $((\pm)$-11d). To a solution of β-cyclocitral (1) $(230 \mathrm{mg}, 1.51$ mmol) in toluene (25 mL), $\mathrm{NaH}(121 \mathrm{mg}, 3.02 \mathrm{mmol}),{ }^{\mathrm{t}} \mathrm{BuOK}$ (186 $\mathrm{mg}, 1.66 \mathrm{mmol}$), and propargyl chloride $10 \mathrm{~d}(169 \mathrm{mg}, 2.27 \mathrm{mmol})$ were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/hexane, compound 11d was obtained as a colorless oil (192 $\mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 2.75(\mathrm{dd}, J=17.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=17.8,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.12(\mathrm{~m}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.76-1.52(\mathrm{~m}$, $2 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 201.8(\mathrm{CH}), 129.0(\mathrm{CH}), 125.4(\mathrm{C}), 83.4(\mathrm{C}), 70.6(\mathrm{CH}), 63.7$ (C), $59.2\left(\mathrm{CH}_{2}\right), 35.4(\mathrm{C}), 33.8\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{3}\right)$, $22.6\left(\mathrm{CH}_{2}\right)$, $20.1\left(\mathrm{CH}_{3}\right)$, $17.4\left(\mathrm{CH}_{3}\right)$. IR (film): 3324, 2919, 2126, 1715, 1673, 1448, 1374, 1224, 1053, $1032 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ONa}$, 213.1255; found, 213.1249.

(\pm)-11e
(\pm)-1-Benzyl-2,6,6-trimethylcyclohex-2-ene-1-carbaldehyde $((\pm)$-11e). To a solution of β-cyclocitral (1) $(210 \mathrm{mg}, 1.38 \mathrm{mmol})$ in toluene (25 mL), $\mathrm{NaH}(110 \mathrm{mg}, 2.76 \mathrm{mmol})$, ${ }^{\text {' } \mathrm{BuOK}}(170 \mathrm{mg}, 1.52$ $\mathrm{mmol})$, and benzyl bromide ($\mathbf{1 0 e}$) $(354 \mathrm{mg}, 2.07 \mathrm{mmol})$ were added and stirred for 30 min . Following the same workup used in the general procedure and after column chromatography, using $3 \% \mathrm{EtOAc} /$ hexane, compound 11e was obtained as a colorless oil ($310 \mathrm{mg}, 93 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.79(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 5 \mathrm{H})$, $5.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.65$ (ddd, $J=13.8,10.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.24$ (s, $3 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.4$ (CH), 139.5 (C), 131.2 (C), $130.7(2 \times \mathrm{CH})$, $127.9(2 \times \mathrm{CH}), 126.6(\mathrm{CH}), 126.0(\mathrm{CH}), 61.0$ (C), 36.7 (C), 36.2 $\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 24.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right), 21.9$ $\left(\mathrm{CH}_{3}\right)$. IR (film): 2930, 2860, 1727, 1529, 1470, 1369, 1347, 1241, 1017, 997, 962, 802, 755, 725, $672 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m / z : $\left[\mathrm{M}-\mathrm{H}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}, 241.1592$; found, 241.1597.

(\pm)-11f
(\pm)-1-(4-Methoxybenzyl)-2,6,6-trimethylcyclohex-2-ene-1-carbaldehyde ((\pm)-11f). To a solution of β-cyclocitral (1) ($250 \mathrm{mg}, 1.64$ $\mathrm{mmol})$ in toluene (25 mL), $\mathrm{NaH}(131 \mathrm{mg}, 3.28 \mathrm{mmol})$, ${ }^{\text {tBuOK (}} 362$ $\mathrm{mg}, 1.80 \mathrm{mmol})$, and $10 \mathrm{~g}(385 \mathrm{mg}, 1.91 \mathrm{mmol})$ were added and stirred for 30 min . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/ hexane, compound 11f was obtained as a colorless syrup (326 mg , 73%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.71(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{br}$ s, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.31$ (d, $J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.56$ $(\mathrm{m}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{dd}, J=1.8,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$, $0.95(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.4$ (C), 157.9 (C), 131.5 ($2 \times \mathrm{CH}$), 131.4 (C), 131.3 (C), 126.4 (CH), 113.3 ($2 \times$ $\mathrm{CH}), 60.9(\mathrm{C}), 55.1\left(\mathrm{CH}_{3}\right), 36.6(\mathrm{C}), 35.3\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.9\left(\mathrm{CH}_{3}\right)$. IR (film): 2932, 1715 , 1610, 1510, 1462, 1245, 1177, 1034, $821 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{O}_{2}, 273.1855$; found, 273.1846.

(\pm)-11h
(\pm)-1-(3-Bromo-4,5-dimethoxybenzyl)-2,6,6-trimethylcyclohex2 -enecarbaldehyde ((\pm)-11h). To a solution of β-cyclocitral (1) (177 $\mathrm{mg}, 1.16 \mathrm{mmol}$) in toluene (15 mL), $\mathrm{NaH}(93 \mathrm{mg}, 2.32 \mathrm{mmol})$, ${ }^{t} \mathrm{BuOK}(143 \mathrm{mg}, 1.28 \mathrm{mmol})$, and $10 \mathrm{~h}(540 \mathrm{mg}, 1.74 \mathrm{mmol})$ were added and stirred for 1 h . Following the same workup used in the general procedure and after column chromatography, using 7\% EtOAc/hexane, compound 11 h was obtained as a colorless syrup $(389 \mathrm{mg}, 88 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.67(\mathrm{~s}, 1 \mathrm{H}), 6.92$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.78(\mathrm{~s}$, $6 \mathrm{H}), 3.29$ (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~m}$, 2 H), 1.57 (ddd, $J=13.8,10.4,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.10$ $(\mathrm{m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 205.9(\mathrm{CH}), 153.0$ (C), 144.8 (C), 136.7 (C), 131.0 (C), $126.6(2 \times \mathrm{CH}), 116.8(\mathrm{C}), 114.3(\mathrm{CH}), 61.0\left(\mathrm{CH}_{3}\right), 60.6\left(\mathrm{CH}_{3}\right)$, 56.0 (C), 36.7 (C), $35.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 23.8$ $\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right)$. IR (film): 2947, 1715, 1595, 1565, 1489, 1463, 1429, 1414, 1313, 1277, 1214, 1184, 1142, 1047, 1001,
$879 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{Br}$, 381.1065; found, 381.1056.

(\pm)-11i
(\pm)-1-(Benzo[d][1,3]dioxol-5-ylmethyl)-2,6,6-trimethylcyclohex2 -ene-1-carbaldehyde (\pm)-11i). To a solution of β-cyclocitral (1) ($300 \mathrm{mg}, 1.97 \mathrm{mmol}$) in toluene $(25 \mathrm{~mL}), \mathrm{NaH}(158 \mathrm{mg}, 3.94$ mmol), ${ }^{\text {t }} \mathrm{BuOK}(244 \mathrm{mg}, 2.18 \mathrm{mmol})$, and $10 \mathrm{i}(634 \mathrm{mg}, 2.95 \mathrm{mmol})$ were added and stirred for 1 h . Following the same workup used in the general procedure and after column chromatography, using 5% EtOAc/hexane, compound 11i was obtained as a white solid (501 mg , 89%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.73(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $6.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.76$ ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $3.34(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.02-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.06$ $(\mathrm{s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.3$ (CH), 147.2 (C), 145.8 (C), 133.1 (C), 131.3 (C), 126.5 (CH), $123.6(\mathrm{CH}), 111.0(\mathrm{CH}), 107.8(\mathrm{CH}), 100.7\left(\mathrm{CH}_{2}\right), 61.0(\mathrm{C}), 36.7$ (C), $36.0\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 25.2\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right)$, $22.06\left(\mathrm{CH}_{3}\right)$. IR (film): 2947, 1718, 1530, 1350, 1261, 1082, 1028, 806, 723, $687 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}$, 287.1647; found, 287.1651.

(\pm - 11 j
(\pm)-1-(3-Isopropyl-2-methoxybenzyl)-2,6,6-trimethylcyclohex-2-ene-1-carbaldehyde (\pm)-11j). To a solution of β-cyclocitral (1) $(112 \mathrm{mg}, 0.74 \mathrm{mmol})$ in toluene (12 mL), $\mathrm{NaH}(59 \mathrm{mg}, 1.48 \mathrm{mmol})$, ${ }^{t} \mathrm{BuOK}(244 \mathrm{mg}, 0.81 \mathrm{mmol})$, and $10 \mathrm{k}(270 \mathrm{mg}, 1.11 \mathrm{mmol})$ were added and stirred for 45 min . Following the same workup used in the general procedure and after column chromatography, using 5% $\mathrm{EtOAc} /$ hexane, compound $\mathbf{1 1} \mathbf{j}$ was obtained as a white solid (162 mg , 70%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~m}, 1 \mathrm{H})$, 7.02 (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H})$, $0.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 206.5$ (CH), 156.3 (C), 141.8 (C), 132.4 (C), 131.3 (C), 129.7 (CH), 126.7 $(\mathrm{CH}), 124.7(\mathrm{CH}), 123.8(\mathrm{CH}), 61.5\left(\mathrm{CH}_{3}\right), 60.8(\mathrm{C}), 36.8(\mathrm{C})$, $32.9\left(\mathrm{CH}_{2}\right), 30.2\left(\mathrm{CH}_{2}\right), 26.5(\mathrm{CH}), 25.3\left(\mathrm{CH}_{3}\right), 24.1\left(\mathrm{CH}_{3}\right), 23.9$ $\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{3}\right), 21.6\left(\mathrm{CH}_{3}\right)$. IR (film): 2960, 2864, 1719, 1689, 1458, 1427, 1384, 1254, 1201, 1165, 1060, 1010, 796, 765, $568 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{O}_{2}, 315.2324$; found, 315.2326.

(\pm)-11I
(\pm)-1-((6-Methoxybenzo[d][1,3]dioxol-5-yl)methyl)-2,6,6-trime-thylcyclohex-2-ene-1-carbaldehyde (\pm)-111). To a solution of β cyclocitral (1) ($147 \mathrm{mg}, 0.97 \mathrm{mmol}$) in toluene (15 mL), $\mathrm{NaH}(78$ $\mathrm{mg}, 1.94 \mathrm{mmol})$, ${ }^{t} \mathrm{BuOK}(120 \mathrm{mg}, 1.07 \mathrm{mmol})$, and $101(355 \mathrm{mg}, 1.45$ mmol) were added and stirred for 90 min . Following the same workup used in the general procedure and after column chromatography, using $5 \% \mathrm{EtOAc} / \mathrm{hexane}$, compound 111 was obtained as a colorless syrup ($239 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 5.59$
$(\mathrm{s}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.05(\mathrm{~m}, 2 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.10(\mathrm{~m}, 1 \mathrm{H})$, $0.97(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.6(\mathrm{CH})$, 152.8 (C), 146.3 (C), 140.6 (C), 131.5 (C), 125.8 (CH), 120.0 (C), $111.6(\mathrm{CH}), 100.8(\mathrm{CH}), 94.3\left(\mathrm{CH}_{2}\right), 60.5(\mathrm{C}), 56.0\left(\mathrm{CH}_{3}\right), 36.7$ (C), $32.7\left(\mathrm{CH}_{2}\right), 30.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3}\right), 22.9\left(\mathrm{CH}_{2}\right)$, $21.9\left(\mathrm{CH}_{3}\right)$. IR (film): 2949, 2855, 1715, 1503, 1483, 1464, 1190, 1156, 1037, 1006, 935, 861, 824, $759 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}, 317.1753$; found, 317.1758.

(\pm)-11m
(\pm)-1-(2-Bromobenzyl)-2,6,6-trimethylcyclohex-2-ene-1-carbaldehyde $((\pm)-11 m)$. To a solution of β-cyclocitral (1) $(310 \mathrm{mg}, 2.04$ mmol) in toluene (25 mL), $\mathrm{NaH}(163 \mathrm{mg}, 4.08 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(251$ $\mathrm{mg}, 2.24 \mathrm{mmol})$, and $10 \mathrm{~m}(765 \mathrm{mg}, 3.06 \mathrm{mmol})$ were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using 3\% EtOAc/ hexane, compound 11 m was obtained as a colorless oil $(602 \mathrm{mg}$, $92 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.70(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dd}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.98(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.67(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=13.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.99$ $(\mathrm{m}, 1 \mathrm{H}), 1.25-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.6(\mathrm{CH}), 139.3(\mathrm{C}), 132.9$ $(\mathrm{CH}), 132.8(\mathrm{CH}), 129.9(\mathrm{C}), 127.74(\mathrm{CH}), 127.70(\mathrm{CH}), 127.0$ $(\mathrm{CH}), 126.1(\mathrm{C}), 60.9(\mathrm{C}), 37.4(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 25.3$ $\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{2}\right), 21.9\left(\mathrm{CH}_{3}\right)$. IR (film): 2950, 2875, 2834, 1716, 1470, 1438, 1387, 1367, 1025, 873, 765, 747, 659, 569 cm^{-1}. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{OBrNa}$, 321.0854; found, 321.0862 .

(\pm)-11n
(\pm)-1-((6-Bromobenzo[d][1,3]dioxol-5-yl)methyl)-2,6,6-trime-thylcyclohex-2-ene-1-carbaldehyde ((\pm)-11n). To a solution of β cyclocitral (1) ($110 \mathrm{mg}, 0.72 \mathrm{mmol}$) in toluene $(12 \mathrm{~mL}), \mathrm{NaH}(58$ $\mathrm{mg}, 1.44 \mathrm{mmol}$), ${ }^{t} \mathrm{BuOK}(89 \mathrm{mg}, 0.79 \mathrm{mmol})$, and $10 \mathrm{n}(317 \mathrm{mg}, 1.08$ mmol) were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using $5 \% \mathrm{EtOAc} /$ hexane, compound 11 n was obtained as a white solid (223 mg, 85\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.68(\mathrm{~s}, 1 \mathrm{H})$, $6.90(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=$ $13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.96(\mathrm{~m}$, $1 \mathrm{H}), 1.28-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.7(\mathrm{CH}), 147.0(\mathrm{C}), 146.7$ (C), 132.1 (C), 129.9 (C), 127.6 (CH), 116.0 (C), 112.6 (CH), $112.0(\mathrm{CH}), 101.5\left(\mathrm{CH}_{2}\right), 60.8(\mathrm{C}), 37.3(\mathrm{C}), 35.7\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 23.1\left(\mathrm{CH}_{2}\right), 22.2\left(\mathrm{CH}_{3}\right) . \mathrm{IR}$ (film): 2921, 1715, 1502, 1474, 1407, 1388, 1367, 1267, 1227, 1167, 1113, 1037, 936, 873, 831, 756, $570 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Br}$, 365.0752; found, 365.0750.

$(\pm)-110$
(\pm)-2,6,6-Trimethyl-1-(3-nitrobenzyl)cyclohex-2-ene-1-carbaldehyde ((\pm)-110). To a solution of β-cyclocitral (1) (192 mg, 1.26
$\mathrm{mmol})$ in toluene $(15 \mathrm{~mL}), \mathrm{NaH}(101 \mathrm{mg}, 2.52 \mathrm{mmol}),{ }^{\mathrm{t}} \mathrm{BuOK}(156$ $\mathrm{mg}, 1.39 \mathrm{mmol})$, and $10 \mathrm{o}(408 \mathrm{mg}, 1.89 \mathrm{mmol})$ were added and stirred for 10 min . Following the same workup used in the general procedure and after column chromatography, using $8 \% \mathrm{EtOAc} /$ hexane, compound 110 was obtained as a yellow syrup (289 mg , $80 \%) .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.69(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~m}, 2 \mathrm{H})$, $7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 3.49$ $(\mathrm{d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.06(\mathrm{~m}, 2 \mathrm{H})$, 1.57 (ddd, $J=14.0,10.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.20$ (ddd, $J=14.0,7.0,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.6(\mathrm{CH}), 148.0(\mathrm{C}), 141.7$ (C), $137.0(\mathrm{CH})$, $130.0(\mathrm{C}), 128.7(\mathrm{CH}), 127.5(\mathrm{CH}), 125.4(\mathrm{CH}), 121.2(\mathrm{CH}), 61.1$ (C), $36.8(\mathrm{C}), 35.8\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right)$, $22.8\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right)$. IR (film): 2926, 1716, 1527, 1348, 1261, 1222, 1061, 1029, 804, 756, 723, 687, $672 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{3}, 288.1600$; found, 288.1608.

(\pm-11p
(\pm)-4-((1-Formyl-2,6,6-trimethylcyclohex-2-en-1-yl)methyl)benzonitrile $((\pm)-11 p)$. To a solution of β-cyclocitral (1) $(166 \mathrm{mg}$, $1.09 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL}), \mathrm{NaH}(87 \mathrm{mg}, 2.18 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}$ $(135 \mathrm{mg}, 1.2 \mathrm{mmol})$, and $\mathbf{1 0 p}(320 \mathrm{mg}, 1.63 \mathrm{mmol})$ were added and stirred for 15 min . Following the same workup used in the general procedure and after column chromatography, using $5 \% \mathrm{EtOAc} /$ hexane, compound $\mathbf{1 1 p}$ was obtained as a yellow syrup (224 mg , $77 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.67$ ($\mathrm{s}, 1 \mathrm{H}$), 7.46 (d, $J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.76(\mathrm{~s}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.51(\mathrm{~m}$, 1 H), 1.19 (ddd, $J=13.9,6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H})$, $0.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 205.4(\mathrm{CH})$, $145.5(\mathrm{C}), 131.6(2 \times \mathrm{CH}), 131.5(2 \times \mathrm{CH}), 130.2(\mathrm{C}), 127.3(\mathrm{CH})$, 119.0 (C), 109.9 (C), 61.3 (C), $36.8(\mathrm{C}), 36.4\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right)$, $25.2\left(\mathrm{CH}_{3}\right), 23.8\left(\mathrm{CH}_{3}\right), 22.8\left(\mathrm{CH}_{2}\right), 22.0\left(\mathrm{CH}_{3}\right)$. IR (film): 2962, 2228, 1719, 1606, 1365, 1174, 1018, 816, 754, 816, $754 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:\left[M-\mathrm{CH}_{2}+\mathrm{H}\right]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}, 254.1545$; found, 254.1543.

(\pm)-14a
(\pm)-1-Benzylcyclohex-2-enecarbaldehyde ((\pm)-14a). To a solution of 13a ($130 \mathrm{mg}, 1.18 \mathrm{mmol}$) in toluene $(15 \mathrm{~mL}), \mathrm{NaH}(95 \mathrm{mg}$, 2.36 mmol), ${ }^{t} \mathrm{BuOK}(145 \mathrm{mg}, 1.3 \mathrm{mmol})$, and benzyl bromide ($\mathbf{1 0 e}$) ($303 \mathrm{mg}, 1.77 \mathrm{mmol}$) were added and stirred for 20 min . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/hexane, compound 14a was obtained as a colorless oil ($224 \mathrm{mg}, 95 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 9.55(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.01(\mathrm{dt}, J=10.0,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.58(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H}), 2.05-1.88(\mathrm{~m}, 3 \mathrm{H})$, 1.64-1.52 (m, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 203.3$ $(\mathrm{CH}), 136.5(\mathrm{C}), 132.0(\mathrm{CH}), 130.3(2 \times \mathrm{CH}), 128.1(2 \times \mathrm{CH})$, $126.5(\mathrm{CH}), 126.3(\mathrm{CH}), 52.0(\mathrm{C}), 42.6\left(\mathrm{CH}_{2}\right), 27.9\left(\mathrm{CH}_{2}\right), 24.8$ $\left(\mathrm{CH}_{2}\right), 18.8\left(\mathrm{CH}_{2}\right)$. IR (film): 3027, 2934, 2867, 2835, 1722, 1495, 1453, 1069, 762, 729, 701, $679 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+$ $\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}$, 201.1279; found, 201.1282.

14b
(1R,4S) and (1S,4S)-1-Benzyl-4-(prop-1-en-2-yl)cyclohex-2-enecarbaldehyde (14b). To a solution of 13 b ($150 \mathrm{mg}, 1 \mathrm{mmol}$) in
toluene (15 mL), $\mathrm{NaH}(80 \mathrm{mg}, 2 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(123 \mathrm{mg}, 1.1$ $\mathrm{mmol})$, and benzyl bromide (10e) $(256 \mathrm{mg}, 1.5 \mathrm{mmol})$ were added and stirred for 20 min . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/ hexane, compound $\mathbf{1 4 b}$ was obtained as a colorless oil ($223 \mathrm{mg}, 93 \%$, approx. 1:1 diasteroisomeric ratio). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.56(\mathrm{~s}, 2 \mathrm{H}), 7.39-7.10(\mathrm{~m}, 10 \mathrm{H}), 5.91-5.86(\mathrm{~m}, 2 \mathrm{H}), 5.68$ (br s, $1 \mathrm{H}), 5.66(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.77(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.73(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $4.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.68(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.98(\mathrm{~m}$, $2 \mathrm{H}), 1.81-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}), 1.55-1.42(\mathrm{~m}, 2 \mathrm{H})$. Major isomer: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 202.7(\mathrm{CH}), 147.8$ (C), $136.3(\mathrm{C}), 135.1(\mathrm{CH}), 130.3(2 \times \mathrm{CH}), 128.1(2 \times \mathrm{CH}), 127.0$ $(\mathrm{CH}), 126.6(\mathrm{CH}), 110.9\left(\mathrm{CH}_{2}\right), 52.1(\mathrm{C}), 42.9(\mathrm{CH}), 42.6\left(\mathrm{CH}_{2}\right)$, $27.1\left(\mathrm{CH}_{2}\right), 24.7\left(\mathrm{CH}_{2}\right), 20.6\left(\mathrm{CH}_{3}\right)$. Minor isomer: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 203.0(\mathrm{CH}), 147.1(\mathrm{C}), 136.3(\mathrm{C}), 134.3$ $(\mathrm{CH}), 130.4(2 \times \mathrm{CH}), 128.1(2 \times \mathrm{CH}), 126.9(\mathrm{CH}), 126.6(\mathrm{CH})$, $111.6\left(\mathrm{CH}_{2}\right), 52.3(\mathrm{C}), 42.1\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 24.7\left(\mathrm{CH}_{2}\right), 23.3$ $\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right)$. IR (film): 2936, 1720, 1644, 1496, 1453, 1374, 892, 831, 762, 735, $700 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}, 241.1592$; found, 241.1601.

(1S,4aS,8aS)-1-((6-Bromobenzo[d][1,3]dioxol-5-yl)methyl)-2,5,5,8a-tetramethyl-1,4,4a,5,6,7,8,8a-octahydronaphthalene-1carbaldehyde (14c). To a solution of $13 \mathrm{c}(76 \mathrm{mg}, 0.34 \mathrm{mmol})$ in toluene (10 mL), $\mathrm{NaH}\left(30 \mathrm{mg}, 0.75 \mathrm{mmol}\right.$), ${ }^{\mathrm{t}} \mathrm{BuOK}(43 \mathrm{mg}, 0.38$ $\mathrm{mmol})$, and $\mathbf{1 0 n}(153 \mathrm{mg}, 0.52 \mathrm{mmol})$ were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/hexane, compound 14c was obtained as a colorless syrup $(128 \mathrm{mg}, 86 \%) .[\alpha]_{\mathrm{D}}^{20}-3.0(c 0.6$, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 9.77(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H})$, $6.75(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ (ppm) 207.9 (CH), 147.0 (C), 146.7 (C), 132.2 (C), 129.5 (C), $128.4(\mathrm{CH}), 116.1(\mathrm{C}), 112.6(\mathrm{CH}), 112.1(\mathrm{CH}), 101.5\left(\mathrm{CH}_{2}\right), 63.0$ (C), $42.3(\mathrm{C}), 42.0\left(\mathrm{CH}_{2}\right), 41.8(\mathrm{CH}), 36.0\left(\mathrm{CH}_{2}\right), 33.9\left(\mathrm{CH}_{3}\right), 33.4$ $\left(\mathrm{CH}_{2}\right), 33.3(\mathrm{C}), 24.7\left(\mathrm{CH}_{2}\right), 22.3\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right), 18.2\left(\mathrm{CH}_{2}\right)$, $17.5\left(\mathrm{CH}_{3}\right)$. IR (film): 2949, 1716, 1672, 1503, 1478, 1367, 1228, 1114, 1039, 936, 882, 841, 655, $567 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Br}$, 433.1378; found, 433.1365.

14d
(1S,4aS,5S,8aR)-Methyl 5-((6-Bromobenzo[d][1,3]dioxol-5-yl)-methyl)-5-formyl-1,4a,6-trimethyl-1,2,3,4,4a,5,8,8a-octahydro-naphthalene-1-carboxylate (14d). To a solution of 13 d (83 mg , $0.31 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL}), \mathrm{NaH}(26 \mathrm{mg}, 0.65 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}$ $(39 \mathrm{mg}, 0.35 \mathrm{mmol})$, and $10 \mathrm{n}(138 \mathrm{mg}, 0.47 \mathrm{mmol})$ were added and stirred for 2 h . Following the same workup used in the general procedure and after column chromatography, using 5\% EtOAc/ hexane, compound $\mathbf{1 4 d}$ was obtained as a colorless syrup (133 mg , 90\%). $[\alpha]_{\mathrm{D}}^{20}-26.0\left(c \quad 0.3, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $9.74(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.90-$
$1.41(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.78(\mathrm{~m}$, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 207.2(\mathrm{CH}), 177.7$ (C), 147.0 (C), 146.7 (C), 131.8 (C), 128.3 (C), 128.3 (CH), 116.1 (C), $112.6(\mathrm{CH}), 112.1(\mathrm{CH}), 101.5\left(\mathrm{CH}_{2}\right), 62.3(\mathrm{C}), 51.4\left(\mathrm{CH}_{3}\right), 44.3$ $(\mathrm{CH}), 44.1(\mathrm{C}), 41.8(\mathrm{C}), 38.0\left(\mathrm{CH}_{2}\right), 35.9\left(\mathrm{CH}_{2}\right), 33.0\left(\mathrm{CH}_{2}\right), 29.1$ $\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 21.8\left(\mathrm{CH}_{3}\right), 19.0\left(\mathrm{CH}_{2}\right), 16.4\left(\mathrm{CH}_{3}\right)$. IR (film): 2949, 1715, 1503, 1477, 1407, 1380, 1226, 1166, 1143, 1113, 1038, 984, 934, 910, 874, 841, 771, 730, 652, $566 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{Br}$, 477.1277; found, 477.1276.

(\pm)-14e
(\pm)-1-Benzyl-2,6,6-trimethylcyclohexa-2,4-diene-1-carbaldehyde $((\pm)-14 e)$. To a solution of $13 \mathrm{e}(163 \mathrm{mg}, 1.08 \mathrm{mmol})$ in toluene (15 $\mathrm{mL}), \mathrm{NaH}(84 \mathrm{mg}, 2.1 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(134 \mathrm{mg}, 1.19 \mathrm{mmol})$, and benzyl bromide (10e) ($277 \mathrm{mg}, 1.62 \mathrm{mmol}$) were added and stirred for 3 h . Following the same workup used in the general procedure and after column chromatography, using 5% EtOAc/hexane, compound 14 e was obtained as a colorless syrup ($188 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.98(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 5 \mathrm{H}), 5.90(\mathrm{~m}, 2 \mathrm{H})$, $5.35(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.14(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 206.8(\mathrm{C}), 138.8(\mathrm{C}), 135.8(\mathrm{CH}), 135.1(\mathrm{C}), 130.9$ $(\mathrm{CH}), 127.6(\mathrm{CH}), 125.9(\mathrm{CH}), 121.9(\mathrm{CH}), 121.6(\mathrm{CH}), 61.8(\mathrm{C})$, $40.1(\mathrm{C}), 30.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{3}\right), 22.4\left(\mathrm{CH}_{3}\right), 22.0\left(\mathrm{CH}_{3}\right) . \mathrm{IR}$ (film): 3028, 2961, 1718, 1494, 1453, 1362, 1076, 726, $700 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}, 227.1436$; found, 227.1443.

Preparation of (4aS,8aS)-2,5,5,8a-Tetramethyl-3,4,4a,5,6,7,8,8a-octahydronaphthalene-1-carbaldehyde (13c). Compound 13c was prepared following the procedure described in the literature. The spectroscopic data were in agreement with those described in the literature. ${ }^{20}$

Preparation of ($15,4 a S, 8 a R$)-Methyl 5 -Formyl-1,4a,6-tri-methyl-1,2,3,4,4a,7,8,8a-octahydronaphthalene-1-carboxylate (13d). Compound 13 d was prepared following the procedure described in the literature. The spectroscopic data were in agreement with those described in the literature. ${ }^{21}$

General Procedure for Deformylation of β, γ-Unsaturated Aldehydes (\pm)-11a, $(\pm)-11 \mathrm{e},(\pm)-11 \mathrm{i},(\pm)-11 \mathrm{~m}$, and (\pm)-110 with $\mathrm{Pb}(\mathrm{OAc})_{4}$. To a solution of the corresponding β, γ-unsaturated aldehydes $(\pm)-11 \mathrm{a},(\pm)-11 \mathrm{e},(\pm)-11 \mathrm{i},(\pm)-11 \mathrm{~m}$, and $(\pm)-11 \mathrm{o}$ ($\mathrm{mmol})$ in dry benzene $(7 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(1.1 \mathrm{mmol})$, and the solution was heated at $80^{\circ} \mathrm{C}$ for $10 \mathrm{~min}^{-2} \mathrm{~h}$. Then, the reaction mixture was quenched with $5 \% \mathrm{Na}_{2} \mathrm{SO}_{3}(5 \mathrm{~mL})$, and the aqueous layer was extracted with two portions of ethyl acetate $(2 \times 15 \mathrm{~mL})$. The combined organic solution was washed with brine (10 mL), dried over anhydrous sodium sulfate, and filtered. The solvent was evaporated under reduced pressure to give a crude product which was purified by silica gel column chromatography (petroleum ether/ ethyl acetate), affording the corresponding allyl acetates (\pm)-15a, $(\pm)-15 \mathrm{e},(\pm)-15 \mathrm{i},(\pm)-15 \mathrm{~m}$, and $(\pm)-\mathbf{1 5 o}$ in the yields shown in Table 4.

$(\pm)-15 a$
(\pm)-3-Allyl-2,4,4-trimethylcyclohex-2-en-1-yl Acetate ((\pm)-15a). To a solution of $11 \mathrm{a}(194 \mathrm{mg}, 1.01 \mathrm{mmol})$ in benzene $(7 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(492 \mathrm{mg}, 1.11 \mathrm{mmol})$, and the mixture was heated at $80{ }^{\circ} \mathrm{C}$ for 7 min . Following the same workup used in the general procedure, 15 a ($204 \mathrm{mg}, 91 \%$) was obtained as a colorless syrup after column chromatography using $3 \% \mathrm{EtOAc} /$ hexane. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{~m}$,
$1 \mathrm{H}), 4.81(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{ddd}, J=13.3$, 7.0, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2(\mathrm{C}), 141.7(\mathrm{C}), 136.5(\mathrm{CH}), 126.8(\mathrm{C}), 114.9$ $\left(\mathrm{CH}_{2}\right), 72.7(\mathrm{CH}), 35.3(\mathrm{C}), 34.8\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $26.8\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 16.6\left(\mathrm{CH}_{3}\right)$. IR (film): 1719, 1634, 1469, 1370, 1244, 1174, 1145, 1017, 994, 961, 910, $865 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}-\mathrm{OAc}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{19}$, 163.1487; found, 163.1483.

(\pm)-15e
(土)-3-Benzyl-2,4,4-trimethylcyclohex-2-en-1-yl Acetate $((\pm)-15 e)$. To a solution of $11 \mathrm{e}(143 \mathrm{mg}, 0.59 \mathrm{mmol})$ in benzene $(4 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(288 \mathrm{mg}, 0.65 \mathrm{mmol})$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 2 h . Following the same workup used in the general procedure, $15 \mathrm{e}(114 \mathrm{mg}, 71 \%)$ was obtained as a colorless syrup after column chromatography using $5 \% \mathrm{EtOAc} /$ hexane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 3 \mathrm{H})$, $5.27(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.96$ (dddd, $J=$ 14.3, 11.4, 4.8, $3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.75 (dddd, $J=14.3,7.2,4.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.66$ (ddd, $J=13.8,11.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.40$ (ddd, J $=13.8,7.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.2$ (C), 141.8 (C), 140.2 (C), 128.2 ($2 \times$ $\mathrm{CH}), 128.0(\mathrm{C}), 127.8(2 \times \mathrm{CH}), 125.5(\mathrm{CH}), 72.6(\mathrm{CH}), 35.4(\mathrm{C})$, $35.0\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right), 21.5$ $\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right)$. IR (film): 2957, 2935, 2860, 1732, 1494, 1452, 1370, 1243, 1018, 961, $715 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m/z: [M + $\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Na}$, 295.1674; found, 295.1679.

$(\pm)-15 i$
(\pm)-3-(Benzo[d][1,3]dioxol-5-ylmethyl)-2,4,4-trimethylcyclohex-2-en-1-yl Acetate $((\pm)-15 i)$. To a solution of $11 \mathrm{i}(204 \mathrm{mg}, 0.71$ mmol) in benzene $(5 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(348 \mathrm{mg}, 0.78$ $\mathrm{mmol})$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 50 min . Following the same workup used in the general procedure, $\mathbf{1 5 i}$ ($206 \mathrm{mg}, 92 \%$) was obtained as an amorphous solid after column chromatography using 3\% EtOAc/hexane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.71$ (d, $J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{br} \mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $2 \mathrm{H}), 5.25(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{~m}, 1 \mathrm{H}), 1.65$ (ddd, J $=12.3,12.3,3.1,1 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H}), 1.41$ (ddd, $J=13.1,7.13 .2 \mathrm{~Hz}$, 1H), $0.95(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 171.2(\mathrm{C}), 147.6(\mathrm{C}), 145.4(\mathrm{C}), 142.0(\mathrm{CH}), 134.1(\mathrm{C}), 128.1$ (C), $120.6(\mathrm{CH}), 108.3(\mathrm{CH}), 108.1(\mathrm{CH}), 100.7\left(\mathrm{CH}_{2}\right), 72.5(\mathrm{C})$, $35.4(\mathrm{C}), 34.9\left(\mathrm{CH}_{2}\right), 33.7\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 27.2\left(\mathrm{CH}_{3}\right), 25.5$ $\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right)$. IR (film): 1723, 1605, 1495, 1483, 1434, 1365, 1226, 1344, 1227, 1175, 1146, 1121, 1091, 1037, 1017, 923, 875, $793 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{4}, 317.1753$; found, 317.1751 .

(\pm)-15m
(\pm)-3-(2-Bromobenzyl)-2,4,4-trimethylcyclohex-2-en-1-yl Acetate $((\pm)-15 m)$. To a solution of $11 \mathrm{~m}(53 \mathrm{mg}, 0.16 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL})$ was added $\mathrm{Pb}(\mathrm{OAc})_{4}(80 \mathrm{mg}, 0.18 \mathrm{mmol})$, and the
mixture was heated at $80^{\circ} \mathrm{C}$ for 1 h . Following the same workup used in the general procedure, 15 m ($48 \mathrm{mg}, 83 \%$) was obtained as a colorless syrup after column chromatography using $5 \% \mathrm{EtOAc} /$ hexane. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.22(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $17.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.98$ (dddd, $J=14.2,11.3,5.0,3.2 \mathrm{~Hz}$, 1 H), 1.80 (dddd, $J=14.2,7.5,4.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 1.69 (ddd, $J=13.4$, $11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.1$ (C), 141.1 (C), 138.7 (C), $132.5(\mathrm{CH}), 129.1(\mathrm{C}), 128.7(\mathrm{CH}), 127.3(\mathrm{CH}), 127.1(\mathrm{CH})$, $125.1(\mathrm{C}), 72.4(\mathrm{CH}), 35.3(\mathrm{C}), 34.8\left(\mathrm{CH}_{2}\right), 34.7\left(\mathrm{CH}_{2}\right), 28.2$ $\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 17.1\left(\mathrm{CH}_{3}\right)$. IR (film): 1723, 1438, 1387, 1231, 1155, 1095, 1076, 1025, $877,770 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m/z: [M-OAc] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{Br}, 291.0748$; found, 291.0754.

(\pm)-150
(\pm)-2,4,4-Trimethyl-3-(3-nitrobenzyl)cyclohex-2-en-1-yl Acetate $((\pm)-150)$. To a solution of $110(67 \mathrm{mg}, 0.23 \mathrm{mmol})$ in benzene (2 mL) was added $\mathrm{Pb}(\mathrm{OAc})_{4}(115 \mathrm{mg}, 0.26 \mathrm{mmol})$, and the mixture was heated at $80^{\circ} \mathrm{C}$ for 90 min . Following the same workup used in the general procedure, $\mathbf{1 5 0}(62 \mathrm{mg}, 85 \%)$ was obtained as a colorless syrup after column chromatography using $3 \% \mathrm{EtOAc} /$ hexane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{t}, J=$ $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.69$ (ddd, $J=14.4,11.6$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 171.1$ (C), 148.5 (C), 142.4 (C), $140.6(\mathrm{C}), 134.0(\mathrm{CH}), 129.4(\mathrm{C}), 129.1(\mathrm{CH}), 122.8(\mathrm{CH})$, $120.9(\mathrm{CH}), 72.1(\mathrm{CH}), 35.4(\mathrm{C}), 34.7\left(\mathrm{CH}_{2}\right), 33.6\left(\mathrm{CH}_{2}\right), 28.4$ $\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right), 25.3\left(\mathrm{CH}_{2}\right), 21.4\left(\mathrm{CH}_{3}\right), 17.4\left(\mathrm{CH}_{3}\right)$. IR (film): 1725, 1469, 1696, 1346, 1231, 1169, 1144, 1095, 1076, 1017, 996, 961, 865, $802 \mathrm{~cm}^{-1}$. HRMS (ESI/TOF) m / z : [M-OAc] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}, 258.1494$; found, 258.1488 .

- ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.1c00560.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for all new compounds (PDF)

AUTHOR INFORMATION

Corresponding Author

Rachid Chahboun - Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; © orcid.org/0000-0001-5303-1183; Phone: (+34) 958 244022;
Email: rachid@ugr.es

Authors

José Manuel Botubol-Ares - Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s / n, Torre Sur, 4a planta, University of Cádiz, 11510 Cádiz, Spain; © orcid.org/0000-0002-2312-612X
María Jesús Durán-Peña - Departamento de Química Orgánica, Facultad de Ciencias, Campus Universitario Río San Pedro s / n, Torre Sur, 4a planta, University of Cádiz, 11510 Cádiz, Spain

Fermín Jiménez - Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain
Ramón Alvarez-Manzaneda - Area de Química Orgánica, Departamento de Química y Física, Universidad de Almería, 04120 Almería, Spain
Enrique Alvarez-Manzaneda - Departamento de Química Orgánica, Facultad de Ciencias, Instituto de Biotecnología, Universidad de Granada, 18071 Granada, Spain; © orcid.org/0000-0002-3659-4475
Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.joc.1c00560

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the Spanish Ministry of Economy and Competitiveness (Project CTQ2014-56611-R/BQU) for financial support and for the predoctoral fellowship granted to F.J. and the Regional Government of Andalucia (Project P11-CTS-7651) for financial support and assistance provided to the FQM-348 group. J.M.B.A. and M.J.D.P. thank the University of Cádiz for financial support (Ayudas de Investigación Plan Propio).

REFERENCES

(1) For an example of the use of Taxol, see: Kanda, Y.; Ishihara, Y.; Wilde, N. C.; Baran, P. S. Two-phase total synthesis of taxanes: Tactics and strategies. J. Org. Chem. 2020, 85, 10293-10320.
(2) For an example of the use of Artemisin, see: D'Alessandro, S.; Scaccabarozzi, D.; Signorini, L.; Perego, F.; Ilboudo, D. P.; Ferrante, P.; Delbue, S. The use of antimalarial drugs against viral infection. Microorganisms 2020, 8, 85.
(3) For an example of the use of Cantharidin, see: Naz, F.; Wu, Y.; Zhang, N.; Yang, Z.; Yu, C. Anticancer attributes of Cantharidin: Involved molecular mechanisms and pathways. Molecules 2020, 25, 3279.
(4) (a) For a recent review concerning the total synthesis of complex terpene natural products, utilizing terpene building blocks, see: Brill, Z. G.; Condakes, M. L.; Ting, C. P.; Maimone, T. J. Navigating the chiral pool in the total synthesis of complex terpene natural products. Chem. Rev. 2017, 117, 11753-11795. (b) Zentar, H.; Arias, F.; Haidour, A.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-Manzaneda, E. Protecting-group-free synthesis of cassanetype furan diterpenes via a decarboxylative dienone-phenol rearrangement. Org. Lett. 2018, 20, 7007-7010. (c) Gutierrez, P.; Altarejos, J.; Linares-Palomino, P. J.; Chahboun, R.; Alvarez-Manzaneda, E. Synthesis of cassane-type diterpenes from abietane compounds: the first synthesis of taepeenin F. Org. Chem. Front. 2018, 5, 2537-2541. (d) Hung, K.; Hu, X.; Maimone, T. J. Total synthesis of complex terpenoids employing radical cascade processes. Nat. Prod. Rep. 2018, 35, 174-202. (e) Gil, J. A.; Arias, F.; Chahboun, R.; AlvarezManzaneda, E. Synthesis of cyclosiphonodictyol A and its bis(sulfato). J. Org. Chem. 2020, 85, 3799-3805. (f) Leger, P. R.; Kuroda, Y.; Chang, S.; Jurczyk, J.; Sarpong, R. C-C bond cleavage approach to complex terpenoids: Development of a unified total synthesis of the phomactins. J. Am. Chem. Soc. 2020, 142, 15536-15547. (g) Liu, W.; Hong, B.; Wang, J.; Lei, X. New strategies in the efficient total syntheses of polycyclic natural products. Acc. Chem. Res. 2020, 53, 2569-2586. (h) Harmange Magnani, C. S.; Thach, D. Q.; Haelsig, K. T.; Maimone, T. J. Syntheses of complex terpenes from simple polyprenyl precursors. Acc. Chem. Res. 2020, 53, 949-961. (i) Shen, Y.; Li, L.; Xiao, X.; Yang, S.; Hua, Y.; Wang, Y.; Zhang, Y.-W.; Zhang, Y. Site-specific photochemical desaturation enables divergent syn-
thesis of Illicium sesquiterpenes. J. Am. Chem. Soc. 2021, 143, 32563263.
(5) Matsumoto, T.; Usui, S.; Morimoto, T. A convenient synthesis of (\pm)-taxodione, (\pm)-ferruginol, and (\pm)-sugiol. Bull. Chem. Soc. Jpn. 1977, 50, 1575-1579.
(6) Matsumoto, T.; Ohmura, T.; Usui, S. The revised structure of dispermol and total synthesis of maytenoquinone, dispermol, and dispermone. Bull. Chem. Soc. Jpn. 1979, 52, 1957-1963.
(7) Huang, J.; Foyle, D.; Lin, X.; Yang, J. Total synthesis and biological evaluation of an antifungal tricyclic o-hydroxy-p-quinone methide diterpenoid. J. Org. Chem. 2013, 78, 9166-9173.
(8) (a) Alvarez-Manzaneda, E.; Chahboun, R.; Cabrera, E.; Alvarez, E.; Alvarez-Manzaneda, R.; Meneses, R.; Es-Samti, H.; Fernández, A. A very efficient route toward the 4a-methyltetrahydrofluorene skeleton: Short synthesis of (\pm)-dichroanone and (\pm)-taiwaniaquinone H. J. Org. Chem. 2009, 74, 3384-3388. (b) Node, M.; Ozeki, M.; Planas, L.; Nakano, M.; Takita, H.; Mori, D.; Tamatani, S.; Kajimoto, T. Efficient asymmetric synthesis of abeo-abietane-type diterpenoids by using the intramolecular heck reaction. J. Org. Chem. 2010, 75, 190-196.
(9) De Graaf, S. A. G.; Oosterhoff, P. E. R.; van der Gen, A. Direct alkylation of α, β-unsaturated aldehydes. Tetrahedron Lett. 1974, 15, 1653-1656.
(10) Hall, J. B.; Wiegers, W. J. Process for the alkylation of α, β unsaturated aldehydes. U.S. Patent 4,010,207 A, 1977.
(11) (a) Kimura, M.; Horino, Y.; Mukai, R.; Tanaka, S.; Tamaru, Y. Strikingly simple direct α-allylation of aldehydes with allylic alcohols: Remarkable advance in the Tsuji-Trost reaction. J. Am. Chem. Soc. 2001, 123, 10401-10402. (b) Bernhard, Y.; Thomson, B.; Ferey, V.; Sauthier, M. Nickel-catalyzed α-allylation of aldehydes and tandem aldol condensation/allylation reaction with allylic alcohols. Angew. Chem., Int. Ed. 2017, 56, 7460-7464.
(12) Yamashita, M.; Matsumiya, K.; Nakano, K.-i. Organic synthesis via dialkylhydrazones. Part 9. α-Alkylation of α, β-unsaturated aldehyde dimethylhydrazones accompanied with the double bond migration to β, γ. Bull. Chem. Soc. Jpn. 1993, 66, 1759-1763.
(13) Yang, X.; Nath, D.; Morse, J.; Ogle, C.; Yurtoglu, E.; Altundas, R.; Fleming, F. Cyclic alkenenitriles: Copper-catalyzed deconjugative α-alkylation. J. Org. Chem. 2016, 81, 4098-4102.
(14) Shi, H.-N.; Huang, M.-H.; Hao, W.-J.; Tu, X.-C.; Tu, S.-J.; Jiang, B. Synthesis of diastereoenriched 1-indanones via double-base cooperatively promoted 1,4-oxo-migration/cyclization of β-alkynyl ketones. J. Org. Chem. 2019, 84, 16027-16035.
(15) Khartulyari, A. S.; Kapur, M.; Maier, M. E. Concise strategy to the core structure of the macrolide Queenslandon. Org. Lett. 2006, 8, 5833-5836.
(16) Akbaba, Y.; Türker Balaydın, H.; Göksu, S.; Şahin, E.; Menzek, A. Total synthesis of the Biologically active, naturally occurring 3,4-dibromo-5-[2-bromo-3,4-dihydroxy-6-(methoxymethyl)benzyl]-benzene-1,2-diol and regioselective O-demethylation of aryl methyl ethers. Helv. Chim. Acta 2010, 93, 1127-1135.
(17) Drew, S. L.; Lawrence, A. L.; Sherburn, M. S. Total synthesis of Kingianins A, D, and F. Angew. Chem., Int. Ed. 2013, 52, 4221-4224.
(18) Spring, D. R.; Krishnan, S.; Blackwell, H. E.; Schreiber, S. L. Diversity-oriented synthesis of biaryl-containing medium rings using a one bead/one stock solution platform. J. Am. Chem. Soc. 2002, 124, 1354-1363.
(19) Cantillo, D.; de Frutos, O.; Rincon, J. A.; Mateos, C.; Kappe, C. O. A scalable procedure for light-induced benzylic brominations in continuous flow. J. Org. Chem. 2014, 79, 223-229.
(20) (a) Barrero, A. F.; Alvarez-Manzaneda, E. J.; Chahboun, R. Synthesis of wiedendiol-A and wiedendiol-B from labdane diterpenes. Tetrahedron 1998, 54, 5635-5650. (b) George, J. H.; Baldwin, J. E.; Adlington, R. M. Enantiospecific, biosynthetically inspired formal total synthesis of (+)-Liphagal. Org. Lett. 2010, 12, 2394-2397. (c) Dethe, D. H.; Sau, S. K.; Mahapatra, S. Biomimetic enantioselective total synthesis of (-)-Mycoleptodiscin A. Org. Lett. 2016, 18, 6392-6395.
(21) For the synthesis of the benzofluorene derivative Dasyscyphin E using Δ^{7}-drimenal as electrophile see: Jiménez, F.; Fernández, A.; Boulifa, E.; Mansour, A. I.; Alvarez-Manzaneda, R.; Chahboun, R.; Alvarez-Manzaneda, E. Diastereoselective intramolecular Heck reaction assisted by an acetate group: Synthesis of the decahydrobenzofluorene derivative Dasyscyphin E. J. Org. Chem. 2017, 82, 9550-9559.
(22) Preite, M. D.; Cuellar, M. A. A new reaction: lead(IV) acetatemediated oxidative fragmentation of homoallylic alcohols. Chem. Coттии. 2004, 1970-1971.
(23) (a) Bertrand, M. P.; Surzur, J. M.; Boyer, M.; Mihailović, M. L. Mechanisms of oxidation of ethylenic alcohols by lead tetraacetate. ESR evidence for the influence of experimental conditions on the homolytic or heterolytic course of the reaction. Tetrahedron 1979, 35, 1365-1372. (b) Paredes, M. D.; Alonso, R. Oxidation of α hydroxysilanes by lead tetraacetate. Tetrahedron Lett. 1999, 40, 3973-3976.
(24) Aslam, S. N.; Stevenson, P. C.; Phythian, S. J.; Veitch, N. C.; Hall, D. R. Synthesis of cicerfuran, an antifungal benzofuran, and some related analogs. Tetrahedron 2006, 62, 4214-4226.

[^0]: Received: March 9, 2021
 Published: June 15, 2021

