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Volumetric metamaterials 
versus impedance surfaces 
in scattering applications
S. Kosulnikov1*, D. Filonov2, A. Boag1 & P. Ginzburg1,2

Artificially created media allow employing material parameters as additional valuable degrees of 
freedom in tailoring electromagnetic scattering. In particular, metamaterials with either negative 
permeability or permittivity allow creating deeply subwavelength resonant structures with relatively 
high scattering cross-sections. However, the equivalence principle allows replacing volumetric 
structures with properly designed curved impedance surfaces, ensuring the same electromagnetic 
properties. Here, we examine this statement from a practical standpoint, considering two structures, 
having a dipolar electric resonance at the same frequency. The first realization is based on arrays of 
inductively loaded electric dipoles printed on stacked circuit boards (a volumetric metamaterial), while 
the second structure utilizes a 4-wire spiral on a spherical surface (surface impedance realization). 
An intermediate conclusion is that the surface implementation tends to outperform the volumetric 
counterparts in the scenario when a single resonance is involved. However, in the case where multiple 
resonances are overlapping and lossy materials are involved, volumetric realization can have an 
advantage. The discussed structures are of significant importance to the field of electrically small 
antennas, superdirective antennas, and superscatterers, which find use in wireless communications 
and radar applications, to name just a few.

Controlling scattering from an object is among main objectives of applied electromagnetic theory and related 
applications. Various approaches have been developed and employed in antenna design, and in certain cases, 
they are applied to enhance scattering cross-sections and improve directivities1.

Enhancement of scattering cross-sections has a broad range of applications in many wireless communication 
systems. Increasing an object’s visibility allows performing a reliable remote detection in, e.g., radio frequency 
identification (RFID) applications, airborne, and marine beacons-based monitoring, to name just a few. While 
corner reflectors are typically used to improve the visibility at high frequencies [typically X-band (8–12 GHz) 
and higher], those devices become bulky in MHz realizations. Increasing visibility for VHF (very high frequency 
band) and UHF radars (ultra high frequency band of 30–3000 MHz), capable of identifying distant objects, even 
over the horizon, by using miniature scatterers might be beneficial.

Apart from its applied significance, the subject of super scattering keeps attracting attention to pathways of 
braking commonly accepted limits in antenna theory. Electrically small antennas, satisfying a condition ‘ka < 1’ 
(k is a free space wavenumber, and a is the smallest radius of a sphere, enclosing the antenna) have inherently 
small bandwidth and directivities, bounded from above by well-known Chu-Harrington2, Geyi3 limits, and few 
other adjustments of those two. Scattering cross-sections of subwavelength structures obey a fundamental single-
channel limit of 

(

2l′ + 1
)

�
2/(2π) , where λ is the free space wavelength, and l′ is related to the orbital angular 

momentum of a multipolar resonance ( l′ = 1 is the electric or magnetic dipolar case). It is worth noting that in 
a vast majority of scenarios, dipolar resonances govern scattering properties. In the case of lossless structures, 
the value of a scattering cross-section is bounded from above by 3�2/(2π)4–7. In order to break this limit, several 
resonances within a subwavelength structure can be spectrally overlapped to increase either the scattering peak 
or its bandwidth. Similar ideas can be employed to increase the directivities of electrically small antennas. The so-
called Einstein’s needle radiation (extremely high directivity) can be obtained if a sufficient number of multipoles 
interfere constructively8. While several theoretical approaches to demonstrate this effect have been proposed, 
experimental realization remains extremely challenging. Practical limitations of a multiple resonances overlap 
approach have been discussed in the context of superdirective antennas and are related to tolerances in fabrication 
and internal losses within a practical device. Higher-order multipoles elevate the energy stored in the antenna 
near-field and, as a result, possess much higher ohmic losses in any practical case. Hence, a demonstration of new 
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approaches to superdirective antenna designs and superscatterers has both fundamental and practical outcomes. 
Metamaterials hold a promise to bring new approaches into the field, as they allow considering material degrees 
of freedom as additional parameters for electromagnetic design. Assessing the capabilities of metamaterials to 
improve electromagnetic characteristics in the field of superscattering is the objective here.

Quite a few metamaterial designs have been investigated since the first demonstration of electromagnetic 
invisibility. The concept of a ‘Cloaking Device’ was introduced in 20069,10 and has already gained considerable 
attention due to the emerging demand for invisibility  at the radio frequencies11–13 and for visible light14–17. The 
direct outcome of those approaches, motivating future developments in the field, is the requirement for materi-
als with anisotropic, spatially varying electric and magnetic susceptibilities, which cannot be found in naturally 
available materials. However, electromagnetic properties of artificially created periodic composites with sub-
wavelength nontrivially structured unit cells can be described in the frame of homogenization theories (e.g.,18–20) 
that suggest possibilities to achieve quite peculiar material parameters. For example, negative refractive index 
composites ( ε,µ < 0 ) were realized with arrays of spatially organized split-ring resonators and copper wires21–23. 
Another realization of efficient wideband directive antennas with a hyperbolic metamaterial24 is performed with 
a matching array of non-overlapping resonant elements25.

While interactions of bulk metamaterials, subject to a plane wave illumination, are relatively well understood, 
performances of metamaterial-based scatterers are less investigated. The main complexity to relate performances 
of experimentally achievable structures to their homogenized counterparts comes from the demand to account 
for nontrivially shaped granular boundaries and a relatively small number of unit cells within the scatterer’s vol-
ume—all these aspects are solely related to practical realizations. Nevertheless, an artificial magnon resonance 
in a deeply subwavelength metamaterial-based resonator has been recently demonstrated26. A spherical scatterer 
was shown to have a strong magnetic dipolar resonance at a frequency where effective permeability approaches 
the value of − 2 (in an analogy with a localized plasmon resonance in a small sphere, which is obtained for ε 
≈ − 2). However, the drawback of this approach is the relative complexity of the experimental realization. In 
particular, the granularity of unit cells, forming the structure, and moderate tolerance in their fabrication, can 
significantly lower the scattering cross-section, which can stay significantly below the possible theoretical upper 
limit of 3λ2/(2π). To reduce the impact of fabrication-related losses on scattering performances, one can consider 
an equivalent electromagnetic problem by utilizing one of the fundamental electromagnetic theorems, i.e., the 
surface equivalence principle27. It suggests the ability to replace a volumetric scatterer with an impedance surface, 
enclosing the volume of the initial structure. The new interior can be taken to be either a perfect electric conduc-
tor (practically a metal shell) (Love’s principle, e.g., 27) or an empty space. The knowledge of electromagnetic 
fields in the original problem allows calculating the required surface impedance, which can also be realized 
experimentally under certain circumstances. In the case of a dipolar electric resonance, this realization of an 
equivalent impedance surface is well known and is based on the so-called spherical helix antenna. The compre-
hensive analysis of subwavelength helical structure was reported in detail, e.g.,28.

The main goal of this work is to compare the electromagnetic characteristics of the volumetric dipolar scat-
terer and its counterpart, realized with the help of the equivalence surface impedance principle. Though these 
structures should provide the same responses from the theoretical standpoint, practical realizations might play 
a role. In particular, losses within metal elements, surface roughness, and other fabrication-related factors can 
significantly favor one realization over another—underlining the practical limitations of volumetric metamateri-
als and surface impedances is the objective of this investigation (yet in the context of a single resonance without 
co-locating several multipoles). Electromagnetic performances of the following structures will be compared: a 
metamaterial-based volumetric scatterer made of inductively loaded dipoles (Fig. 1a), a homogenized counterpart 
of the metamaterial structure (Fig. 1b), and a surface impedance equivalent—spherical helix (Fig. 1c).

Generally, the implementation of equivalent impedance on conformal surfaces is an extremely difficult prac-
tical task that does not have a unique solution. Our goal is to take the most simple and fundamental case—a 
spherical scatterer. This is a well-known and well-understood structure that has a complete closed-form analytical 
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Figure 1.   Electromagnetic scatterers. (a) Metamaterial-based volumetric scatterer made of inductively loaded 
dipoles. (b) Homogenized counterpart of the metamaterial structure. (c) Surface impedance equivalent—a 
4-wire spherical helix.
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solution. Hence, it allows eliminating all unnecessary factors that might affect the comparison between curved 
impedance surfaces and volumetric metamaterials.

The manuscript is organized as follows: the metamaterial design is discussed first and then followed by an 
analysis of metamaterial-based scatterers. The surface equivalent (helical spiral) is analyzed next. A detailed 
comparison between electromagnetic responses of volumetric and surface structures comes before the “Outlook 
and conclusion”.

Design of negative permittivity metamaterial
Natural materials with negative permittivity at MHz–GHz spectral ranges are abundant in nature. Nevertheless, 
metamaterial counterparts can be constructed from ordered arrays of subwavelength resonators, e.g.,11. Dipolar 
resonances of individual unit cells hybridize via near-field coupling and give rise to a collective mode associ-
ated with an effective susceptibility. If resonant responses are strong enough, effective permittivity ε of an array 
can cross zero and become negative. To achieve a strong resonance in a subwavelength dipole, the latter can be 
inductively loaded. In this case, the penalty comes in a bandwidth, which shrinks with the dipole’s size decrease, 
according to the Chu-Harrington limit29. Further size reduction of a unit cell will imply having a requirement 
on high fabrication tolerance; otherwise, dipolar resonances in adjacent cells will not hybridize.

Our design is based on the methodology presented in26. The method assumes a two-port system where the 
ports are positioned along the direction of the propagating electromagnetic wave. The effective permittivity and 
permeability are extracted from the complex reflection and transmission coefficients. The structure of the unit 
cell appears in the inset to Fig. 1a). The operational frequency was chosen to be around 300 MHz, relevant to 
long-range radar applications. Furthermore, in this case, the unit cell sizes (should be much smaller than the 
operational wavelength, and quite a few ones should fit the scatterer to reduce the impact of granular boundaries) 
are appropriate for fabrication with standard printed board techniques and lumped elements’ soldering. In the 
following studies, we will compare the performances of idealized lossless unit cells with their realistic counter-
parts, taking into account material losses within constitutive elements.

After a set of optimizations of the dipole sizes and the loading impedance, the following parameters of the 
unit cell were found: l = 11 mm is the entire length of the dipole; w = 0.5 mm is the width of the printed dipole 
strip; g = 1 mm is the dipole feeding gap; tsubstr = 1.5 mm is the substrate thickness, hmetal = 0.1 mm is the thick-
ness of the metal layer, a = 12 mm is the array periodicity in XY-plane, and az = 8 mm is the period between 
the layers. The inductive load in the dipoles’ gap is L1 = 2400 nH for the lossy case and L2 = 8000 nH for the 
lossless thin wire approximation case. The perspective view of the model is presented in Fig. 1a. The thin blue 
lines show the contour of an imaginary 60 mm radius sphere, enclosing the structure. We used a metal with the 
electric conductivity σ = 5.96 · 107 S/m, corresponding to “Copper (pure)” from the CST Studio Suite material 
library and Isola IS680 AG338 (with ε = 3.38 and tgδ = 0.0026 ) for the substrate material to mimic volumetric 
losses of realistic metamaterials. In the case of lossless structure studies, a perfect electric conductor (PEC) as a 
material and a thin wire approximation for the dipoles were used.

The results of the parametric retrieval, made with the waveguide configuration, appear in Fig. 2, are demon-
strating a range of frequencies, where negative permittivity is obtained. We used the Frequency Solver method 
with adaptive tetrahedral meshing in the CST Studio Suite as the most accurate solution for an electrically small 
geometry. An almost perfect complex Lorentzian shape of the effective medium dispersion can be observed for 
the realistic lossy case.
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Figure 2.   Extracted material parameters dispersion. Effective permittivity component along the direction of the 
dipoles. (a) Lossy and (b) lossless (thin wire approximation) cases.
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Lossless unit cells, however, possess much more complicated responses. Instead of a single hybridized mode, 
other high order contributions start playing a role. Higher order multipoles have stronger confinement and, 
hence, are usually suppressed by lossy materials. In the lossless case, however, they can contribute to extra-
complexity of the homogenization procedure, e.g., spatial dispersion20,30–32, which can also affect scattering 
performances, e.g.,17,33. Moreover, standard homogenization approaches (as the one used here) can fail to predict 
the behavior close to high-Q resonances. Nevertheless, we will utilize effective parameters in the lossless case by 
considering frequencies away from the resonance.

Volumetric metamaterial scatterer
The bulk metamaterial, investigated in the previous section, will be used to design scatterers with a finite extent. 
Here, in contrast  to homogeneous materials, the granularity of the unit cell will affect scattering performances. 
In a theoretical case, where quite a few unit cells form the scatterer, the impact of modified boundary conditions 
on the scattering cross-section is not very high34. However, practical realizations must account for experimental 
aspects, suggesting reducing the number of unit cells within a scatterer and compromising on performances. 
The impact of the granularity (a small number of unit cells in a volume) on scattering cross-sections will be 
investigated next. We use the transient analysis with a varied step of hexahedral meshing in the CST Studio Suite 
software for these simulations.

Figure 3 summarizes the results, comparing scattering cross-sections of metamaterial-based spheres with 
different radii with their homogenized counterparts (losses are fully accounted in both cases). The number of 
unit cells within a scatterer is proportional to its volume. It can be seen that only 3 unit cells fit the 10 mm radius 
structure. It is quite expected that scattering performances, in this case, are far from those predicted by Mie 
theory (red curves in Fig. 3). However, a 30 mm radius structure already comprises 125 unit cells. Its response 
reasonably fits the homogeneous case (note that scattering cross-section spectra are presented on a logarithmic 
scale; hence only orders of magnitude are visible for the comparison).

A further increase of the size and, as a result, elimination of the granularity impact on scattering allows 
approaching the fundamental single channel limit in scattering, represented with a dashed line on the figures. 
Metamaterial structure with R = 60 mm (will be used as a reference in the next section) is still below the single-
channel limit; nevertheless, a relatively good spectral fit to Mie theory facilitates utilizing the homogenization 
models in this case. Fast oscillations are quite typical in numerical modeling, where the time-domain solver 
is applied to complex structures with moderately high-quality resonances. Electromagnetic energy remains 
within a structure, and residuals are bounces inside before they leave. Those fast oscillations can be cleaned by 
postprocessing, e.g., by applying a low pass filter. Here we did not do that, since the convergence is rather good.

It is worth noting that the metamaterial approach allows disentangling the size of the scatterer from meta-
material properties, if a sufficient number of unit cells fits inside the volume. It will be seen in the next section 
that the impedance surface approach might face difficulties in this type of scaling.
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Figure 3.   Scattering cross-section spectra of subwavelength spheres, numerical analysis. (a) Metamaterial-
based scatterers (geometries are in the upper insets). (b) Homogeneous spheres, with the parameters, retrieved 
from Fig. 2, lossy case). Different sizes correspond to solid color lines, elaborated in the captions. The dashed 
black line shows a theoretical single-channel limit for the dipolar scatterer. Insets are the granular metamaterial 
scatterers, analyzed in panel (a).
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Surface impedance‑based scatterer
Surface equivalent impedance can be found by applying discontinuity boundary conditions for electromagnetic 
fields, found by solving a full scattering problem. While those calculations provide quite generic results, practical 
implementation of the obtained impedances can be rather challenging. However, in relatively simple scenarios, 
surface equivalents can be realized in practice. For example, it has been shown that helical scatterers (Fig. 4a) 
operating at a fundamental dipolar resonance, are surface equivalents of subwavelength spheres with negative 
permittivity. Several designs of helixes were reported in28,35, verifying this claim. The objective now is to compare 
those surface equivalents with metamaterials in terms of scattering performances, taking into account practical 
limitations.

Helical scatterers were constructed by using the formulation from28,35. Here, four identical wires were twisted 
around the structure’s axis and mapped on an imaginary spherical surface (Fig. 4a). We used a Frequency Solver 
simulation method with a fairly dense tetrahedral meshing in the CST Studio Suite as a more accurate solution 
for this type of relatively not complex structure, which, however, requires to discretize the shape of the round 
cross-section of a helix-wire with the finite subwavelength radius. Available degrees of freedom for optimization 
are (1) the number of the wire’s turns, (2) the radius of the enclosing sphere, and (3) the thickness of the wires, 
which has a minor impact on the electromagnetic response if the wires are kept to be relatively thin. It is worth 
noting that (1) and (2) define the wires’ overall length. To review the tuning capabilities, the number of turns will 
be kept constant (1 turn), whereas the radius of the enclosing sphere is varied. Table 1 summarizes the results:

It can be seen from Table 1 that the resonant conditions are mostly governed by the ratio 2L/λ, which appears 
to be nearly constant. This kind of behavior is, indeed, expected from folded dipoles. Mutual inductance, emerg-
ing in folded geometries, introduces additional corrections to the resonant frequency, which is shifted in respect 
to λ/2 condition. For very small radii, the wires’ thickness starts playing a role too.

Further tuning of the resonant frequency beyond the capabilities, summarized in Table 1, can be achieved 
by introducing additional capacitive and inductive loads. For example, introducing lumped elements into polar 
and equatorial points of the structure leads to the increment of the system’s entire impedance. As a result, the 

Frequency, MHz

101

102

103

104

105

106

107

Sc
at

te
rin

g
, m

m
2

3 2/2
r = 10 mm
r = 30 mm
r = 60 mm

0              500          1000         1500          2000         2500

R

L (a)

(b)

R

L

Figure 4.   (a) Schematics of the 4-wire helical scatterer and the parameters used in the numerical modeling. (b) 
Total scattering cross-section as the function of frequency for three different structures (the parameters are in 
panel (a), the wires’ material is copper).

Table 1.   Resonance tuning of a spherical helix scatterer.

Rsphere , mm rwire , mm Wire’s length L , mm Resonant frequency f0 , MHz Resonant wavelength � , mm 2L/� R/�

10 0.5 54.17 2011 149,18 0,73 0,067

30 1.32 162.5 663 452,49 0,72 0,067

60 1.32 324.99 315.8 949,97 0,68 0,063
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resonant shifts to longer wavelengths. It is worth noting that the resonant tuning with a metamaterial allows 
moving the resonance to both higher and lower frequencies, which can be an advantage.

Figure 4 summarizes the results of scattering cross-section spectra for several geometries. The resonance 
tuning can be clearly seen along with the peaks, which reach a single-channel scattering limit, as it was predicted 
theoretically. Notably, material losses (copper has been used) almost do not affect the performances.

Practical implementation of helical scatterers can be based on a manual tilting of wires or with advanced 
additive manufacturing techniques, e.g.,36,37.

Comparison between metamaterials and impedance surfaces
After discussing the electromagnetic performances of metamaterial-based scatterers and helical structures, their 
performances can be compared. From the theoretical standpoint, those structures are predicted to be equivalent, 
whereas practical aspects can set several restrictions that will be discussed hereinafter.

The considered structures were tuned to resonate at the same frequency band. Nevertheless, they possess 
certain deviations, one in respect to another. Table 2 summarizes the performances of seven different realiza-
tions. The ‘4-wire helix, lossless’ is the helical scatterer made of PEC—as it will be seen later—it shows the best 
scattering performances. The ‘4-wire helix, lossy’ is the same structure as the previous one, though the material 
is copper. The ‘homogeneous sphere, lossless’ is the sphere with material parameters corresponding to those in 
Fig. 2a with a nulled imaginary part of permittivity (those material parameters are not causal and taken for a 
reference only. The ‘homogeneous sphere, lossy’ is the same structure but with both real and imaginary permit-
tivity given in Fig. 2a. The ‘metamaterial, lossless—the thin wire approximation’ corresponds to free-standing 
PEC wires without a substrate, the ‘metamaterial, lossless—dipoles on a lossless substrate’ resemble practical 
realization in terms of the geometry, but the material losses are nulled, and the ‘metamaterial, lossy’ is the replica 
of the practical realization.

In order to perform a fair comparison between the structures from Table 2, the following normalization per 
each scatterer has been applied: (1) the frequency axis was divided by a resonant frequency (i.e., each object 
resonates at f0 = 1), (2) the scattering cross-section is normalized to �2res , where �res is the resonant wavelength. 

Table 2.   Comparison of scattering performances between different spherical structures with all spheres’ radius 
R = 60 mm.

System Parameters
Maximal scattering cross-section 
(m2) Resonant frequency (MHz)

4-wire helix, lossless
rwire = 1.32 mm
Nwireturns = 1
Material—PEC

0.466 315.9

4-wire helix, lossy
rwire = 1.32 mm
Nwireturns = 1
Material—copper

0.455 315.8

Homogeneous sphere, lossless ε(f ) = ε
′

+ 0′ ′

[extracted dispersion—Fig. 2(a)] 0.505 300.9

Homogeneous sphere, lossy ε(f ) = ε
′

+ ε′ ′

[extracted dispersion—Fig. 2(a)] 0.116 300.9

Metamaterial, lossless—thin wire 
approximation

l = 11 mm
w = 0 mm
g = 1 mm
hmetal = 0.1 mm
a = 12 mm
az = 8 mm
L = 2400 nH
PEC
No substrate

0.520 283.9

Metamaterial, lossless—dipoles on 
a lossless substrate

l = 11 mm
w = 0.5 mm
g = 1 mm
hmetal = 0.1 mm
a = 12 mm
az = 8 mm
L = 2400 nH
PEC
tsubstr = 1.5 mm
Isola IS680 AG338 ε′ = 3.38
,tg(δ) = 0

0.157 295.6

Metamaterial, lossy

l = 11 mm
w = 0.5 mm
g = 1 mm
hmetal = 0.1 mm
a = 12 mm
az = 8 mm
L = 2400 nH
Copper σ = 5.96 · 107 S/m
tsubstr = 1.5 mm
Isola IS680 AG338 ε′ = 3.38
,tg(δ) = 0.0026

0.1 295.6
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The numerical results are summarized in Fig. 5 and compared to the theoretical single-channel scattering limit. 
The following observations can be done: spiral structures and idealized homogenous spherical scatterer reach 
the single-channel limit and slightly overcome it (it is a minor contribution of higher-order modes. However, 
metamaterial-based scatterers demonstrate several times weaker performances; nevertheless, they are at the 
same order of magnitude with the theoretical limit (recall Fig. 2, where the differences are almost unseen on the 
logarithmic scale). The homogenized lossy model of metamaterials predicts their behavior quite well. The results 
for the thin-wire representation of the volumetric structure can be considered in separate. Fast oscillations in the 
scattering-cross section spectrum are a manifestation of higher-order modes, which are not damped owing to 
vanishing losses. Similar behavior is observed in Fig. 2(b), where the homogenization procedure faced difficul-
ties in retrieving effective material properties next to the resonance. Nevertheless, the scattering cross-section 
at the peak reaches the theoretical limit.

Apart from the scattering peak, the bandwidth also plays a critical role. Being subject to the Chu–Harrington 
limit, it is extracted from radiation reaction considerations, which completely neglect the dispersion. It can be 
seen in Fig. 5 that the bandwidth of all the structures is quite different; nevertheless, they all operate at the elec-
trical resonance. While the surface equivalence principle predicts the same performances at a single frequency, 
aspects of dispersion are usually neglected. However, bandwidth consideration is important in many practical 
applications. In this context, metamaterials can provide an additional degree of freedom in designing electrically 
small and efficient scatterers. Notably, the homogeneous sphere simulations were performed with the Frequency 
Solver method and tetrahedral meshing in the CST Studio Suite (both for lossless and lossy cases) as it takes a 
more accurate result of the extracted material parameters than the Time Domain solver method (which takes 
parameters in accordance with its own approximation methods and might lead to an inaccurate solution). These 
results fully agree with the Mie theoretical analysis discussed in the previous section.

Outlook and conclusion
Electrically small antennas38 and scatterers find use in many applications, including wireless communications. 
The main drawback of using small structures comes through their reduced scattering efficiencies and operational 
bandwidths compared to bigger counterparts. Quite a few limiting criteria have been derived over the years, 
with the Chu-Harrington limit being the most celebrated one. Although many proposals and demonstrations to 
surpass those limits have been reported, introducing additional degrees of freedom to electromagnetic designs 
can be beneficial. The field of metamaterials suggests employing tailored effective material parameters to improve 
antennae and scatterers’ performances.

Our current investigation aimed to test the metamaterial approach from the applied standpoint, which con-
siders practical limitations. The surface equivalence principle allows replacing a volumetric scatterer with an 
impedance surface, which grants the same electromagnetic properties, including the far-field scattering. However, 
practical realizations, in many cases, can challenge the theory. Here, we investigated this question by comparing 

Figure 5.   Comparison between the scattering performances of different objects indicated in the legend and 
Table 2. The frequency axis is normalized to a resonant frequency and the peak to a resonant wavelength 
squared per each scatterer individually. The dashed black line is the theoretical single-channel limit. The upper 
inset is the far-field scattering diagram of an electric dipole (the identical shape to each structure here).
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metamaterial-based scatterers with their surface counterparts. In particular, arrays of inductively loaded wires 
replicate materials with effective negative permittivity. Constructing subwavelength scatterers from the dipole-
media allows emulating the phenomenon of localized plasmon resonance (e.g.,39,40) if ε ≈ − 2 condition for a 
deeply subwavelength sphere is satisfied. The surface equivalent of this structure is a helical spiral on a spherical 
surface. These two geometries (the spiral and the metamaterial) were compared in terms of scattering efficiencies 
and the bandwidth. We found that in the case of these simple geometries, the surface equivalent outperforms the 
metamaterial in both parameters. Metamaterials with finite-size unit cells suffer from additional losses associ-
ated with rough effective boundaries and internal material losses. The latter is associated with realistic lumped 
elements and substrates forming the structure.

On the other hand, the helical structure can be implemented with low-loss metals (copper) and has a very 
smooth form factor. While the surface equivalence principle predicts obtaining the same scattering peak as the 
volumetric structure, it does not make any prediction on the bandwidth. The bandwidth strongly depends on a 
specific realization, and it is inherently linked with geometric layout, material dispersion, or even both. It is worth 
noting that metamaterial designs seem to be more flexible in obtaining complex functionalities. In the context 
of this investigation, pushing the resonance of the helical structure to higher frequencies is rather challenging. 
At the same time, this task can be straightforwardly addressed if the metamaterial design is used.

Furthermore, in cases when higher-order spectrally overlapping resonances are required in the design, the 
advantages of one of the approaches over another are still an open question. This type of analysis is highly  ben-
eficial for the construction of super-directive antennas and super-scatterers. While the performed compari-
son is strongly linked to specific realizations (helical impedance surfaces and dipole-based metamaterial), the 
beforehand-discussed trends are quite general. Helical structures have been a topic for optimization for quite 
a while and demonstrate next to optimal performances, as demonstrated in, e.g.,28,35. Effective permittivity in 
metamaterial realizations is typically based on dipole arrays. While unit cells can have quite diverse designs, the 
basic operation principle is the hybridization of dipolar modes. In this case, the main limitation is the granularity 
associated with finite-size unit cells, which limits the performance, as demonstrated here.
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