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Peptides often have conformational preferences. We simulated 133 peptide 8-mer fragments from six different
proteins, sampled by replica-exchange molecular dynamics using Amber7 with a GB/SA (generalized-Born/solvent-
accessible electrostatic approximation to water) implicit solvent. We found that 85 of the peptides have no preferred
structure, while 48 of them converge to a preferred structure. In 85% of the converged cases (41 peptides), the
structures found by the simulations bear some resemblance to their native structures, based on a coarse-grained
backbone description. In particular, all seven of the b hairpins in the native structures contain a fragment in the turn
that is highly structured. In the eight cases where the bioinformatics-based I-sites library picks out native-like
structures, the present simulations are largely in agreement. Such physics-based modeling may be useful for
identifying early nuclei in folding kinetics and for assisting in protein-structure prediction methods that utilize the
assembly of peptide fragments.
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Introduction

Peptide fragments of proteins often have intrinsic propen-
sities for the formation of their native conformations. For
example, NMR experiments [1] show that long peptide
fragments have native-like conformations [2–7]. Some short
peptides in solution have also been shown to adopt their native
secondary structures: a helices [8,9] and b hairpins [10–14].

As a consequence, peptide conformational propensities
that are taken from the protein databank (PDB) [1–17] are
now widely used in protein-structure prediction algorithms.
A popular set of peptide fragment conformations is the I-sites
library of David Baker and his co-workers [18,19]. Extensive
libraries of peptide fragments have now been compiled [20–
22] and have become essential elements in protein-prediction
methods [23]. From the recent CASP protein–structure
prediction competition, it was noted that most of the
successful de novo methods use a fragment-based approach
[23,24]. Typically, a candidate protein native structure is
spliced together from fragments that are extracted from a
database of conformations, and then treated to conforma-
tional scoring and optimization.

Can physical models capture these conformational pro-
pensities of peptides? There is good evidence that they can.
First, simple physical models can reproduce the structural
biases of certain peptide fragments [25–28]. To date, however,
such studies have largely focused on selected peptides that are
expected to fold. Our interest here is to know whether
physical models can also discriminate peptides that fold from
peptides that do not. Second, in molecular dynamics
simulations of small peptides, the ensemble of conformers
divides into well-defined clusters. This has been found for a
penta–b peptide in explicit water [29,30], and for a small a-
helical peptide [31]. Third, molecular dynamic simulations of
small peptides reproduce the a-helical propensities of certain
fragments from the I-sites sequence-structure library [32].
Many models of protein folding kinetics assume that peptide
fragments of the chain that have preferred conformations are
responsible for nucleating the folding process [33–35].

Here, we study 133 peptide 8-mer fragments from six
different proteins of different folds, using replica-exchange
molecular dynamics sampling [36] in Amber7, with the
parm96 parameters and the GB/SA (generalized-Born/sol-
vent-accessible electrostatic approximation to water) implicit
solvent model of Tsui and Case [37]. We chose this force field
as it is the only implicit-solvation model that can adequately
reproduce the native state of the b hairpin of protein G [38].
We are interested in whether this physical model can

identify native-like secondary structures in peptide frag-
ments. If so, it indicates the importance of local interactions
in those cases. Our study involves complete coverage of those
proteins. For each protein, we systematically generate a series
of 8-mer peptide fragments with overlapping sequences from
the original protein sequence. Neighboring fragments have a
five-residue overlap (and three-residue gap). We chose 8-mers
because this length appears adequate to identify elements of
structure in PDB studies [19] and because much longer
fragments become too expensive for computer simulations.
We simulate each peptide using 16 replicas for 5 ns/replica,
and keep only the last 1 ns.
In each case, we determine whether the peptide has

converged to its native conformation in the folded protein.
We consider two measures of convergence. First, we monitor
the RMSD between the simulated conformations and the
experimental PDB structure of that peptide. However, for
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prediction purposes—determining whether a peptide has a
converged structure in the absence of knowledge of its native
structure—we develop another measure based on the backbone
mesostring, which is a coarse-grained description of the
backbone conformational ensemble.

A mesostring is a one-dimensional list of the mesostates of
each residue in a peptide. A mesostate refers to a discrete
region of the /–w angles of the backbone of a residue.
Mesostate [a] corresponds to a helical conformation, includ-
ing the a helix, 310 helix, or p helix. Mesostate [b] corresponds
to an extended b-strand conformation. Mesostate [l] corre-
sponds to a left-handed helical conformation.

We use the mesostrings to cluster conformations in our
simulations. Based on the three mesostates described above,
an 8-mer has 38 ¼ 6,561 possible mesostrings. When each
simulation is completed, each 8-mer peptide will have
different populations for the 6,561 mesostrings, hence
different free energies. The mesostring that represents the
highest population (the lowest free energy) is called the ground
mesostring. We use the properties of the ground mesostring to
determine structural bias in a peptide. The ground meso-
strings are classified in terms of either a reverse-turn or a
helical-turn conformation (see Figure 1). We define a helical-
turn as a mesostring that contains at least four [a] mesostates
in a row, and a reverse-turn as a mesostring that contains
either the [bab] or [baab] motifs.

How do we know when a simulation has converged? We
calculate the backbone entropy using the Boltzmann formula
S¼�k Ri pi ln pi, where pi is the probability that the peptide is
in mesostring i. The backbone entropy is calculated over a
certain window in a trajectory, where the sum is made over
only the mesostrings that are observed in the window. The
backbone entropy S is useful for two purposes. First, it
measures for a given peptide the sharpness of the distribution
of probabilities of the mesostrings. The more peaked the
distribution is, and thus the more favored a mesostring is, the
lower is the backbone entropy. In this way, the backbone
entropy indicates whether any one conformation is substan-
tially favored over the others, for the given peptide. Second,
the backbone entropy should converge at equilibrium,
approaching an asymptotic value with time in the simulation.

Even if a new mesostring emerges late within the sampling (as
is often the case), it only changes the backbone entropy if it
has a significant population. We use the convergence of the
backbone entropy to indicate the convergence of the
simulation.
We study peptide fragments extracted from a series of well-

characterized proteins: protein G, protein L, protein A, and
a-spectrin, and chymotrypsin inhibitor. For each peptide, we
simulate the ensemble of states at equilibrium. We find that
some of these peptides exhibit strong structural biases. We
analyze the relationship of those structural biases to the
topology of the native structure.

Results/Discussion

Structural Bias in the Peptide Conformation Ensemble
Do peptides have native-like conformations? Figure 2

shows the simulated free-energy profiles of RMSD for the
peptides of protein G. We call the region of RMSD , 2 Å
native-like. We find that some fragments spend a significant
amount of time near their native structures (seq3, seq9, and
seq10). Some peptides have a broad conformational distri-
bution (seq14), while others have a narrow distribution
(seq16). Narrow distributions indicate structural bias in the
peptide. To investigate this structural bias further, we list in
Table 1 the lowest free-energy mesostrings of several protein

Figure 1. Representative Snapshots of Various Peptides from Protein G

The representative snapshot is the snapshot in the ground mesostring
with the lowest energy. The ground mesostring of seq1 and seq3 are
classed as reverse-turns, and the ground mesostring of seq9 and seq16
are classed as helical-turns.
DOI: 10.1371/journal.pcbi.0020027.g001
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Synopsis

To carry out specific biochemical reactions, proteins must adopt
precise three-dimensional conformations. During the folding of a
protein, the protein picks out the right conformation out of billions
of other conformations. It is not yet possible to do this computa-
tionally. Picking out the native conformation using physics-based
atomically detailed models, sampled by molecular dynamics, is
presently beyond the reach of computer methods. How can we
speed up computational protein-structure prediction? One idea is
that proteins start folding at specific parts of a chain that kink up
early in the folding process. If we can identify these kinks, we should
be able to speed up protein-structure prediction. Previous studies
have identified likely kinks through bioinformatic analysis of existing
protein structures. The goal of the authors here is to identify these
putative folding initiation sites with a physical model instead. In this
study, Ho and Dill show that, by chopping a protein chain into
peptide pieces, then simulating the pieces in molecular dynamics,
they can identify those peptide fragments that have conformational
biases. These peptides identify the kinks in the protein chain.

Short Peptides in Molecular Dynamics



G peptides. We show in Figure 1, a representative conforma-
tion of the ground mesostrings of these peptides.

Figure 3 shows the variation in backbone entropy for the
peptides of protein G. To calculate the variation in Figure 3,
we deliberately chose a smaller window (0.2 ns) than the
window used for the analysis (1 ns in Tables 1–4) to emphasize
the fluctuations. In most of the peptides, the backbone
entropy equilibrates almost immediately, with the exception
of seq16, which decreases to a near zero value at about 3.5 ns.
Consequently, we carry out the main analysis of the structural
bias over the last 1 ns of our 5-ns trajectories. The backbone
entropy specifically measures the conformation freedom in
the backbone. Backbone entropy is a useful measure only
when the free-energy basins in phase space are dominated by
the local conformation of the backbone, and not by nonlocal
interactions. As these peptides are short, nonlocal interac-
tions should be minimal, and the backbone entropy should be
the dominant entropy.

We define the existence of structural bias in a peptide in
terms of two properties of the ground mesostring. First, we
use the probability P1 in observing the ground mesostring,
which is derived from the relative free energies. Second, we
use the free-energy gap DF between the ground mesostring

and the next mesostring to measure the relative probability
of the ground mesostring from all the other mesostrings.
Specifically, we consider a peptide to have structural bias if P1

. 45% and DF . 0.6 kcal/mol. Of the 133 peptides we
studied, we found that 48 peptides have structural bias (bold
in Tables 2–4). We refer to such peptides as structured peptides.

Comparison of the Peptide Conformations with Native

Structures
What parts of the native structure are picked out by the

structured peptides? In Table 5, we list the ground meso-
strings of the peptides in simulation. We highlight (in bold)
the sequences that are structured and compare these
structured peptides to the native secondary structures. The
structured peptides adopt either a helical-turn or reverse-
turn. Figure 4 shows the location of the structured peptides
within the native fold topology. Below we describe the
relationship between the structured peptides, the native
structure, and experimental studies of the folding of these
proteins.
In the protein G fragments, we find eight structured

peptides that adopt a stable helical-turn conformation (Table

Figure 2. Free-Energy Profile of RMSD of Peptides from Protein G

DOI: 10.1371/journal.pcbi.0020027.g002

Figure 3. Variation of the Information Entropy of Mesostrings in the 17

Peptides from Protein G

The entropy at each point is calculated over a 0.2-ns window. The
backbone entropy holds fairly steady after 1 ns.
DOI: 10.1371/journal.pcbi.0020027.g003
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2). Three of these helical-turns pick out the lone a helix in the
native structure, another helical-turn picks out the turn
between the helix and N-terminal b hairpin, and the
remaining two helical-turns pick out the turn in the C-
terminal b hairpin. Another two structured peptides with
overlapping sequences adopt a stable reverse-turn conforma-
tion, which both pick out the same N-terminal hairpin-turn
in the native structure. The isolated C-terminal b hairpin has
been found experimentally to be stable [10], where this
stability is reflected in the structural bias found in the peptide
fragments of the hairpin-turn. The structured peptides
provide an explanation for an ingenious study of secondary
structure in protein G [39]. In that experiment, Minor and
Kim replaced the a-helix sequence with a sequence based on
the C-terminal hairpin. The mutant was able to fold into the
same topology, showing that there is a helical propensity in
the C-terminal hairpin. In the peptide studies, we find helical-
turns in both the a helix and the turn of the C-terminal
hairpin, which demonstrates the interchangeability of these
two sequences in our simulations.

In the protein L fragments, we find four structured
peptides that adopt a stable helical-turn conformation (Table
2). Two of the helical-turns pick out the a helix, while the
other two helical-turns pick out the two hairpin-turns in the
native structure. Another structured peptide adopts a
reverse-turn conformation, which picks out the C-cap of
the a helix.

In the fragments of the B domain of protein A, we found
three structured peptides that adopt a stable helical-turn
conformation (Table 3). These helical-turns pick out helix II
and helix III, and the turn between these helices. The stability
of these pieces is consistent with experimental studies of
protein A fragments, which show that helix II and helix III
form a stable intermediate [40].

In the myoglobin fragments, 13 structured peptides adopt a
stable helical-turn conformation (Table 4). These helical-turns
pick out six of the eight a helices in the native structure—with
particularly long helical-turns in helices A, G, and H. Another
three structured peptides adopt a stable reverse-turn con-
formation. Two of the reverse-turns pick out the same turn
between helices G–H. The large amount of structural bias
found in the fragments of helices G and H is consistent with
experimental studies, which show that helices G and H form a
stable intermediate [41]. Experimentally, helix F has the
weakest helical propensity, and correspondingly we do not
find any structured peptides in fragments of helix F.
In the chymotrypsin inhibitor fragments, we found eight

structured peptides that adopt a stable helical-turn con-
formation (Table 4). One helical-turn picks out the 310 helix
in the native structure, two helical-turns pick out the a helix,
one helical-turn picks out a diverging turn, and one helical-
turn picks out the turn in the b hairpin. Two helical-turns
erroneously pick out b strands. We also found a structured
peptide that adopts a reverse-turn conformation. This
reverse-turn picks out the bulge in a b strand. Experimental
studies find that only the a helix is stable [42].
In the a-spectrin fragments, there are eight structured

peptides that adopt stable helical-turn conformations. Two of
the helical-turns erroneously pick out the RT loop. The
conformation of the RT loop is somewhat indeterminate as
both experimental and simulation studies (unpublished data)
show that the RT loop is unstable. Another helical-turn
overlaps with a diverging b-turn in the native structure.
Three helical-turns erroneously pick out a b strand. The
other two helical-turns pick out the turns of the two b
hairpins. Experimental studies find that only a fragment of
the last b hairpins has structure in solution [43].
Overall, of the 41 structured peptides that adopt a stable

helical-turn conformation, 21 pick out a helices, three pick
out 310 helices, and two overlap with diverging turns. Because
helical motifs can be considered a continuum from diverging
b-turns, to 310 helices, to a helices [44,45], we conclude that 26
of the helical-turns pick out helical motifs in the native
structures. Another seven helical-turns pick out b-hairpin–
turns, and one helical-turn is found in a helix hairpin-turn.
Five helical-turns erroneously pick out b strands and two
other helical-turns erroneously pick out the RT loop.
We find six structured peptides that adopt a reverse-turn

conformation: one is found at a hairpin turn, two are found
at strand–helix turns, three are found at helix–helix turns,
and one is found at a b-strand bulge.
There is some debate [46] over whether b hairpins fold via

the turn [47] or through hydrophobic clustering [48]. The
results here suggest that structural bias at the turn is very
important. We find that all seven b hairpins in the six
proteins contain a fragment in the turn that results in a
structured peptide. If we interpret the structural bias in the
peptide as a kink in the full chain, then the formation of
structure can be regarded as contacts coalescing around a
kinky chain. In terms of the b hairpin, this does not
necessarily mean that the turn forms first but that a kink
favors the formation of nearby contacts.
In summary, of the 48 structured peptides found in the

simulations, only five differ significantly from the native
structure. Given that there are 436 residues in our six

Table 1. Mesostrings of Various Peptides from Protein G

Peptide Mesostring Free Energy of

the Mesostring

in kcal/mol

P in Percent

seq1: 1-MTYKLILN bbbaabbb �3.09 31

babaaaaa �2.59 12

baaaabba �2.54 11

baaaabbb �2.51 11

babaabbb �2.31 7

babaabba �2.26 7

seq3: 7-LNGKTLKG bbbaabbb �3.29 44

bblaabbb �2.77 16

abbaabbb �2.50 10

bbbaabbl �2.03 4

ablaabbb �1.88 3

seq9: 25-TAEKVFKQ baaaaaaa �3.16 39

aaaaaaaa �3.00 26

abaaaaaa �2.53 11

bbaaaaaa �2.09 5

aaaaaaab �1.97 4

bbblaaaa �1.87 3

seq16: 46-DDATKTFT abaaaabb �3.69 92

abaaaaba �1.71 2

aaaaabbb �1.42 1

baaaaaaa �1.39 1

DOI: 10.1371/journal.pcbi.0020027.t001
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proteins, there is, on average, a kink (secondary structural
indicator) approximately every nine residues along the chain.

Comparison with the I-Sites Library
Do the structural biases that are found in our simulations

correlate with those in the PDB? We focus on the I-sites server
(http://www.bioinfo.rpi.edu/;bystrc/hmmstr/server.php), a
fragment database that predicts the structures of short
protein sequences [19]. In that database, predictions that
have a high confidence score (.0.8) are found to predict a
structure that is ,1.4 Å from the native structure with a 74%
probability. I-sites make eight such high-confidence predic-
tions over four of the proteins in our dataset. Table 5 shows
those successes of I-sites. Our structured peptides overlap
with the I-sites predictions in six of the eight I-sites
predictions. This suggests that the I-sites sequence-structure
correlations are at least partly encoded in the local structural
biases found in the structured peptides.

Conclusion
In this study, we have applied replica-exchange molecular

dynamics, using the parm96 force field with a GB/SA solvent
model, to the simulation of 133 peptide 8-mer fragments,
extracted from six proteins with five different folds. We
found that 48 of these peptides are strongly structured. The
remaining 85 peptides have no preferred structure. Of the 48
that are structured, 41 of them fold into approximately their
native conformations. In seven instances, the simulated
structures are significantly inconsistent with their native
structures.
Why are only 35% of the peptides structured? The reason is

that by using very short peptides, we have eliminated most of
the nonlocal interactions—hydrophobic clustering, coopera-
tive helical hydrogen bonds. We thus attribute any structural
bias to sidechain interactions, which will depend on specific
sequence motifs.
As with all molecular dynamics simulations, the results will

Table 2. Ground Mesostrings of Protein G and Protein L

Protein Peptide Sequence RMSD

in Å

Mesostring P1 in

Percent

DF in

kcal/mol

TS in

kcal/mol

Native

Structure

Native Ground

Protein G seq1 1-MTYKLILN 5.8 bbbbbbba bbbaabbb 31% 0.50 1.27

seq2 4-KLILNGKT 5.7 bbbbabaa Bababba- 41% 0.53 1.37

seq3 7-LNGKTLKG7-LNGKTLKG 3.0 babaabbbbabaabbb bb-aabbbbb-aabbb 60% 0.97 1.20 hairpin-turn

seq4 10-KTLKGETT10-KTLKGETT 4.5 aabbbbbbaabbbbbb aaaa-baaaaaa-baa 70% 1.28 1.03 turn-strand

seq5 13-KGETTTEA 6.0 bbbbbbbb bbbaaaab 18% 0.35 1.57

seq6 16-TTTEAVDA16-TTTEAVDA 4.1 bbbbbababbbbbaba a-aaaaaaa-aaaaaa 48% 0.67 1.33 turn

seq7 19-EAVDAATA 3.8 bbabaaaa abaaaabb 37% 0.15 1.19

seq8 22-DAATAEKV22-DAATAEKV 3.6 baaaaaaabaaaaaaa bbbbaaa-bbbbaaa- 64% 0.79 1.00 helix

seq9 25-TAEKVFKQ25-TAEKVFKQ 1.4 aaaaaaaaaaaaaaaa -aaaaaaa-aaaaaaa 61% 0.93 1.11 helix

seq10 28-KVFKQYAN 0.5 aaaaaaaa -aaaaaaa 40% 0.76 1.39

seq11 31-KQYANDNG31-KQYANDNG 2.5 aaaaaaalaaaaaaal bbaaaaa-bbaaaaa- 58% 1.02 1.19 helix-cap

seq12 34-ANDNGVDG 2.4 aaaalbba bbaabbab 19% 0.65 2.08

seq13 37-NGVDGEWT 5.1 albbabbb bbaa-abb 37% 1.08 1.74

seq14 40-DGEWTYDD 4.2 babbbbba bbabbbbb 10% 0.11 1.93

seq15 43-WTYDDATK43-WTYDDATK 3.1 bbbbaaalbbbbaaal ba-aaaaaba-aaaaa 64% 1.19 1.01 strand-turn

seq16 46-DDATKTFT46-DDATKTFT 3.8 baaalbbbbaaalbbb abaaaab-abaaaab- 94% 2.28 0.24 hairpin-turn

seq17 49-TKTFTVTE 6.0 albbbbba bbaaabbb 23% 0.01 1.25

Protein L seq1 1-KANLIFAN 4.3 bbbbbbaa babaaaab 42% 0.20 1.01

seq2 4-LIFANGST4-LIFANGST 2.5 bbbaalbbbbbaalbb -baaaabb-baaaabb 55% 0.83 1.19 hairpin-turn

seq3 7-ANGSTQTA 5.0 aalbbbbb babaaaab 31% 0.44 1.46

seq4 10-STQTAEFK 6.7 bbbbbbbb bbaaaabb 45% 0.51 1.11

seq5 13-TAEFKGTF 5.7 bbbbbbba abaaa-bb 37% 0.99 1.73

seq6 16-FKGTFEKA 2.5 bbbbaaaa bbaababb 14% 0.01 1.54

seq7 19-TFEKATSE 3.8 baaaaaaa babaaaab 39% 0.23 1.06

seq8 22-KATSEAYA22-KATSEAYA 4.6 aaaaaaaaaaaaaaaa abaaaabbabaaaabb 51% 0.67 1.03 cap-helix

seq9 25-SEAYAYAD 3.8 aaaaaaaa aaaaaaab 22% 0.13 1.44

seq10 28-YAYADTLK 4.2 aaaaaaab bbbbaabb 19% 0.11 1.42

seq11 31-ADTLKKDN31-ADTLKKDN 2.4 aaaabalaaaaabala baaaaaa-baaaaaa- 82% 1.16 0.56 helix-cap

seq12 34-LKKDNGEY34-LKKDNGEY 2.4 abalallbabalallb bbba-bbbbbba-bbb 68% 1.28 0.96 turn

seq13 37-DNGEYTVD 5.5 lallbbbb bbaabbab 30% 0.23 1.53

seq14 40-EYTVDVAD 4.4 lbbbbbbl baaaaaaa 44% 0.78 1.23

seq15 43-VDVADKGY43-VDVADKGY 3.8 bbbblllabbbbllla bbaaaa-bbbaaaa-b 51% 0.97 1.25 hairpin-turn

seq16 46-ADKGYTLN 3.2 blllabbb -bbbaabb 31% 0.61 1.59

seq17 49-GYTLNIKFAG 6.9 labbbbbbab bbabaaabb 15% 0.18 2.03

RMSD is the most likely value of RMSD extracted from the free-energy profile of RMSD. The ground mesostring is sometimes nearly identical to less-populated mesostrings. If the most
populated mesostrings differ by only one mesostate, we group them into a consensus mesostring, which contains one indefinite mesostate signified by [�].
P1 is the probability of the ground mesostring.
DF is the free-energy difference between the ground mesostring and the next mesostring.
TS is the entropy of the mesostrings.
Native Structure is the description of the structure of the peptide in the native structure.
Bolded lines highlight structured peptides: P1 . 45%, and DF . 0.6 kcal/mol.
DOI: 10.1371/journal.pcbi.0020027.t002
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Table 3. Ground Mesostrings of a-Helical Proteins

Protein Peptide Sequence RMSD

in Å

Mesostring P1 in

Percent

DF in

kcal/mol

TS in

kcal/mol

Native

Structure

Native Ground

Protein A seq1 1-QQNAFYEI 3.7 aaaaaaaa baaaabbb 33 0.16 1.08

seq2 4-AFYEILHL 3.9 aaaaaaab aaaaaaaa 28 0.15 1.11

seq3 7-EILHLPNL 3.3 aaaabaab baaabbaa 37 0.34 1.10

seq4 10-HLPNLNEE 3.9 abaabbaa abaaaabb 30 0.33 1.21

seq5 13-NLNEEQRN 2.9 abbaaaaa baaaaaaa 29 0.28 1.14

seq6 16-EEQRNGFI16-EEQRNGFI 4.0 aaaaaaaaaaaaaaaa abaaa-bbabaaa-bb 80 1.66 0.96 helix

seq7 19-RNGFIQSL 3.5 aaaaaaaa ab-aabbb 19 0.53 1.83

seq8 22-FIQSLKDD 3.7 aaaaaaab baaaaaaa 30 0.24 1.24

seq9 25-SLKDDPSQ 3.7 aaaabaaa bababbbb 20 0.18 1.62

seq10 28-DDPSQSAN28-DDPSQSAN 1.6 abaaaaaaabaaaaaa -baaaaaa-baaaaaa 68 1.35 0.92 cap-helix

seq11 31-SQSANLLA 3.8 aaaaaaaa babaaaab 33 0.06 1.15

seq12 34-ANLLAEAK 3.5 aaaaaaaa bbaaaaaa 17 0.33 1.63

seq13 37-LAEAKKLNDA37-LAEAKKLNDA 1.9 aaaaaaaaaaaaaaaaaaaa bbaaaaaaa-bbaaaaaaa- 82 1.28 0.60 helix

mvoglobin seq1 1-MVLSEGEW 3.9 bbbbaaaa bb-aabbb 41 0.98 1.53

seq2 4-SEGEWQLV 3.9 baaaaaaa -bbaaaaa 43 0.88 1.41

seq3 7-EWQLVLHV7-EWQLVLHV 1.7 aaaaaaaaaaaaaaaa aaaaaaa-aaaaaaa- 83 1.58 0.76 helix

seq4 10-LVLHVWAK10-LVLHVWAK 0.6 aaaaaaaaaaaaaaaa -aaaaaaa-aaaaaaa 47 0.78 1.22 helix

seq5 13-HVWAKVEA 4.1 aaaaaaaa bbaabbbb 26 0.13 1.37

seq6 16-AKVEADVA 4.0 aaaaabaa baaabbbb 20 0.05 1.60

seq7 19-EADVAGHG 4.1 aabaaaaa baaaabbb 26 0.31 1.71

seq8 22-VAGHGQDI 3.4 aaaaaaaa bbbb-aab 38 0.57 1.62

seq9 25-HGQDILIR25-HGQDILIR 3.4 aaaaaaaaaaaaaaaa bb-aaaaabb-aaaaa 62 1.31 1.17 helix

seq10 28-DILIRLFK 4.5 aaaaaaaa aaaaaaaa 49 0.51 0.88

seq11 31-IRLFKSHP31-IRLFKSHP 4.1 aaaaaabaaaaaaaba b-aaaabbb-aaaabb 76 1.06 0.81 helix

seq12 34-FKSHPETL 2.0 aaabaaaa baabbaaa 30 0.12 1.23

seq13 37-HPETLEKF37-HPETLEKF 1.4 baaaaaabbaaaaaab baaaaaaabaaaaaaa 67 1.11 0.76 helix

seq14 40-TLEKFDRF40-TLEKFDRF 3.1 aaaabaaaaaaabaaa -aaaaaaa-aaaaaaa 62 0.66 0.93 helix

seq15 43-KFDRFKHL 3.5 abaaaaab bbblabbb 31 0.13 0.96

seq16 46-RFKHLKTE 4.3 aaaababa bbaaaaab 32 0.28 1.06

seq17 49-HLKTEAEM49-HLKTEAEM 3.1 ababaaaaababaaaa bb-aabbbbb-aabbb 56 1.07 1.18 turn

seq18 52-TEAEMKAS 2.0 baaaaaab abaaaaaa 21 0.16 1.41

seq19 55-EMKASEDL 3.0 aaaabaaa abaaabb- 30 0.49 1.55

seq20 58-ASEDLKKA 1.9 abaaaaaa aaaaaaaa 37 0.28 1.10

seq21 61-DLKKAGVT61-DLKKAGVT 3.9 aaaaaaaaaaaaaaaa baaaa-bbbaaaa-bb 59 1.00 1.30 helix

seq22 64-KAGVTVLT 4.3 aaaaaaaa babaabab 19 0.11 1.47

seq23 67-VTVLTALG 3.7 aaaaaaaa aaaaaaa- 40 0.75 1.48

seq24 70-LTALGAIL 4.1 aaaaaaaa baab-aab 31 0.69 1.80

seq25 73-LGAILKKK 3.5 aaaaaaal bba-aaaa 32 0.70 1.62

seq26 76-ILKKKGHH 3.9 aaaallba bbaaaabb 28 0.57 1.44

seq27 79-KKGHHEAE 3.5 allbaaaa ab-aabbb 23 0.54 1.66

seq28 82-HHEAELKP 4.7 baaaaaaa aaaaaabb 37 0.04 0.91

seq29 85-AELKPLAQ 3.8 aaaaaaaa bbbbbbbb 13 0.15 1.76

seq30 88-KPLAQSHA 4.3 aaaaaaaa bbbaabbb 29 0.25 1.29

seq31 91-AQSHATKH 3.3 aaaaaaaa babaaaab 29 0.44 1.40

seq32 94-HATKHKIP 2.5 aaaaalbb baaabbbb 25 0.30 1.34

seq33 97-KHKIPIKY 3.5 aalbbaaa aaabaaa- 40 0.61 1.39

seq34 100-IPIKYLEF100-IPIKYLEF 3.4 bbaaaaaabbaaaaaa bbbaaabbbbbaaabb 58 0.90 0.95 helix

seq35 103-KYLEFISE 4.2 aaaaaaaa ba-aabbb 45 0.53 1.25

seq36 106-EFISEAII 4.6 aaaaaaaa babaaaab 35 0.13 0.99

seq37 109-SEAIIHVL109-SEAIIHVL 0.6 aaaaaaaaaaaaaaaa b-aaaaaab-aaaaaa 73 1.12 0.90 helix

seq38 112-IIHVLHSR112-IIHVLHSR 4 aaaaaaaaaaaaaaaa aaaaaabbaaaaaabb 48 0.72 0.94 helix

seq39 115-VLHSRHPG115-VLHSRHPG 3.7 aaaaabaaaaaaabaa bbbaabbbbbbaabbb 49 0.81 1.14 turn

seq40 118-SRHPGNFG118-SRHPGNFG 3.1 aabaaabbaabaaabb bbbbba-bbbbbba-b 47 0.98 1.48 turn

seq41 121-PGNFGADA 3.9 aaabbaaa bbbbb-bb 10 0.43 2.31

seq42 124-FGADAQGA 3.6 bbaaaaaa bbaabb-b 18 0.72 2.14

seq43 127-DAQGAMNK 4.3 aaaaaaaa bbbbabb- 35 0.80 1.66

seq44 130-GAMNKALE 4.1 aaaaaaaa bbbaabbb 22 0.26 1.50

seq45 133-NKALELFR 3.7 aaaaaaaa baaabaab 36 0.28 1.13

seq46 136-LELFRKDI136-LELFRKDI 0.4 aaaaaaaaaaaaaaaa -aaaaaaa-aaaaaaa 78 0.88 0.73 helix

seq47 139-FRKDIAAK139-FRKDIAAK 0.4 aaaaaaaaaaaaaaaa b-aaaaaab-aaaaaa 71 1.28 0.95 helix

seq48 142-DIAAKYKE142-DIAAKYKE 3.9 aaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa 46 0.68 1.08 helix

seq49 145-AKYKELGYQG 3.7 aaaaaalala babaaaabb- 38 0.81 1.66

RMSD is the most likely value of RMSD extracted from the free-energy profile of RMSD. The ground mesostring is sometimes nearly identical to less-populated mesostrings. If the most
populated mesostrings differ by only one mesostate, we group them into a consensus mesostring, which contains one indefinite mesostate signified by [�].
P1 is the probability of the ground mesostring.
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depend somewhat on the choice of force field. One
limitation, for example, is that none of the current force
fields model the backbone very well, especially in glycine.
Neither can current force fields model the left-handed a-
helical conformation accurately, resulting in the paucity of
ground mesostrings containing the [l] mesostate. Better force
fields may improve our predictions. As we simulated only
short peptides, we have eliminated various cooperative
nonlocal interactions—interactions that are particularly
sensitive to specific details of the force field.

The I-sites library taken from PDB peptide preferences

makes eight high-confidence predictions in four of the six
proteins. In those instances, our simulations are largely
consistent with theirs, indicating that the intrinsic physical
preferences contribute to the PDB structures. However, the
present simulations are also more informative, giving 48
structures (with 85% reliability) among the 133 peptides we
tested, in contrast to the eight (having 74% reliability) found
by I-sites.
Current structure-prediction systems rely on a pragmatic

mix of bio-informatics and physical modeling [23,24]. A key
component of these systems is the use of fragment libraries to

DF is the free-energy difference between the ground mesostring and the next mesostring.
TS is the entropy of the mesostrings.
Native Structure is the description of the structure of the peptide in the native structure.
Bolded lines highlight structured peptides: P1 . 45%, and DF . 0.6 kcal/mol.
DOI: 10.1371/journal.pcbi.0020027.t003

Table 4. Ground Mesostrings of b-Sheet Proteins

Protein Peptide Sequence RMSD

in Å

Mesostring P1 in

Percent

DF in

kcal/mol

TS in

kcal/mol

Native

Structure

Native Ground

Chymotrypsin inhibitor seq1 1-NLKTEWPE 5.2 bbbabbaa Bbaaabb- 65 0.89 0.90 loop

seq2 4-TEWPELVG 4.2 abbaaabl b-baaaab 85 1.6 0.57 310 helix

seq3 7-PELVGKSV 2.9 aaablbba baabbaab 15 0.24 1.65

seq4 10-VGKSVEEA 4.1 blbbaaaa abaaaabb 34 0.51 1.39

seq5 13-SVEEAKKV 0.5 baaaaaaa -aaaaaaa 63 0.82 0.92 helix

seq6 16-EAKKVILQ 4.3 aaaaaaaa baaaaaaa 24 0.14 1.32

seq7 19-KVILQDKP 3.9 aaaaaaba babaaabb 34 0.45 1.16

seq8 22-LQDKPEAQ 2.7 aaabaabb Bbabaaa- 45 0.81 1.39 helix-cap

seq9 25-KPEAQIIV 4.9 baabbbbb bbaaabbb 41 0.71 1.17

seq10 28-AQIIVLPV 5.7 bbbbbbbb b-aaabbb 64 0.68 0.91 strand

seq11 31-IVLPVGTI 3.1 bbbbblbb bbbaaaab 20 0.14 1.54

seq12 34-PVGTIVTM 4.2 bblbbbba bbbaaaaa 12 0.06 1.87

seq13 37-TIVTMEYR 4.0 bbbbabbb aaaaabba 30 0.44 1.23

seq14 40-TMEYRIDR 3.7 babbbaab bb-aaaaa 64 0.87 1.02 loop-turn

seq15 43-YRIDRVRL 3.2 bbaabbbb bbbaaaaa 48 0.17 0.75

seq16 46-DRVRLFVD 6.4 abbbbbbb abbaabbb 40 0.64 1.18

seq17 49-RLFVDKLD 4.2 bbbbbaal babaaabb 37 0.07 0.83

seq18 52-VDKLDNIA 4.1 bbaalbba ba-aaabb 64 1.06 1.09 hairpin-turn

seq19 55-LDNIAEVP 3.3 albbabbb babaaabb 22 0.15 1.36

seq20 58-IAEVPRVG 3.7 babbbbbb baabba-b 66 0.97 0.99 bulge
a Spectrin seq1 1-KELVLALY 4.3 bbbbbbab -aaaaaaa 64 0.90 1.01 strand

seq2 4-VLALYDYQ 3.7 bbbabbbb aaaaaaaa 34 0.31 1.29

seq3 7-LYDYQEKS 4.0 abbbbbab baaaaaaa 55 0.78 0.88 loop

seq4 10-YQEKSPRE 3.6 bbbabaab baaabbaa 44 0.53 0.90

seq5 13-KSPREVTM 3.8 abaabbbb Bbbbaaa- 58 1.01 1.06 loop

seq6 16-REVTMKKG 4.5 abbbbbbl abaaaaa- 48 0.86 1.18 diverging-turn

seq7 19-TMKKGDIL 2.7 bbbblbbb babbbbbb 23 0.18 1.45

seq8 22-KGDILTLL 4.4 blbbbbba b-baaaaa 78 1.73 0.97 strand

seq9 25-ILTLLNST 3.9 bbbbabaa b-aaaaaa 75 1.42 0.93 strand

seq10 28-LLNSTNKD 4.0 babaabaa Bbbaaaa- 53 1.06 1.25 hairpin-turn

seq11 31-STNKDWWK 3.2 aabaabbb bbbbaabb 36 0.22 1.15

seq12 34-KDWWKVEV 5.8 aabbbbbb b-baabbb 43 0.70 1.32

seq13 37-WKVEVNDR 3.8 bbbbblab bbbaaaaa 46 0.60 1.01 hairpin-turn

seq14 40-EVNDRQGF 3.7 bblabbbb baaaaabb 25 0.07 1.33

seq15 43-DRQGFVPA 5.6 abbbbbba abbbabbb 12 0.07 1.62

seq16 46-GFVPAAYV 3.2 bbbbaaab bbbaaabb 36 0.78 1.42

seq17 49-PAAYVKKLD 3.3 baaabbbbb abaaaaaaa 41 0.14 0.93

RMSD is the most likely value of RMSD extracted from the free-energy profile of RMSD. The ground mesostring is sometimes nearly identical to less-populated mesostrings. If the most
populated mesostrings differ by only one mesostate, we group them into a consensus mesostring, which contains one indefinite mesostate signified by [�].
P1 is the probability of the ground mesostring.
DF is the free-energy difference between the ground mesostring and the next mesostring.
TS is the entropy of the mesostrings.
Native Structure is the description of the structure of the peptide in the native structure.
DOI: 10.1371/journal.pcbi.0020027.t004
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identify folding initiation sites. Here we have identified the
physical origin of the sequence–structure relations identified
in the fragment libraries—local structural bias in short
peptide sequences. The calculations are not exorbitant, as
each peptide takes ;160 CPU node hours, and, in many cases,
our results go beyond the fragment libraries. By replacing
fragment libraries with peptide simulations to identify
folding initiation sites, we move closer to the goal of
predicting protein structures using only physical models.

Materials and Methods

Replica-exchange simulations of the peptides. Replica-exchange
simulations were conducted using a PERL wrapper (http://www.
dillgroup.ucsf.edu/;jchodera/code/rex) around the SANDER molec-
ular dynamics program for the Amber7 molecular-modeling package
[49]. We used 16 replicas exponentially spaced between 270K and
690K, achieving an exchange–acceptance probability of approxi-
mately 50%. Exchanges were attempted every 1 ps, with constant-
energy dynamics conducted between exchanges. After each exchange
attempt, the velocities were redrawn from the appropriate Maxwell-

Boltzmann distribution to ensure proper thermostating. A 2-fs time
step was used, and bonds to hydrogens were constrained with SHAKE
[50]. Configurations were stored every 1 ps for analysis. Simulations
were run for 5 ns per replica and the first 4 ns were used for
equilibration. The peptides were capped with ACE and NME blocking
groups, and initialized in the extended state. Systems were set up
using the LEAP program. Peptide parameters were taken from the
Amber Parm96 force field, and the GB/SA model of Tsui and Case was
used [37], along with a surface area penalty term of 5 cal � mol�1 � Å�2.

Calculating thermodynamic observables. We use replica exchange
[36] to simulate the equilibrium ensemble. It samples k parallel
replicas, each of which is at a different temperature. Hence, to extract
thermodynamic observables for a given temperature, say T ¼ 300K,
we must reweigh the configurations taken from the k different
temperatures bk in order to combine them into a representative
ensemble. We do this reweighing of the replicas with an implemen-
tation [51] of the Weighted Histogram Analysis Method [52].

We first calculate the dimensionless free-energy fk for each replica
k. Starting with a crude estimate of fk, we calculate Xk

E—the weight of
states with energy E in replica k:

X k
E ¼

Nk
E

Nk expðfk � b kEÞ
ð1Þ

Table 5. Comparison of the Structural Bias with the Native Structure

Protein Lines Structure per Residue

Protein G 1 MTYKLILNGKTLKGETTTEAVDAATAEKVFKQYANDNGVDGEWTYDDATKTFTVTE
2 -SSSSSSS----SSSSSSSS--HHHHHHHHHHHHH------SSSSSTT---SSSSS--
3 bbbbbbbabaabbbbbbbbbabaaaaaaaaaaaaaaalbbabbbbbaaalbbbbba
4 ---------aa------aaaaaa--aaaaaaaaaaaa--------aaaaaa-----
5 __HHHHHHHHHHHHH S_TTT__S

Protein L 1 KANLIFANGSTQTAEFKGTFEKATSEAYAYADTLKKDNGEYTVDVADKGYTLNIKFAG
2 -SSS-------SSS------HHHHHHHHHHHH--------SS---S----S---SS--
3 bbbbbbaalbbbbbbbbbbaaaaaaaaaaaaaaabalallbbbbbblllabbbbbbab
4 -----aaaa-----aaa------aaaa----aaaaar-------aaaa----------

Protein A 1 QQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNDA
2 -HHHHHHHH------HHHHHHHHHHHHH-TT-HHHHHHHHHHHHH-
3 aaaaaaaaaabaabbaaaaaaaaaaaaabaaaaaaaaaaaaaaaaa
4 -----------------aaa---------aaaaaaa--aaaaaaa-
5 __HHHHHHHHH HH__GGG

Myoglobin 1 MVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASEDLKKAGVTVLT
2 ----HHHHHHHHHHHHHHHH--HHHHHHHHHHHHHH--HHH33-TT-TT---HHHHHH--HHHHHHHHHHHH
3 bbbbaaaaaaaaaaaaaaaabaaaaaaaaaaaaaaabaaaaaabaaaaababaaaaaabaaaaaaaaaaaa
4 ------aaaaaaaaaa----------aaaaaaaaaa-aaaaaaaaaa----rr--------aaaa------
5 HHHH_GGG
1 ALGAILKKKGHHEAELKPLAQSHATKHKIPIKYLEFISEAIIHVLHSRHPGNFGADAQGAMNKALELFRKD
2 HHHHHHH------HHHHHHHHHHHHH-----HHHHHHHHHHHHHHHHH-TT---HHHHHHHHHHHHHHHHH
3 aaaaaaaallbaaaaaaaaaaaaaaaalbbaaaaaaaaaaaaaaaaaabaaabbaaaaaaaaaaaaaaaaa
4 -------------------------------aaaa----aaaaaaarr---r-------------aaaaaa
5 ___HHHH HHHHHHHHHH
1 IAAKYKELGYQG
2 HHHHHHHH
3 aaaaaaaalala
4 aaaa--------

Chymotrypsin inhibitor 2 1 NLKTEWPELVGKSVEEAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAEVPRVG
2 ----S-333TT---HHHHHHHHHH-TT-SSSSS-----------TTSSSSSS-TT--S----S--
3 bbbabbaaablbbaaaaaaaaaaabaabbbbbbbblbbbbabbbaabbbbbbbaalbbabbbbbb
4 --aaa-aaaa---aaaaaaa-----aaa-aaa----------aaaaa-------aaa-rr-----

a Spectrin 1 KELVLALYDYQEKSPREVTMKKGDILTLLNSTNKDWWKVEVNDRQGFVPAAYVKKLD
2 --SSSS---S----TT---S-TT-SSSSSS-------SSS-TT-SSSSS333SSSS-
3 bbbbbbabbbbbabaabbbbbblbbbbbabaabaabbbbbblabbbbbbaaabbbbb
4 -aaaaaaaaaaaaaa-aaaaaa--aaaaaaaaaa-----aaaaa-------------
5 EETT_E

Line 1 is the amino-acid sequence.
Line 2 is the secondary structure in the native structure (3, 310 helix; H, a-helical; S, sheet; T, H-bonded–turn).
Line 3 is the mesostring of the native structure.
Line 4 is the ground mesostring predicted from the peptides (aaa, helical-turn; rr, reverse-turn).
Line 5 is the I-sites predictions (_, other; E, extended but not H-bonded; G, other helical-turn; H, a-helical; S, sheet; T, turn).
DOI: 10.1371/journal.pcbi.0020027.t005
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where Nk
E is the number of snapshots in replica k with energy E.

From the distribution of Xk
E, we calculate a new estimate of fk by

fk ¼ �log
X
E

X k
E expðb

kEÞ
" #

ð2Þ

We iterate the above two steps until fk converges. Then we use
these dimensionless free energies fk to reweigh the relative free-
energy profile F of observable x to the target temperature btar:

Fxðb tarÞ ¼ �
1

b tar
log

X
E

X
k

Nk
x;E expðb tarEÞX

k9

Nk9
x;E expð fk9 � b k9EÞ

2
664

3
775

8>><
>>:

9>>=
>>; ð3Þ

After using the Weighted Histogram Analysis Method to calculate
the relative free energies Fi of a mesostring i, we calculate the
probabilities Pi by

Pi ¼
expð�b tarFiÞX

i9

expð�b tarFi9Þ
ð4Þ

When we merge similar mesostrings into a consensus mesostring,
we calculate the free-energy difference to another mesostring j by

D F ¼ � 1
b tar

log
Pconsensus

Pj

� �
ð5Þ

Defining the backbone mesostates. A key part of our analysis is the
discretizing of the backbone degrees of freedom. This is based on the
original analysis of the protein backbone [53]. In that analysis,
Ramachandran and coworkers showed that the stereochemistry of the
protein backbone breaks up the backbone u–w angles into three
distinct regions, each separated by significant energy barriers. We can
thus describe the conformation of a peptide as a string of discrete
mesostates—we call this the mesostring. A given mesostring is
separated in energy from other mesostrings. Each mesostring
corresponds to a low-energy basin in the conformation space of the
peptide backbone. It is then straightforward to extract the local
structure from the lowest free-energy basin. This partitioning in
terms of discrete regions in the backbone angles has been observed in
a molecular dynamics simulation of an a-helical peptide [31].

The original analysis of the backbone identified three distinct
regions in the u–w angles [53]. Recent studies of the protein database
found that these three regions can be further divided up into five
clusters of density [54,55]. Some of the barriers between these five
regions are small, which leaves three regions separated by large
barriers. However we cannot use the database analysis to define the
boundaries of the backbone mesostates because current force fields
cannot replicate the database distribution of u–w angles. We must
define the boundaries the backbone mesostates in terms of the force
field in our molecular dynamics: we ran replica-exchange simulations
of the alanine dipeptide and the glycine dipeptide for 10 ns and
calculated the free-energy profile of the u–w angles in bins of 58.
Based on the resultant free-energy profile, we break up the
Ramachandran plot in terms of the following mesostates:

½b� : ð�1808 , u , 08; 458 , w , 1808Þ
Uð�1808 , u , 08;�1808 , w ,�1358Þ

Uð1208 , u , 1808; 458 , w , 1808Þ
Uð1208 , u , 1808;�1808 , w ,�1358Þ

½a� : ð�1808 , u , 08;�1358 , w , 458Þ
Uð1208 , u , 1808;�1358 , w , 458Þ

½l� : ð08 , u , 1208;�1808 , w , 1808Þ
Uð1208 , u , 1808;�1358 , w , 458Þ

And for glycine:

½b� : ð�1808 , u , 08; 458 , w , 1808Þ
Uð�1808 , u , 08;�1808 , w ,�1358Þ
Uð08 , u , 1808; 1358 , w , 1808Þ
Uð08 , u , 1808;�1808 , w ,�458Þ

½a� : ð�1808 , u , 08;�1358 , w , 458Þ

½l� : ð08 , u , 1808;�458 , w , 1358Þ
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