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Abstract: Survival motor neuron (SMN) is ubiquitously expressed in many cell types and its encoding
gene, survival motor neuron 1 gene (SMN1), is highly conserved in various species. SMN is involved
in the assembly of RNA spliceosomes, which are important for pre-mRNA splicing. A severe
neurogenic disease, spinal muscular atrophy (SMA), is caused by the loss or mutation of SMN1 that
specifically occurred in humans. We previously reported that SMN plays roles in stem cell biology in
addition to its roles in neuron development. In this study, we investigated whether SMN can improve
the propagation of spermatogonia stem cells (SSCs) and facilitate the spermatogenesis process. In
in vitro culture, SSCs obtained from SMA model mice showed decreased growth rate accompanied
by significantly reduced expression of spermatogonia marker promyelocytic leukemia zinc finger
(PLZF) compared to those from heterozygous and wild-type littermates; whereas SMN overexpressed
SSCs showed enhanced cell proliferation and improved potency. In vivo, the superior ability of
homing and complete performance in differentiating progeny was shown in SMN overexpressed
SSCs in host seminiferous tubule of transplant experiments compared to control groups. To gain
insights into the roles of SMN in clinical infertility, we derived human induced pluripotent stem cells
(hiPSCs) from azoospermia patients (AZ-hiPSCs) and from healthy control (ct-hiPSCs). Despite the
otherwise comparable levels of hallmark iPCS markers, lower expression level of SMN1 was found
in AZ-hiPSCs compared with control hiPSCs during in vitro primordial germ cell like cells (PGCLCs)
differentiation. On the other hand, overexpressing hSMN1 in AZ-hiPSCs led to increased level of
pluripotent markers such as OCT4 and KLF4 during PGCLC differentiation. Our work reveal novel
roles of SMN in mammalian spermatogenesis and suggest new therapeutic targets for azoospermia
treatment.

Keywords: survival motor neuron; spermatogenesis; azoospermia

1. Introduction

In humans, about 15% of couples suffer from infertility, with half of those caused by
factors in the male [1,2]. The majority of male infertility is sporadic, due to unexplained
abnormalities in sperm parameters, or unexplained azoospermia [3]. For non-obstructive
azoospermia (NOA), which defined as no sperm in the ejaculate due to abnormal spermato-
genesis, and is the most severe form of male infertility. Unlike the obstructive azoospermia
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(OA) patients, the etiology of NOA is either intrinsic structure failure of testis or inadequate
gonadotropin production, therefore, hormone treatment could improve the testicular func-
tion and impaired semen parameters. However, not all patients respond to the hormone
treatment [4]. Although numerous genes have proved to have a role during germ cell
development in mice, their relevance to human reproduction remains to be clarifying
mainly due to the limited access to human tissues and the lack of experimental tools.

Derivation of patient-specific human induced pluripotency stem cells (hiPSCs) by
converting the differentiated somatic cells back to pluripotent stage with OSKM factors
(OCT4, SOX2, KLF4 and hc-Myc,) has become a more important strategy for investigating
the cause of developmental diseases. hiPSC is capable of generating almost all kinds of
cell and provides unlimited cell source for research, including germ cells [5–7]. The system
generating germ cell from patient-specific-hiPSC provides a useful tool to study gene
functions in germ cell development.

Primordial germ cells (PGCs) originate from postimplantation epiblast cells, which
express a transcriptional repressor Blimp1 (PR domain zinc finger protein 1, also known
as Prdm1) and show the lineage-restricted characteristics that eventually converts into
germline, i.e., sperm and oocyte [8,9]. Surani’s group reported that human ESCs/iPSCs can
be derived into human PGC-like cells (hPGCLCs) and found that SOX17 initiates the hu-
man PGC specification together with BLIMP1, TFAP2C (Transcription Factor AP-2 Gamma)
and Homeobox protein NANOG (NANOG) [10]. Consistently, Sasaki et al. also reported
that robust induction hPGCLC from primed hiPSCs via incipient mesoderm-like cells
(hiMeLCs) [11]. Unlike the high efficiency of PGCLC induction in human, the generation
of haploid cells such as spermatocyte or spermatozoa from the human pluripotent stem
cells (hPSCs) encountered obstacles for completing the meiosis process [12,13]. The differ-
entiation procedure can be improved by supplementation with vitamin C, basic fibroblast
growth factor (bFGF) and glial cell-derived neurotrophic factor (GDNF) in vitro without
mouse testicular somatic cells recently, but the efficiency is still as low as 4 to 5% [13,14].

Recently, our group reported that the levels of survival motor neuron protein (SMN),
a major assembler for the process of small nuclear ribonucleoprotein (snRNP) complex,
correlate with the capacities of stem cell proliferation and differentiation in Drosophila
and mice [15,16]. Unlike the main focus of SMN in the neuron degenerative disease,
spinal muscular atrophy (SMA) [17,18], we found SMN is highly enriched in the mouse
pluripotent ESCs, adult germ cells, and controlling the proliferation and maintenance of
spermatogonia [15,19].

In the present work, we hypothesize that SMN participates in spermagogenesis. In
support of this, several studies demonstrated that disorder of RNA splicing leads to defects
of spermatogenesis [20,21], implying the correct RNA processing facilitates human germ
cells development and spermatogenesis. To test this, the mouse spermgatogonia stem
cells (SSCs) were isolated and performed in in vitro culture with a SMA-like mouse model
(Smn1−/−;SMN2+). Overexpression of SMN sustained the self-renewal of SSCs in wild-
type mice, and improved the maturation process of spermatogenesis proven by allogeneic
transplant experiment. To further prove the universal phenomenon of SMN in human
germ cells, the hiPSCs derived from azoospermia patient (AZ-hiPSCs) was established,
characterized, and differentiated. The hPGCLCs were induced from AZ-hiPSC and the
SMN expression level was examined throughout this process. Our results provided a
practical procedure to investigate potency of the human male germ cell and elucidate the
role of SMN in human stem cells.

2. Results
2.1. Decreased Propagation of Spermatogonia in SMA-Like Mice during In Vitro Culture

To determine the specificity for isolating spermatogonia stem cells (SSCs) by Thy-1
Cell Surface Antigen (THY1) through magnetic-activated cell sorting (MACS), the testes
of 5–8 days postpartum (dpp) C57BL/6JNarl mice were used and collected as illustrated
in Figure 1A. The isolated THY1+ SSCs expressed high percentage of spermatogonia
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marker, promyelocytic leukemia zinc finger (PLZF), also called zinc finger and BTB domain-
containing 16 (ZBTB16), detected by immunofluorescent staining (Figure 1B). To identify
whether the amount of SMN would affect SSC maintenance, we isolated SSCs from testes
of SMA-like mice and their littermate controls at the age of 5–8 dpp for in vitro culture
following previously published culture condition [22]. After four passages, SSC derived
from SMA pups expressed about 3% of PLZF, which was significantly lower than wild-
type and heterozygous littermate controls that possessed over 4% of PLZF positive cells
(Figure 1D,E). This data is consistent with our published data, which indicated that loss of
SMN affects the maintenance of spermatogonia [19].

Figure 1. Deficiency of SMN in SSC maintenance in mice. (A) Graphic flow chart of SSC isolation. Testis cells for SSCs
in vitro culture are obtained from male neonatal pups fractionated by magnetic-activated cell sorting (MACS) with magnetic
microbeads conjugated to anti-THY1 (CD 90.2) antibody. (B,C) Detection of SSC marker PLZF in fractionated SSCs by
immunofluorescent staining. 81.75% of PLZF positive cells (red color) is detected in THY1+ cells. DAPI is used for DNA
stain (blue color). In contrast, fewer (18.09%) THY1− cells presented PLZF (n = 3). Scale bar: 200 µm. t-test analysis is
performed and significant differences is shown (*** p < 0.001). (D) PLZF expression in SSCs from SMA-like mice after
in vitro culture. Bright field (BF) shows the morphology of SSC culture in mouse Smn1 knockout (KO) and heterozygous
littermate control (HT) group. The KO SSCs express less PLZF protein (green color) compared with the HT control. DAPI
used for nuclei stain is showed as blue color. Scale bar: 100 µm. (E) The percentage of expressing PLZF is quantified in SSCs
from KO, HT and wild-type (WT) SMA littermate mice. * Indicates a statistically significant difference, p < 0.05. ns indicates
no significance.

2.2. Overexpression of SMN1 Promotes Self-Renewal and Homing Ability of Mouse SSCs

Next, we focus on the effects of SMN overexpression on mouse SSC. The SMN overex-
pression lentivirus was transduced into SSC from 5–8 pnd mice carried green fluorescent
protein (GFP) (ov-Smn1) and showed increased level of Smn1 transcripts compared with
control vector group (vc-ctrl) analyzed by reverse transcription polymerase chain reac-
tion (RT-PCR) (Figure 2A). SSC transplantation is a critical experimental technique for
transfer of germline between donor and recipient males that could be a useful tool for
investigating the capacity of donor cells. These Smn1-overexpressed GFP-SSCs were allo-
geneically injected into busulfan treated recipient ICR mice, as well as control vector group.
The Smn1-overexpressed GFP-SSCs (ov-Smn1) were re-colonized in recipient mice and
showed significantly increase ability in colonization compared with vector control (vc-ctrl)
(Figure 2B,C). Among these GFP-SSC colonies, more complete colonies were found in
ov-Smn1 group than incomplete colonies (88% vs. 12%), indicating the evidence of full
spermatogenesis (Figure 2D,E). Unlike ov-Smn1 group, vc-ctrl group only showed about
half of the colonies were completely formed (Figure 2E,F). The complete colonies showed
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general expression of germ cell specific markers, mouse Vasa homolog gene (VASA, also
known as DDX4 or MVH) [23,24] and TRA98 [24], and elongated sperms in the cross
section, which further confirmed the architecture of spermatogenesis in SSC repopulation
both in ov-Smn1 and vc-ctrl group (Figure 2G). The cell type of germ cell was further
confirmed with the cell morphology and germ cell marker in cross section. In ov-Smn1
group, we found more elongated sperm cell in complete colony, where lower percentage
of elongated sperms were observed in vc-ctrl, indicating the fullness of differentiation
capacity in spermatogenesis in ov-Smn1 group (Figure 2H).

Figure 2. Overexpression of SMN1 promotes self-renewal and homing ability of mouse SSCs. (A) abundancy of Smn1
RNA is confirmed in Smn1 overexpressed (ov-Smn1) SSCs compared with vector control (vc-ctrl) by semi-quantitative
RT-PCR. Gapdh is the internal control. RNAs without reverse transcription (RT-neg) is used as the negative control detected
by Gapdh primer. Neg indicates the non-template control. (B) Transplant assay of GFP-SSCs injected into seminiferous
tubule in busulfan treat male mice. Bright field (BF) demonstrates the morphology of transplanted testes, and the GFP panel
indicates the propagated SSCs in ov-Smn1 and vc-ctrl group. (C) Quantification of the efficiency of SSC homing. Triplicates
of the transplanted mice shows the significant differences in ov-Smn1 and vc-ctrl group. * Indicates significance, p < 0.05.
(D) Seminiferous tubules with GFP colony shown as complete (white arrow) and incomplete (yellow arrowhead) colonies.
(E,F) Quantification of the ratio of complete and incomplete colonies observed in ov-Smn1 and vc-ctrl group. (G) Cross
section detecting germ cell markers VASA and TRA98 (red color) in transplanted seminiferous tubules. Complete colonies
contain more matured elongated sperms as indicated (white arrow). DAPI is stained for DNA content (Blue). Scale bar:
50 µm. (H) Distribution of germ cell types through spermatogenesis in transplant cells. ES: elongated sperm. RS: round
spermatids. Spc: spermatocyte.
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2.3. Generation and In Vitro Characterization of Human Induced Pluripotent Stem Cells (hiPSCs)
from Non-Obstructive Azoospermic Patients

Establishing NOA patient-specific hiPSCs offers a promising tool for studying male
infertility and developing new therapeutic options for treatment. To further investigate
whether SMN overexpression also facilitate the process of spermatogenesis in human, we
established the hiPSCs from NOA patients (AZ-hiPSCs) by using Sendai virus to transduce
the reprogramming factors, OCT4, SOX2, KLF4 and hc-MYC (OSKM) into peripheral blood
mononuclear cells (PBMCs) that isolated from NOA patients’ blood. We identified three
NOA patients who were identified as azoospermia factor (AZF) non-relative azoospermia
which the AZF genes were detected normally as the control man (Figure 3A). We generated
patient-specific azoospermia iPSC lines (AZ1, 5 and 6) from three azoospermia patients,
and from three healthy control individuals (Ctrl 1, 2, and 3). All these AZ and control iPSC
lines expressed endogenous pluripotent markers detected by RT-PCR analysis (Figure 3B).
Control individual 2 sub-clone (Ctrl2#6) and sub-clones (AZ1#10, AZ1#12) from the AZ1
patient which were histologically diagnosed as hypospermatogenesis in testis were selected
for further culture and showed consistent morphology at later passages and sustained
pluripotent markers detected by immunofluorescent staining (Figure 3C,D). Furthermore,
we confirmed the absence of Sendai virus genome and transgenes in all hiPSC lines except
for a small amount of Sendai virus genome was detected in clone Ctrl2#6 (Supplementary
Figure S1). Next, the differentiation potency of three hiPSC clones was explored by EB
formation and teratoma assay. Real-time RT-PCR demonstrated the differentiation markers
of SOX17, PAX6 and HAND1 were up-regulated upon differentiation in those hiPSC lines,
but no significant changes in the expression of SOX17 in Ctrl2#6 and AZ1#10 (Figure 3E).
Histological analysis of teratoma derived from clone Ctrl2#6, AZ1#10, and AZ1#12 reveals
their capacity of differentiating into endoderm, mesoderm, and ectoderm (Figure 3F,G).
Hence, the expression of typical pluripotency-related genes and differentiation capacity of
three germ layers in these hiPSCs derived from both healthy and NOA patients suggest
the successful reprogramming in those hiPSC lines.

2.4. Induction of Human Primordial Germ Cell-Like Cells (hPGCLCs) in SMN Overexpressed
Azoospermia hiPSCs

As the precursors of oocyte and sperm, PGCs are the earliest embryonic progenitors
in the germline. We wonder if patient-specific male gametes could be produced through
in vitro hPGCLCS induction from AZ-hiPSCs. Unlike in mice, human PGCLCs must
be derived via an incipient mesoderm-like cell (hiMeLCs) state from hiPSCs [11,25,26].
Therefore, the hiMeLCs were induced for three days from 4i medium adapted hiPSC lines
following previous published protocol [10] and then hPGCLC aggregates were formed
for four days. Mesoderm- and endoderm-relative genes such as EOMES and SOX17 were
up-regulated in iMeLC condition, and the PGC markers such as BLIMP1 and STELLA were
significantly increased upon induction in the derivatives from Ctrl2#6 compared with the
pluripotent status by real-time RT-PCR analysis (Figure 4A). It is worth noting that the
expression level of SMN1 was significantly lower in the AZ cells compared with control
cells throughout 4i culture condition till PGCLC stages (Figure 4A).

Considering the function of SMN in spermatogenesis and pluripotency maintenance,
we generated the Flag-tagged SMN-continuously expressed AZ-hiPSC lines from AZ1#12
(Flag-hSMN1) by lentiviral transduction to explore the benefits of SMN in differentiation
capacity from hiPSCs to hPGCLCs. The real-time RT-PCR and western blot analysis
indicated the abundance of SMN and exogenous Flag expression in Flag-hSMN1 hiPSC line
compared with the vector control group (Figure 4B). The pluripotent marker NANOG was
stably expressed in the Flag-hSMN1 AZ-hiPSCs, indicating the unaffected pluripotency
upon exogenous gene transduction (Figure 4C). These Flag-hSMN1 AZ-hiPSCs were
differentiated into PGCLCs to investigate whether overexpression of SMN could facilitate
the germ cell differentiation. To our surprise, the pluripotent markers, OCT4, SOX2, and
NANOG, were significantly increased upon SMN transduction at PGC stage, whereas the
PGC and mesoderm markers were relatively stable during differentiation (Figure 4C).
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Figure 3. Characterization of the stem cell potency in AZ and control hiPSCs. (A) Detection of azoospermia factor (AZF)
a, b, and c genes from the genomic DNA of whole blood of azoospermia (AZ1, 2, and 3) and control (Ctrl1, 2 and 3)
patients. SRY represents the male specific gene, and ZFX/Y is used as the internal control. (B) Pluripotent genes including
endogenous OCT4, NAONOG, SOX2, TFAP2C are reactivated in hiPSC lines from azoospermia patients (AZ1, 5, and 6) and
control men (Ctrl1, 2, and 3). GAPDH indicates the internal control, and RT-Neg represents the template RNA without
reverse transcription. (−) non template negative control. (C) Phase-contrast images of iPSCs derived from control (Ctrl)
and 2 azoospermic (AZ) men. Scale bar: 200 µm. (D) Immunofluorescence staining of pluripotency-related markers,
NANAOG, OCT4, SSEA4, TRA-1-81, and TRA-1-60, in AZ-hiPSC (AZ1#10 and #12) and control (Ctrl2#6) lines. Merged
images of pluripotent markers with cell nuclei counter stained with DAPI (blue color). Scale bar: 20 µm. (E) Relative
expression levels of germlayer specific genes (SOX17 for endoderm, PAX6 for ectoderm, and HAND1 for mesoderm) in
hiPSCs and 10-day EBs analyzed by real-time RT-PCR. Error bars indicate mean ± SEM from three replicates (two-way
ANOVA, ** p < 0.01; *** p < 0.001). (F) Morphology of teratoma tissue in AZ-hiPSC lines (AZ1#10 and #12) and control
hiPSCs (Ctrl2#6) collected from NOD/SCID mice. Scale bar: 5 mm. (G) Representative images of H&E-stained teratoma
section from hiPSCs demonstrate the potency of three germ layers. Ciliated cells (endoderm), cartilage-like cells (mesoderm)
and primitive neuronal cells (ectoderm) can be observed in all three hiPSC lines. Scale bar: 50 µm.
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Figure 4. Effect of hSMN1 overexpression on hPGCLC induction in hiPSC from azoospermia patients. (A) Expression
analysis by real-time RT-PCR of hiPSCs, hiMeLCs, and hPGCLCs. Pluripotent markers including OCT4, NANOG and SOX2,
as well as ICM marker KLF4 are down-regulated upon differentiation, whereas germ cell markers such as BLIMP1, TFAP2C,
and STELLA are up-regulated during differentiation in control hiPSC (Ctrl2#6). Mesoderm (BRACHYURY, EOMES) and
endoderm marker (SOX17) show the increasing tendency during differentiation. SMN1 expresses abundantly in cells from
Ctrl2#6 hiPSCs compared with AZ1#12 group. Relative expression levels are shown with normalization to GAPDH. Error
bars indicate mean ± SEM from three replicates (two-way ANOVA, * p < 0.05; ** p < 0.01; *** p < 0.001). (B) Comparison
of SMN1 transcripts (upper panel) in Ctrl2#6 and AZ1#12 hiPSC by real-time RT-PCR. Relative fold change of SMN1 is
significantly elevated in Flag-hSMN1 overexpressed AZ-hiPSCs (Flag-hSMN1) compared with vector control (vc-ctrl).
Western blot analysis demonstrates the exogeneous Flag-tagged SMN protein in SMN overexpressed group (Flag-hSMN1)
in 4i culture condition. α-Tubulin is used as internal control (lower panel). (C) Immunofluorescent staining of Flag-hSMN1
overexpressed AZ-hiPSCs (Flag-hSMN1) in 4i condition (left panel). Compared with vector control (vc-ctrl), abundancy of
SMN (green) is shown in Flag-hSMN1 group. NANOG (red) is stably expressed in those hiPSC lines. Scale bar: 50 µm.
(C) Rela-time PCR analysis on Flag-hSMN1 overexpressed AZ-hiPSCs from stages of hiPSCs, hiMeLC to of hPGCLC
induction. Markers associated with pluripotency, germ cell development, mesoderm and endoderm differentiation are
examined on hPGCLC from control hiPSCs (Ctrl2#6), AZ-hiPSCs introduced with control vector (AZ1#12 vector) and
Flag-hSMN1 vector (AZ1#12 Flag-hSMN1).



Int. J. Mol. Sci. 2021, 22, 661 8 of 14

3. Discussion

Previously, our group demonstrated that the deficiency of SMN results in the defects
on pluripotent stem cells, affecting neurogenesis and spermatogenesis in mice [15,19].
Although SMN serves as a housekeeping gene in various tissues and types of cells, how
SMN affects stem cells still need to be elucidated. In this study, we analyzed the effect of
SMN on mouse spermatogenesis and human germ cell differentiation. Using an in vitro
culture assay, we found the SMN deficient SSCs were unstable during maintenance and
loss of spermatogonia marker PLZF after continuous culture (Figure 1), which is consistent
with our previous in vivo study [19].

Previously, we reported that overexpression of SMN in mouse ESC sustained its un-
differentiation status and showed higher potency in resistance of retinoid acid induced
differentiation [15]. Here, similar phenomenon also showed in mouse SSCs. Importantly,
upon allogeneic transplant experiments, Smn1-overexpressed SSCs demonstrated signifi-
cantly increased homing ability. The molecular mechanism remains unclear. Given that
SMN serves as the key assembler in RNA splicing process and responsible for resolving the
RNA:DNA hybrids, R-loop, and subsequently anti-apoptosis [7,27,28], it is reasonable to
speculate that increased level of SMN could speed up the RNA processing and sustained
the cell survival in SSCs, therefore resulted in the advanced GFP colonies (Figure 2).

In the present work, We followed the long-turn culture condition of mouse SSC
reported recent years, including (1) StemPro-based medium, (2) supplementation with
growth factor cocktail of GDNF and bFGF, (3) co-culture with growth inactivated MEF
feeder cells, and (4) maintenance in an atmosphere of 5% CO2 and 21% O2 tension [22].
Although cultured SSCs expressed spermatogonia marker PLZF, heterogeneous differen-
tiated spermatogonial populations still massively retained under our long-turn culture.
Differences of purification procedure could affect the component when extraction of bovine
serum albumin (BSA), soluble lipids and conformation of albumin both contribute to SSC
maintenance [22,29]. Improvement of culture condition should be considered in future
studies.

We generated several AZ-hiPSC lines by the integration-free method and serum free
culture condition. These hiPSCs showed characteristics of pluripotent stem cells and
capable for three germ layer differentiation (Figure 3). The germ cell differentiation was
examined in those AZ-hiPSC lines and they showed low level of PGC markers, BLIMP1 and
STELLA compared with control group, as well as SMN1 (Figure 4). To our knowledge, this
is the first report studying in the correlation of SMN and spermatogenesis of azoospermia
patients. This finding corroborates a recent genome-wide analysis which demonstrated that
the association of azoospermia, and incorrect splicing of mRNAs [30]. Because deficiency
of SMN mainly leads to the failure of mRNA process, our study provides a concept of
potential therapy for NOA patients with abnormal splicing mRNA using the clinically
applicable drug as used in SMA patients. [18,31]. Various clinical SMA drug has been
approved recent years by the Food and Drug Administration (FDA), such as antisense oligo
nucleotides (ASOs) drug Nusinersen (Spinraza) by correction of SMN2 exon 7 splicing,
gene therapy targeting SMN1 using AAV [31], and an orally deliverable small molecule
drug-risdiplam (Evrysdi) that the therapeutic effect would be able to reach to all organs [32].
In this regard, augmenting SMN levels may prove to be a viable strategy to rescue/improve
the spermatogenesis efficiencies ex vivo or in vivo for NOA patients.

Together, our work demonstrates that SMN plays important roles in spermatogenesis
in mouse and in human, and suggests new therapeutic targets for treating azoospermia.

4. Materials and Methods
4.1. Availability of Data and Materials

The work was approved by Institutional Review Boards (IRB) at Mackay Memorial
Hospital (MMH) (IRB approval number:16MMHIS178e). The animal maintenance, care,
and procedures described within were reviewed and approved by the Institutional Animal
Care and Use Committee of National Taiwan University (NTU) according to the protocol
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number (NTU-107-EL-154, 11th January 2018 approved, NTU-108-EL-174, 11th May 2020
approved). All methods in the manuscript were performed in accordance with the relevant
guidelines and regulations of NTU. Graphics and tables in the manuscript were prepared
by the first and corresponding authors. Unless indicated, all reagents were purchased from
Thermo Fisher Scientific company (Waltham, MA, USA).

4.2. Generation and Culture of hiPSCs from Azoospermic Patients

The key reprogramming factors hOCT, hKLF4, hSOX2, and hC-MYC (OSKM) were
introduced by non-integrating Sendai virus by using CytoTune-iPS 2.0 Sendai Reprogram-
ming Kit (A16517) following manufacturer’s instruction. Briefly, the peripheral blood
monocyte cells (PBMCs) from azoospermia patients or control individuals were isolated
by Ficoll-Paque PLUS (GE17-1440-02, Sigma, St. Louis, MO, USA) from whole blood and
freeze immediately until usage. PBMCs were plated in complete StemPro-34 (10639-011)
medium containing the cytokines, such as SCF (c-kit Ligand), FLT-3 Ligand, IL-3, IL-6,
and GM-CSF (PHC2111, PHC9414, PHC0034, PHC0065) for four days and the infected
with Sendai virus carrying OSKM for one day. After infection, cytokines were removed
from StemPro-34 and cultured for 3 days. Hereafter, cells were transferred to Matrigel-
coated plates (354234, BD Biosciences, San Jose, CA, USA) and maintained in the StemFlex
Medium (A3349401). The estimative time for colony forming were 9 to 28 days after in-
fection. The hiPSC-like colonies were manually isolated based on morphology between
Day 21 to Day 27 post-transduction and cultured as iPSCs hereafter. For routine passage,
TrypLE express (12605010) was used to dissociate colonies every 4–5 days and cells were
replated on Matrigel-coated plates in StemFlex medium. All cells were cultured at 37 ◦C in
a humidified atmosphere containing 5% CO2.

4.3. Transduction of SMN into hiPSCs or Mouse SSCs with Lentivirus

The lentiviral mouse Smn1 expressing vector activated by EF1 alpha promoter was
constructed from the pSin-EF2 plasmid (#16578, addgene, Watertown, MA, USA) by
replacing NANOG gene with SpeI and BamHI. Human SMN1 carrying flag sequence
was replaced into the same plasmid through SpeI and EcoRI cutting site. Inserted genes
were amplified from cDNA of mouse testis or hciPSCs by HiFi PCR Kit (KR0368, KAPA
Biosystems, Wilmington, MA, USA) using specific primers listed in Supplementary Table S1.
Packaging and envelop vectors from RNAi core (Academia Sinica, Taipei, Taiwan) were
transfected together with lentiviral expressing vector into 293T cells to produce Flag-
hSMN1 lentivirus. TrypLE express-dissociated single hiPSCs were infected in suspension
with SMN-lentivirus for one day in Metrigel coated plates. On the second day, the virus
was removed and changed to fresh StemFlex medium until colony regrows to 0.5 mm
diameter.

4.4. Induction of hiMeLCs, hPGCLC

Prior to hiMeLCs and hPGCLC induction, control hiPSC (Ctrl2#6) and azoospermia
iPSC (AZ1#12) were cultured in 4i hESM medium for 10 passages. The 4i hESM is composed
of 20% Knockout Serum Replacement (KSR, 10828028) in Knockout DMEM (10829018), with
the following additions: 3 µM CHIR99021 (Axon 1368. Axon Medchem BV, Groningen, The
Netherlands), 1 µM PD0325901 (Axon 1408, Axon), 5 µM SB203580 (1202, Tocris Bioscience,
QL, UK), and 5 µM SP600125 (1496, Tocris), Activin A (20 ng/mL, Peprotech, Rocky
Hill, NJ, USA), human LIF (20 ng/mL, 300-05, Peprotech), and a higher concentration of
bFGF (8 ng/mL) as previou published protocol [10]. For iMeLC induction, 4i adapted
hiPSC were plated onto a human plasma fibronectin (33016015)-coated 12-well plate at
2 × 105/well in DMEM/F12 (11330–032) medium supplemented with 1% KSR, 1X N2
supplement (17502–048), 1X B27 supplement (17504–044), basic fibroblast growth factor
(bFGF, 10 ng/mL, 13256029), Activin A (120–14P, 20 ng/mL, PeproTech, Rocky Hill, NJ),
and ROCK inhibitor Y27632 (10 µM, 1254, Tocris Bioscience, Bristol, UK) for 2 days. The
hPGCLCs were induced by plating 2000–4000 TrypLE express-singlets of hiMeLCs into
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a ultra-low attachment U-bottom 96-well plate (174925) in Glasgow’s MEM (GMEM,
11710035) supplemented with nonessential amino acids (0.1 mM, NEAA, 11140–050), 2-
mercaptoethanol (0.1 mM, ES–007–E, Millipore, Burlington, MA, USA), GlutaMax (2 mM,
35050–061), 1X Penicillin and Streptomycin (P/S, 15070–063), sodium pyruvate (1 mM,
11360–070), BMP4 (250 ng/mL, 314–BP–050, R&D, Minneapolis, MN, USA), BMP2 (355–
BM–050, 250 ng/mL, R&D), human LIF (20 ng/mL, 300–05, Peprotech), stem cell factor
(SCF, 100 ng/mL, PHC2115), epidermal growth factor (EGF, 50 ng/mL, PHG0313), and
10 µM of Y27632 for 4 days.

4.5. In Vitro Proliferation of Mouse SSCs

Mouse SSCs were isolated from the testis of six to seven days postpartum (dpp)
C57BL/6JNarl or SMA-like mice [C57BL/6/Tg(SMN2) Hung Smn1tm1 Hung] (National Lab-
oratory Animal Center, NLAC, Taipei, Taiwan) [33]. After Collagenase IV and Trypsin
digestion, testicle cells were incubated with anti-CD90.2 (THY1) antibody and then labeled
with anti-biotin microbeads (130-090-485, Miltenyi Biotec, Bergisch Gladbach, Germany).
2 × 105 SSCs were cultured in gelatin-coated 24-well plate seed with mitomycin C treated
mouse embryonic fibroblast (MEF) feeders and maintained in SSC medium composed of
complete StemPro-34 medium (10639011) supplemented with 5 mg/mL of BSA (A4378,
Sigma), 1% of ES cell-qualified heat-inactivated FBS (16000-044), D-(+)-glucose (6 mg/mL,
G6152, Sigma), 2-mercaptoethanol, ITS, P/S, GlutaMax, NEAA, MEM vitamin solution
(11120052), 0.14% (wt/vol) of sodium bicarbonate (S5761, Sigma), sodium selenite (30 nM,
S5261, Sigma), sodium pyruvate (30 µg/mL, P3662, Sigma), Putrescine (60 µM, P7630,
Sigma), ascorbic acid (100 nM, A4403, Sigma), D-biotin (10 µg/mL, B4639, Sigma), proges-
terone (60 ng/mL, P0130, Sigma), β-estradiol (30 ng/mL, E88775, Sigma), EGF (20 ng/mL),
GDNF (10 ng/mL), and bFGF (10 ng/mL). Half of the medium were changed daily till
confluence and passed by TrypLE to new feeder for further culture.

4.6. Immunofluorescent Staining and Confocal Microscopy

Cells were fixed with 4% paraformaldehyde (PFA) in DPBS for 20 min. Fixed cells were
incubated with the primary antibody in PBS with 2.5% bovine serum albumin and 0.25%
Triton-X100 for one hours at room temperature and incubate with primary antibody at 4 ◦C
for overnight. After washing with PBS, samples were incubated with secondary antibody,
which is diluted in the same solution as used in primary antibody dilution. One hours
after the secondary antibody reaction, samples were washed and mounted with ProLong
Antifade Mountanting medium (P36984). Primary antibodies used in this study include:
NANOG (1:500, ab21624, Abcam, Boston, MA, USA), OCT4 (1:150, MAB4401, Millipore),
SOX2 (1:150, GTX101507, Genetex, Alton Pkwy Irvine, CA, USA), SSEA4 (1:150, MAB4304,
Millipore), TRA1-60 (1:200, MAB4360, Millipore), TRA-1-81 (1:200, MAB4381, Millipore).
Secondary antibodies (4 µg/mL) were listed as bellow: Alexa Fluor goat anti-mouse 488
and 546 (A11029 and A10036), goat anti-mouse IgM 594 (A21044), goat anti-rabbit 488
(A32731). Images were acquired with confocal microscope (TCS SP5 II, Leica, Wetzlar,
Germany).

4.7. Immunohistochemistry (IHC)

Testis tissues of mice were dissected and immersed in 10% Formalin for overnight at
4 ◦C, then embedded into wax. Sections were dewaxed and treated with antigen retrieval
solution (HK057-5K, BioGenex, Fremont, CA, USA) as manufacture’s guide. The germ
cell markers, PLZF (1:100, sc–28319, Santa Cruz Biotechnology Inc., Dallas, CA, USA), rat
anti-TRA98 (1:150, ab82527, Abcam) and VASA (1:1000, ab13840, Abcam) were stained
in testis sections. Isotype IgG including rabbit (550875, BD) and rat (559072, BD) were
used as the negative control as shown in Supplementary Figure S2. Secondary antibodies
(1:500) were used as follows: Alexa Fluor donkey anti-rat Cy5(A10525) and Alexa Fluor
goat anti-rabbit IgG 594 (A11012).
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4.8. Western Blotting

Cell lysates from tissues (30 µg/lane) were run on a 12% polyacrylamide gel and then
transferred to PVDF membrane. Following 1 h incubation for blocking non-specific binding
with 5% non-fat dried milk in TBS, first antibody was incubated overnight at 4 ◦C including
mouse anti-SMN antibody (1:20,000) and α-Tubulin (1:20,000, T5168, Sigma) was used as
an internal control. After several washes containing 0.1% Tween-20 in TBS, the blot was
incubated for 1 h with a HRP-conjugated goat anti-mouse secondary antibody (31,460). The
bound antibody was detected by GeneGnome XRQ chemiluminescence detection system
(Cambridge, UK).

4.9. Gene Expression Analysis

Total RNA was isolated by TRIzol® reagent (15596026) and treated with RNase-
free DNase I (M6101, Promega, Madison, WI, USA) to remove genomic DNA. Treated
RNAs were reverse-transcribed by random hexamer primers using the GoScript Reverse
Transcription System (A2801, Promega). cDNA (25 ng) was mixed with Hieff qPCR SYBR
Green Master Mix (11203ES03, Shanghai, China) and 200 nM of the forward/reverse
primers in a final volume of 10 µL. Real-time RT PCR was performed using the Roche
LightCycler (LC480, Roche Applied Science, Mannhein, Germany), 15 s at 95 ◦C and 30 s at
60 ◦C for 45 cycles, and followed by the thermal denaturing step to generate the dissociation
curves to verify amplification specificity. All the genes were normalized with the CT value
of GAPDH. For conventional semi-quantitative PCR, cDNA (50 ng) was assayed as 30 s at
95 ◦C, 30 s at 55 ◦C and 30 s at 72 ◦C for 35 cycles by PCR machine (Biorad). PCR products
were run on agarose gel electrophoresis and photographed by gel image system (UVP).
The primer sequences were listed as in Supplementary Table S2.

4.10. Teratoma Assay

hiPSCs were dissociated by TrypLE and suspended in Matrigel/DMEM mixture.
At least 5 × 106 were injected intramuscularly into a 6–8-week-old NOD/SCID mouse
(National Laboratory Animal Center, NLAC, Taipei, Taiwan). Teratomas were collected
6 weeks post-transplantation. Teratoma tissues were dissected and immersed in 10%
formaldehyde overnight at 4 ◦C and then embedded into wax. Sections were dewaxed,
rehydrated, and stained with hematoxylin and Eosin (H&E).

4.11. Germ cell Transplantation

β-Actin promoter-driven GFP (GFP) 5–8 dpp ICR mice backcross with C57BL/6JNarl
for 20 generations and were used for donor mouse SSCs in the germ cell transplantation
experiment [33,34]. Six week old recipient ICR male mice (BioLASCO, Taipei, Taiwan) were
treated with 40 mg/kg busulfan (B2635, Sigma) and kept for one month to eliminate en-
dogenous germ cells [22,29]. Following previously described procedures [19,35], the testicle
THY1+ SSC cell suspension from 5–8 dpp GFP mice (concentration of 2.5 × 106 cells/mL)
was mixed with Trypan Blue dye (T8154, Sigma) in Polyvinyl alcohol (PVA, P8136, Sigma)
containing D-PBS solution, and approximately 20 µL of the cell suspension was injected
through efferent duct into rete testis of the recipients. Two months later, the testes of the
recipient animals were dissected for detecting of GFP+ colonies.

4.12. Statistics

All data were presented as means ± standard error of the mean (SEM) and unpaired
comparison was analyzed using the Student’s t-test or one-way ANOVA with Dunnett’s
multiple comparison test (GraphPad Software Inc., La Jolla, CA, USA). Significance was
assumed at a p-value of 0.05.

5. Conclusions

In this study, we demonstrated that defected SMN results in loss of spermatogonia in
in vitro culture. In contrast, increased level of SMN not only promotes self-renewal and
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homing ability in mouse SSCs, but also elevated the colony completeness of seminiferous
tubules in allogeneic transplant assay. The hiPSCs derived from azoospermia patient
showed the differentiation ability in vitro and in vivo. AZ-hiPSCs expressed all pluripotent
markers during long term in vitro culture, and typical cell types with three germlayers
were featured in the teratoma assay, indicating the successful reprogramming of these
hiPSC lines. The developmental capacity of germ cell lineage was assayed by the hPGCLC
induction procedures. The decreased SMN1 expression pattern during the differentiation
process from hiPSCs, hiMeLCs, and hPGCLCs in AZ-hiPSC, implying that the defected
expression of SMN might be one of the potential factors that cause of azoospermia. When
overexpressing hSMN1 in AZ-hiPSCs, pluripotent markers expressed at increased tendency
compared to the control vector group. However, the PGC related genes could not be
elevated in these hPGCLCs, implying the concealed defect beyond SMN might still exist
in examined AZ cells. In summary, current study showed that SMN can improve the
propagation of SSCs, and patient-specific hiPSCs can be generated from azoospermia
patients, which provides a potential tool for artificial gamete production to investigate
male infertility and explore novel therapy in the future.

Supplementary Materials: Supplementary Materials can be found at https://www.mdpi.com/1422
-0067/22/2/661/s1.
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