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Abstract: Understanding the visual stimulus in a psychophysical experiment, theoretically, is critical
for controlling the experiment, for interpreting the empirical results of the experiment, and for
discussing the mechanisms the visual system used to get these results. This fact encourages visual
scientists to use “simple” visual stimuli in their experiments. A triangle is one of the simplest
stimuli that has been used by psychophysicists to study 3D perception. It has also been used to
compose the polygonal meshes that represent complex 3D surfaces in computer graphics. The
relationship between the shape, orientation, and retinal image of a triangle has also been studied
as the Perspective-3-Point problem (P3P). In this study, the statistical properties of this relationship
between the 2D retinal image of a triangle and its recovered 3D orientation were tested in a simulation
experiment whose results showed that a triangle is qualitatively different from more complex shapes
that have been used to recover 3D information from their retinal images. This raises an important
question, namely, how many, if any, inferences about our visual system can be generalized to our
perceptions in everyday life when they are based on psychophysical experiments that used very
simple visual stimuli such as triangles.

Keywords: 3D perception; depth perception; P3P problem; shape constancy; shape ambiguity;
visual space

1. Introduction

Understanding the visual stimulus in a psychophysical experiment, theoretically, is
critical for controlling the experiment, for interpreting the empirical results of the experi-
ment, and for discussing the mechanisms the visual system uses to get these results. This
goal has encouraged visual scientists to use “simple” visual stimuli in their experiments.
A 2D retinal image can, theoretically, be decomposed into points, contours, gratings, and
Gabor patterns. The perception of such stimuli has also been studied in psychophysical
experiments (e.g., [1,2]). Our theoretical understanding of these simple elements taken
with the empirical studies of their perception permits us to discuss, systematically, the
perception of more complex stimuli that are composed of such elements.

The perception of 3D information cannot be studied in the same way that the percep-
tion of 2D information on the frontoparallel plane can be studied because projecting a 3D
scene on to a 2D retina is a well-posed forward problem but recovering this 3D information
in the scene from a 2D retinal image is an ill-posed inverse problem [3,4]. There are infinitely
many possible 3D interpretations of the 2D retinal image. The visual system can resolve
this problem by using a priori constraints in the 3D scene, such as mirror-symmetry and
volume [4–7]. The visual system can also use a number of depth cues for perceiving the 3D
information [8]. Consider, for example, that human beings normally view a 3D scene with a
pair of eyes. These eyes are separated about 6.5 cm so their retinal images of the scene will
be slightly different from one another. This difference between the stereo-retinal images is
called “binocular disparity”. The visual system can use this cue to perceive depth.
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Can a 3D scene or a 3D object be decomposed into its simple parts in the same way
that its 2D retinal image has been decomposed? The visual system could segment objects
in the scene and process them individually [9–11]. These individual objects can even be
segmented into smaller components, making it possible to recognize them [12–14]. The
relationship between these components and their 2D retinal images can be characterized
by what has been called their “non-accidental properties” [6,14,15]. These non-accidental
properties are invariant features in the images of the components, and these image features
can be assumed to play an important role for perceiving 3D information from the 2D
retinal image.

Often, there is even more reduction of the visual stimuli employed in computer
vision and in computer graphics where 3D scenes and 3D objects are often represented
as compositions made up of points, or of polygons. These polygons are used to compose
a polygonal mesh that represents, approximately, any complex surface of a scene and
of an object. Triangles are commonly used to compose the polygonal mesh because a
triangle is the simplest polygon that can enclose a surface that is always planar. Note
that these triangles and dots are two of the simplest stimuli that have been used to study
3D perception. It has been shown that the 3D perception of these triangles, and dots, as
well as some other very simple visual stimuli is not veridical while the perception of 3D
scenes and objects “out there” is veridical in our everyday life (see References [3,4] for
discussions). This difference in the veridicality of the 3D perception can be attributed to the
geometrical properties of the stimuli employed. The visual system uses a priori constraints
and depth cues to establish veridical 3D perception. Theoretically, both the constraints
and the cues require visual stimuli that have at least some geometrical complexity. So,
an understanding of the geometrical properties of the stimuli employed is necessary if
one wants to understand the difference observed between veridical and non-veridical
3D perception (see References [16–18] for a discussion about the importance of Theories
in Science).

In this study, we analyzed numerically: (i) the geometrical properties of the relation-
ship between a triangle in a 3D scene and its 2D retinal image, and (ii) the retinal images
of triangles that were used as visual stimuli in two prior psychophysical studies. These
triangles were discussed in detail in this study because these triangles can be regarded
as the kind of elements that can be used to compose a 3D scene. They are the simplest
polygons that can enclose planar surfaces, and they can even represent, approximately,
a more complex surface by using them to compose a polygonal mesh.

2. Analysis

The relationship between a triangle ABC in a 3D scene and its 2D perspective projection
to a retina can be represented by the tetrahedron EABC shown in Figure 1. The bottom face
of the tetrahedron is the triangle ABC and the apex E represents the center of projection
in an eye. The retinal image of ABC can be represented by three visual angles θBC, θCA,
and θAB at E. The shape of the triangle ABC can be characterized by two angles ωA and
ωB at the vertices A and B. The third angle ωC of the triangle ABC is ωC = 180◦—ωA—ωB.
The size of ABC can be controlled by the length of the line-segment AB. The length of AB
(‖AB‖) can be set to 1 without any loss of generality. If the size of ABC changes by a factor
of s (‖AB‖ = s), the size of the tetrahedron EABC changes by a factor of s while all of the
angles of EABC remain constant. Note that the distance and size of ABC from the center of
projection E changes by a factor of s while the orientation of ABC is unchanged.

First, consider recovering the shape of the triangle ABC from its retinal image when
both the orientation of ABC in a 3D scene and the retinal image are given. The shape can
be uniquely determined by finding the intersection of the lines of projection with a plane
that has the given orientation. The orientation can be arbitrary unless the normal to the
plane is perpendicular to any of the lines of the projection. The distance of the plane from
the center of projection E characterizes the size of ABC.
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Figure 1. A perspective projection from the triangle ABC in a 3D scene to the triangle abc in the 2D
image plane Π from the center of projection E. This projection can be represented as the tetrahedron
EABC.

Next, consider recovering the orientation of the triangle ABC from its retinal image
when the shape of ABC and the retinal image are given. This problem is relevant with, for
example, shape recognition, shape reconstruction, and mental rotation tasks. It is known
as the Perspective-3-Point (P3P) problem [19–28]. It has been proven that there are 0, or
up to 4, possible 3D interpretations of the triangle for the given shape (ωA, ωB, ωC) as
well as for the size s and for the retinal image of the triangle given (θBC, θCA, θAB). These
interpretations correspond with the solutions of the quartic equation that is used to solve
the P3P problem (see Reference [28]).

The P3P problem in our study was formulated as the relationship between the triangle
ABC and the visual angles θBC, θCA, and θAB [20–25]. This allows us to control the retinal
image of the triangle ABC with only 3 parameters (θBC, θCA, θAB). The recovered orientation
of the triangle ABC is characterized by the distance lA, lB, and lC of the vertices A, B, and C
from the center of projection E. The recovered positions of A, B, and C can be written as:

A = lAVA
B = lBVB
C = lCVC

(1)

where VA, VB, and VC are unit vectors representing the lines of sight from E to A, B, and C.
The vectors VA, VB, and VC can be derived from the retinal image of the triangle (θBC, θCA,
θAB). The distance lA, lB, and lC are restricted to be positive so that the recovered positions
of A, B, and C do not extend behind the center of projection E.

Note that the P3P problem in computer vision [19,27,28] is formulated as a relationship
between ABC and its planar perspective image (the triangle abc on the image plane Π in
Figure 1) in a calibrated camera. The visual angles θBC, θCA, and θAB can be computed from
this calibrated image.

2.1. Monte-Carlo Simulation

We tested the frequencies of the number of possible 3D interpretations of the triangle
ABC for the retinal image in two Monte-Carlo simulation experiments by using an algorithm
developed by Fischler & Bolles [21] for solving the P3P problem. The shapes of the triangle
(ωA, ωB, ωC) and the retinal image (θBC, θCA, θAB) were randomly generated in each trial
by randomly sampling ωA, ωB, θBC, θCA, and θAB from uniform distributions. The sampled
variables of ωA, ωB, θBC, θCA, and θAB were independent from one another but were
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constrained so that ωA, ωB, and ωC form the triangle and θBC, θCA, and θAB form an apex
of the tetrahedron: ωA + ωB + ωC = 180◦, θBC + θCA + θAB < 360◦, θBC + θCA > θAB, θCA
+ θAB > θBC, θAB + θBC > θCA. Additionally, the shape of the triangle was restricted by
an additional constraint, namely, 10◦ < ωA, ωB, ωC < 170◦. With this done, the possible
3D interpretations of the triangle for the retinal images (θBC, θCA, θAB) are computed by
using an algorithm developed by Fischler & Bolles [21] for solving the P3P problem. This
algorithm was implemented in a C++ program. We confirmed that this program is both
more reliable and faster than other existing programs that have been used for the P3P
problem (Appendix A).

In the first experiment, the ranges of the sampling of θBC, θCA, and θAB were set to
0.1◦ < θBC, θCA, θAB < θmax, where θmax is an independent variable (2◦, 4◦, . . . 118◦, 120◦).
There were 4 × 108 trials for each value of θmax. In the second experiment, the ranges of
sampling were set to θmax/2 < θBC, θCA, θAB < θmax.

The results of this simulation are shown in Figure 2. The ordinates show the frequen-
cies of the numbers of possible 3D interpretations. The abscissa shows θmax that controls the
range of the sampling. The four curves show the numbers of possible 3D interpretations.

Figure 2. Results of two Monte-Carlo simulation experiments. The ordinate shows the frequency of the numbers of possible
3D interpretations and the abscissa shows θmax. The five curves show the numbers of possible 3D interpretations. (A) The
visual angles θBC, θCA, and θAB were sampled between 0.1◦ and θmax. (B) The visual angles θBC, θCA, and θAB were sampled
between θmax/2 and θmax.

These results show the frequency of obtaining two possible interpretations is almost
100% (>95%) if the visual angles θBC, θCA, and θAB are small (θmax ≤ 14◦ in Figure 2A,B).
We also found that the frequency of 2 possible interpretations decreases as the retinal image
becomes larger. The number of possible interpretations is often 0 (>60%) if all the visual
angles θBC, θCA, and θAB are larger than 40◦ (θmax ≥ 80◦ in Figure 2B). This number is rarely
0 (<1%) if all of the visual angles θBC, θCA, and θAB are smaller than 20◦ (θmax ≤ 20◦ in
Figure 2A,B). The number of possible interpretations is rarely three or four for any value
of θmax.

Note that the projection from the triangle to its retinal image is perspective but it can
also be approximated well with an orthographic projection with uniform scaling when the
visual angle of the triangle is small. The two possible interpretations of the small retinal
image (θmax ≤ 14◦ in Figure 2A,B) are analogous to the depth reversal ambiguity of an
orthographic image of a 3D wire-frame object such as a Necker cube [29]. We confirmed
that the orientations of the triangle in the two possible interpretations are approximately
depth reversals of each other.

The number of possible interpretations of the triangle is almost always 1 or more than
1 if the image is sufficiently small (θmax ≤ 20◦ in Figure 2A,B) but is often 0 if the image is
sufficiently large (θmax ≥ 80◦ in Figure 2B). These trends were examined by performing
an additional analysis of the effect of small and large retinal images: (θBC, θCA, θAB) = (9◦,
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10◦, 11◦) and (90◦, 100◦, 110◦). The shapes of the triangles that could be projected to these
images were computed by using the same program we used to solve the P3P problem. The
results of these analyses are shown in Figure 3. Each point in these maps represents the
shape of a triangle ABC. The abscissas and the ordinates show two angles ωA and ωB of
the triangle ABC. The third angle ωC was computed as ωC = 180◦—ωA—ωB. The colors of
the point indicate the number of possible interpretations of the triangle with a specified
shape (ωA, ωB, ωC). These trends were also observed in the individual retinal images.
Almost any triangular shape (10◦ < ωA, ωB, ωC < 170◦) can be projected to a small retinal
image and there were two possible orientations for many of the individual shapes. With
the large retinal images, less than half of the triangular shapes can be projected, so large
retinal image restricts the shape of the triangle. This suggests that a large retinal image of a
triangle can, to some extent, actually serve as a cue for the shape of the triangle.

Figure 3. Results of the analyses of two retinal images of triangles where (θBC, θCA, θAB) = (10◦, 15◦, 20◦) in (A) and (90◦,
100◦, 110◦) in (B). The ordinate and abscissa show two angles ωA and ωB of the triangle ABC. The colors indicate the number
of possible interpretations of the triangle. White regions indicate where the shapes of the triangle would not be valid.

2.2. Analyzing the Retinal Images of Triangles That Have Served as Visual Stimuli

We began by examining the shape of a triangle that was projected to a specified retinal
image. We analyzed the retinal images of the triangles that had been used in (i) Beck &
Gibson’s [30] Experiment 1, and in (ii) Watanabe’s [31] Condition 3, where they studied
(i) the relationship between the perceived shape of the triangle and its orientation in a
3D scene and (ii) the distortion of a perceived 3D space by comparing the visual stimuli
with their observers’ responses. Note that the Watanabe’s [31] paper provides important
support for Indow’s [32] theory that perceived space is distorted and that this distortion
is hyperbolic. We chose these studies because of the clarity of the authors’ descriptions
of the visual stimuli they used in their experiments and the simplicity of their stimuli. In
both of these experiments, the observers were shown the triangles in dark rooms and they
responded (i) by constructing its shape and (ii) by adjusting the positions of its vertices as
well as the positions of a few added points. The triangles were viewed monocularly in Beck
& Gibson and binocularly in Watanabe. The shapes of the triangles that could be projected
to retinal images were computed by using the program we used to solve the P3P problem.

The results of these analyses are shown in Figure 4. Each point in these maps represents
the shape of the triangle ABC. The abscissas and the ordinates show two angles ωA and ωB
of the triangle ABC. The third angle ωC could be computed as ωC = 180◦—ωA—ωB. Colors
of the point indicate the number of possible interpretations of a triangle with a specified
shape (ωA, ωB, ωC).

The three panels of Figure 4A show the number of possible interpretations for the
retinal images of the triangle that had 3 different orientations in Beck & Gibson [29]: (θBC,
θCA, θAB) = (5.538◦, 5.538◦, 6.573◦), (4.928◦, 4.928◦, 6.638◦), and (4.222◦, 4.222◦, 6.689◦).
These images are small (θBC, θCA, θAB < 10◦), and they are consistent with almost any shape
of the triangle. Moreover, note that usually there were only two possible interpretations for
each shape and that the number of possible interpretations is never 3 or 4.
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Figure 4. Results of the analyses of the retinal images of triangles: in (A) Beck & Gibson [30] and in (B) Watanabe [31].
The ordinate and abscissa show two angles ωA and ωB of the triangle ABC. The colors indicate the number of possible
interpretations of the triangle. White regions indicate where the shapes of the triangle would not be valid. (A) The results
of the analysis of the retinal images of the triangle that had 3 different orientations in Beck & Gibson [30]: (θBC, θCA, θAB)
= (5.538◦, 5.538◦, 6.573◦), (4.928◦, 4.928◦, 6.638◦), and (4.222◦, 4.222◦, 6.689◦). (B) The results of the analysis of the retinal
images in Condition 3 of Watanabe [30] with binocular viewing. His retinal images (θBC, θCA, θAB) were (41.19◦, 27.68◦,
31.01◦) for the left eye and (41.18◦, 27.78◦, 30.91◦) for the right eye.

The left and right panels of Figure 4B show the number of possible interpretations of
the left and right retinal images in Watanabe’s [31] Condition 3. The individual images
cannot be projected from about 20% of the triangular shapes. The number of possible
interpretations was often 1 or 2 and it was rarely 4. The number 3 was not observed. This
ambiguity remained even when the test was done binocularly. Many triangular shapes can
be projected to both of the retinal images.

The geometrical ambiguity of the visual stimuli shown in this analysis can explain the
empirical results in Beck & Gibson [30] and in Watanabe [31]. In Beck & Gibson [30], as well
as in Gottheil & Bitterman [33], Epstein, Bontrager, & Park [34], and Wallach & Moore [35],
the observers were shown triangles with a variety of shapes and responded by trying to
construct a similar triangular shape. A comparison of the physical shapes of the triangles
with the perceived shapes, as represented by their constructions, served as the measure of
shape constancy. All of these studies showed that shape constancy was very poor during
monocular viewing and that it only improved somewhat during binocular viewing. This
discrepancy between the physical and the perceived shapes of the triangles with binocular
viewing was also observed by Watanabe [31]. Watanabe claimed that this occurred because
the perceived space was distorted. However, his failure to achieve perfect, or near perfect,
shape constancy can be explained more parsimoniously by the geometrical ambiguity of
the visual stimuli used and not by defects in the visual systems of the observers.

3. General Discussion

This study examined how the shape and orientation of a triangle within a 3D scene
can be recovered from its 2D retinal image. The orientation of the triangle can be arbitrary
unless the normal to the plane of the triangle is perpendicular to any of the lines of the
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projection. Almost any triangular shape can be projected to the retinal image if the image
is less than 20◦ (see Monte-Carlo simulation; θmax ≤ 20◦ in Figure 2A,B, Figures 3A and
4A). This ambiguity cannot be resolved even when the triangle is viewed binocularly (see
our analyses of the images of the triangles that served as our visual stimuli; Figure 4B).
When the retinal image is large, some shapes cannot be projected to the retinal image (see
Monte-Carlo simulation; θmax > 20◦ in Figure 2A,B and Figure 3B). This suggests that the
retinal image of a triangle cannot serve as a cue for the shape of the triangle unless it is
sufficiently large.

Now consider that if there are 4 feature points in a 3D scene, they usually form a
volumetric polyhedron that has 4 vertices. This brings up the Perspective-4-Point (P4P)
problem where one must recover the orientation of the polyhedron when the 3D shape and
the 2D retinal image of the polyhedron are given [36]. It has been proven that there are 0 or
up to 5 possible 3D interpretations of the polyhedron for a given shape, as well as for the
size, and for the retinal image of the given polyhedron. Now, consider a case in which the
4 points are constrained to be coplanar to one another in the scene, and in which they form
a planar polygon. Their orientation can be uniquely recovered from its monocular retinal
image when the shape of the polygon is given [37,38]. A recovery is also usually possible
from a stereo-pair of retinal images under the constraint that the shape is planar, but the
shape of the polygon need not be given [39].

There needs to be 5, or more than 5, feature points in a 3D scene that project to
a stereo-pair of retinal images if the 3D scene is going to be recovered from the stereo-
pair [40,41]. A triangle has only 3 vertices so these are not sufficient to execute a recovery.
The recovery becomes possible if there are 2, or more than 2, additional feature points in
the scene [42]. A shortage of visual information on the retinas can also be compensated by
using oculomotor information about the orientations of the eyes relative to the head. Note
that the orientations of the eyes can be estimated by using the efference signal produced by
the oculomotor control system.

Other “simple” 3D visual stimuli, such as an ellipse [43], and points on the sagittal
plane that bisects the interocular axis perpendicularly [39], as well as points on a plane
coplanar with the eyes [44], present analogous problems. Note that many psychophysical
studies have shown that perception is not veridical and that percepts are distorted when
such simple visual stimuli are used (e.g., [32]). However, note that such distortions could be
attributed to defects in another mechanism that is being used to compensate for the shortage
of visual information inherent in the too simple visual stimuli, such as the oculomotor
efference signal. Note that other studies have shown that our perception of 3D scenes and
the shapes of 3D objects is veridical in everyday life [4,45].

In our everyday life, 3D scenes “out there” are complex and it is this complexity
that plays the critical role in perceiving them veridically. There are usually many feature
points in a natural 3D scene and these points are essential for the binocular recovery of
3D [45,46] particularly when they become more widely distributed [44,47,48] and if they
have sufficient density [49]. These feature points are inherent in the 3D objects present in
the scene. Note that: (i) the shapes and positions of these objects often satisfy a number of
a priori constraints, and (ii) the visual system can make use of these a priori constraints
to recover a 3D scene from its 2D representation on the retina [4–7] (see Reference [50]
for example). In light of these facts, it is questionable that many, if any, inferences about
the visual system can be generalized to the veridical perception observed in our everyday
life from the non-veridical perceptions that have been observed in many psychophysical
studies that used very simple visual stimuli, such as triangles, ellipses, and planes that
intersect the interocular axis perpendicularly, or are coplanar with the eyes. The visual
information required to recover 3D scenes is absent when these simple visual stimuli are
used. Human performance observed under such deprived conditions cannot be generalized
to performance under natural viewing conditions.

These simple visual stimuli were selected and used because they provided a con-
venient way to eliminate artifacts from the visual stimuli and to facilitate control of the
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experiment. The goal of our study was to explain why using a triangle introduces ambiguity
that does not exist when more complex stimuli are used. The results of our simulation
experiments show clearly that we achieved our goal. This encourages us to conclude
by emphasizing that understanding the theoretical properties of one’s visual stimuli is
critical for designing experiments concerned with shape and depth and for interpreting the
results obtained.
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Appendix A

The Perspective-3-Point (P3P) problem is concerned with recovering the orientation
of a triangle ABC from its retinal image when the 3D shape of ABC and its 2D retinal image
are given [19–28]. There are 0 or up to 4 possible 3D interpretations of the triangle. An al-
gorithm developed by Fischler & Bolles [21] for solving the P3P problem was implemented
in a C++ program and used for the simulations in this study. This algorithm recovers the
distance of the vertices A, B, and C of the triangle from a center of projection E. Let the
distance of the vertices A, B, and C be lA, lB, and lC. The output of this algorithm is vectors
with 3 values. These vectors represent individual 3D interpretations of the triangle and the
3 values of the vectors represent lA, lB, and lC.

There are two important properties of the algorithm that were used in our implemen-
tation. First, the algorithm needs to solve a quartic equation for recovering lA, lB, and lC.
The roots of this quartic equation were computed by using Ferrari’s method [52]. Ferrari’s
method was implemented in a C++ function based on [53].

Second, the algorithm recovers the distance lA, lB, and lC of the vertices A, B, and C
in an unbalanced manner. The distance to 2 of the 3 vertices is recovered first and the
distance to the last vertex is recovered on the basis of the recovered distance to the first
2 vertices. In a few rare cases, the results of the recovery changes depending on which
vertex was recovered last because of rounding and discretization errors. This problem was
addressed in our implementation by recovering lA, lB, and lC with 3 different orders in
which the last recovered distance was different from one another. Note that a result of the
recovery was vectors of the recovered lA, lB, and lC. Sets of the recovered vectors from the
3 different orders were combined and duplications of the vectors were eliminated. The
vectors were also verified by recovering the 3D shape of ABC from its 2D retinal image and
from each recovered vector. The vector was eliminated whenever the recovered shape was
substantially different from the given shape of ABC. The C++ code for this implementation
was uploaded to GitHub [51].

Our implementation of the algorithm was tested in a simulation experiment. In each
trial of this experiment, a triangle was randomly generated in a 3D scene and its retinal
image was computed. The 3D XYZ Cartesian coordinate system was set in the 3D scene to
place the origin at the center of projection E. The vertices A, B, and C were placed in the
scene so that their Z-coordinates were between 1 and 100. Angles between the Z-axis and
lines of projection to A, B, and C were less than ε, where ε is 45◦ in one condition and is 85◦

in the other condition, and 106 scenes were randomly generated for each condition.
In each trial, the algorithm recovered the depth lA, lB, and lC of the triangle’s vertices

A, B, and C from the retinal image of the simulated scene and the simulated shape of the
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triangle. The recovered depth was compared with the simulated depth of the vertices as
follows:

δ =

(
lA
‖l‖ −

l′A
‖l′‖

)2

+

(
lB
‖l‖ −

l′B
‖l′‖

)2

+

(
lC
‖l‖ −

l′C
‖l′‖

)2{ ‖l‖ = √lA
2 + lB2 + lC2

‖l′‖ =
√

l′A
2 + l′B

2 + l′C
2 (A1)

where lA, lB, and lC are the simulated depth of the vertices A, B, and C and l′A, l′B, and
l′C are their recovered depth. The recovered depth was considered to be veridical if the
difference δ between the simulated and recovered depth was less than 0.01.

The depth of the same 106 scenes were also recovered by using 3 other algorithms
that are used to solve the P3P problem, specifically, Gao, Hou, Tang, & Chang [22]; Ke
& Roumeliotis [25]; and Banno [27]. The algorithms of Gao, Hou, Tang, & Chang [22]
and Ke & Roumeliotis [25] were implemented as a function in the OpenCV library (ver.
4.2.0, [54,55]). The algorithm of Banno [27] was implemented by Banno himself [27]. The
performance of all of these 3 implementations was compared with our implementation.

The performance of these implementations is shown in Table A1. Their performance
was evaluated by examining the probability of failing to recover the depth of the simulated
scenes and the time required to recover the scenes. Note that the retinal images were
projections of the simulated scenes and the simulated shapes of the triangles were given
for the recovery. Hence, possible interpretations of the retinal images should have included
the simulated scenes. Our implementation always recovered the simulated 3D scene from
its retinal image. The other 3 algorithms failed to recover some of the simulated scenes.
Our implementation’s processing speed was also the highest.

Table A1. Performance of the 4 implementations of the P3P algorithms used to recover a 3D scene
with a randomly-generated triangle. The implementations were evaluated on the basis of their
recovery of 106 scenes. The probability of the failure to recover the simulated scene and the time
required for processing the recovery of the 106 scenes were measured.

Algorithms ε % Failed Trial Processing Time

Minkov & Sawada
45◦ 0% 2.7 s
85◦ 0% 2.6 s

Gao, Hou, Tang, & Chang [22] 45◦ 0.034% 20 s
85◦ 0.025% 18 s

Ke & Roumeliotis [25]
45◦ 21% 25 s
85◦ 25% 26 s

Banno [27]
45◦ 29% 8.7 s
85◦ 22% 7.8 s

The performance of our implementation was also tested with different values of the
threshold for the depth difference δ. The implementation continued to perform perfectly
when the threshold was set to 10−6 or larger and only a few errors (0.0041%) were made
when the threshold was set to 10−7. Our implantation of the algorithm used for solving the
P3P problem was highly reliable.

References
1. Watt, R.J. Towards a general theory of the visual acuities for shape and spatial arrangement. Vis. Res. 1984, 24, 1377–1386.

[CrossRef]
2. Campbell, F.W.; Robson, J.G. Application of Fourier analysis to the visibility of gratings. J. Physiol. 1968, 197, 551–566. [CrossRef]
3. Pizlo, Z. 3D Shape: Its Unique Place in Visual Perception; MIT Press: Cambridge, MA, USA, 2008.
4. Pizlo, Z.; Li, Y.; Sawada, T.; Steinman, R.M. Making a Machine That Sees Like Us; Oxford University Press: New York, NY, USA,

2014.
5. Pizlo, Z.; Sawada, T.; Li, Y.; Kropatsch, W.; Steinman, R.M. New approach to the perception of 3D shape based on veridicality.

Complexity, Symmetry and Volume. Vis. Res. 2010, 50, 1–11. [CrossRef]

http://doi.org/10.1016/0042-6989(84)90193-7
http://doi.org/10.1113/jphysiol.1968.sp008574
http://doi.org/10.1016/j.visres.2009.09.024


Vision 2021, 5, 10 10 of 11

6. Sawada, T.; Li, Y.; Pizlo, Z. Shape perception. In Oxford Handbook of Computational and Mathematical Psychology; Busemeyer, J.,
Townsend, J., Wang, Z.J., Eidels, A., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 255–276.

7. Poggio, T.; Torre, V.; Koch, C. Computational vision and regularization theory. Nature 1985, 317, 314–319. [CrossRef]
8. Howard, I.P. Perceiving in Depth. In Other Mechanisms of Depth Perception; Oxford University Press: Oxford, UK, 2012.
9. Mishkin, M.; Ungerleider, L.G.; Macko, K.A. Object vision and spatial vision: Two cortical pathways. Trends Neurosci. 1983, 6,

414–417. [CrossRef]
10. Kravitz, D.J.; Saleem, K.S.; Baker, C.I.; Mishkin, M. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 2011,

12, 217–230. [CrossRef] [PubMed]
11. Scharff, A.; Palmer, J.; Moore, C.M. Divided attention limits perception of 3-D object shapes. J. Vis. 2013, 13, 18. [CrossRef]
12. Pentland, A.P. Perceptual organization and the representation of natural form. Artif. Intell. 1986, 28, 293–331. [CrossRef]
13. Marr, D. Vision; W.H. Freeman: New York, NY, USA, 1982.
14. Biederman, I. Recognition-by-components: A theory of human image understanding. Psychol. Rev. 1987, 94, 115–147. [CrossRef]
15. Leeuwenberg, E.; van der Helm, P.A. Structural Information Theory: The Simplicity of Visual Form; Cambridge University Press:

New York, NY, USA, 2013.
16. Bogen, J. Theory and Observation in Science. In The Stanford Encyclopedia of Philosophy, Winter 2020 ed.; Zalta, E.N., Ed.; Stanford

University: Stanford, CA, USA, 2020; Available online: https://plato.stanford.edu/archives/win2020/entries/science-theory-
observation/ (accessed on 28 December 2020).

17. Brewer, W.F.; Lambert, B.L. The theory-ladenness of observation and the theory-ladenness of the rest of the scientific process.
Philos. Sci. 2000, 68, S176–S186. [CrossRef]

18. Runeson, S. On the possibility of “smart” perceptual mechanisms. Scand. J. Psychol. 1977, 18, 172–179. [CrossRef]
19. Lu, X.X. A review of solutions for perspective-n-point problem in camera pose estimation. J. Phys. Conf. Ser. 2018, 1087, 052009.

[CrossRef]
20. Haralick, B.M.; Lee, C.N.; Ottenberg, K.; Nölle, M. Review and analysis of solutions of the three point perspective pose estimation

problem. Int. J. Comput. Vis. 1994, 13, 331–356. [CrossRef]
21. Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and

automated cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
22. Gao, X.; Hou, X.; Tang, J.; Cheng, H. Complete solution classification for the perspective-three-point problem. IEEE Trans. Pattern

Anal. Mach. Intell. 2003, 25, 930–943.
23. Li, S.; Xu, C. A stable direct solution of perspective-three-point problem. Int. J. Pattern Recognit. Artif. Intell. 2011, 25, 627–642.

[CrossRef]
24. Grafarend, E.W.; Shan, J. Closed-form solution of P4P or the three-dimensional resection problem in terms of Möbius barycentric

coordinates. J. Geod. 1997, 71, 217–231. [CrossRef]
25. Ke, T.; Roumeliotis, S.I. An efficient algebraic solution to the perspective-three-point problem. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4618–4626. [CrossRef]
26. Nakano, G. A Simple Direct Solution to the Perspective-Three-Point Problem, Proceedings of the 30th British Machine Vision Conference

(BMVC 2019), Cardiff, UK, 9–12 September 2019; BMVA Press: Durham, UK, 2019; Volume 26, pp. 1–12.
27. Banno, A. A P3P problem solver representing all parameters as a linear combination. Image Vis. Comput. 2018, 70, 55–62.

[CrossRef]
28. Persson, M.; Nordberg, K. Lambda twist: An accurate fast robust perspective three point (P3P) solver. In Proceedings of the

European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 318–332.
29. DeMenthon, D.; Davis, L.S. Exact and approximate solutions of the perspective-three-point problem. IEEE Trans. Pattern Anal.

Mach. Intell. 1992, 14, 1100–1105. [CrossRef]
30. Beck, J.; Gibson, J.J. The relation of apparent shape to apparent slant in the perception of objects. J. Exp. Psychol. 1955, 50, 125–133.

[CrossRef]
31. Watanabe, T. The estimation of the curvature of visual space with a visual triangle. Jpn. J. Psychol. 1996, 67, 278–284. [CrossRef]

[PubMed]
32. Indow, T. The Global Structure of Visual Space; World Scientific: River Edge, NJ, USA, 2004; Volume 1.
33. Gottheil, E.; Bitterman, M.E. The measurement of shape-constancy. Am. J. Psychol. 1951, 64, 406–408. [CrossRef] [PubMed]
34. Epstein, W.; Bontrager, H.; Park, J. The induction of nonveridical slant and the perception of shape. J. Exp. Psychol. 1962, 63,

472–479. [CrossRef]
35. Wallach, H.; Moore, M.E. The role of slant in the perception of shape. Am. J. Psychol. 1962, 75, 289–293. [CrossRef]
36. Gao, X.S.; Tang, J. On the probability of the number of solutions for the P4P problem. J. Math. Imag. Vis. 2006, 25, 79–86. [CrossRef]
37. Abidi, M.A.; Chandra, T. A new efficient and direct solution for pose estimation using quadrangular targets: Algorithm and

evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 1995, 17, 534–538. [CrossRef]
38. Pizlo, Z. A theory of shape constancy based on perspective invariants. Vis. Res. 1994, 34, 1637–1658. [CrossRef]
39. Longuet-Higgins, H.C. The reconstruction of a plane surface from two perspective projections. Proc. R. Soc. Lond. Ser. B. Biol. Sci.

1986, 227, 399–410.

http://doi.org/10.1038/317314a0
http://doi.org/10.1016/0166-2236(83)90190-X
http://doi.org/10.1038/nrn3008
http://www.ncbi.nlm.nih.gov/pubmed/21415848
http://doi.org/10.1167/13.2.18
http://doi.org/10.1016/0004-3702(86)90052-4
http://doi.org/10.1037/0033-295X.94.2.115
https://plato.stanford.edu/archives/win2020/entries/science-theory-observation/
https://plato.stanford.edu/archives/win2020/entries/science-theory-observation/
http://doi.org/10.1086/392907
http://doi.org/10.1111/j.1467-9450.1977.tb00274.x
http://doi.org/10.1088/1742-6596/1087/5/052009
http://doi.org/10.1007/BF02028352
http://doi.org/10.1145/358669.358692
http://doi.org/10.1142/S0218001411008774
http://doi.org/10.1007/s001900050089
http://doi.org/10.1109/CVPR.2017.491
http://doi.org/10.1016/j.imavis.2018.01.001
http://doi.org/10.1109/34.166625
http://doi.org/10.1037/h0045219
http://doi.org/10.4992/jjpsy.67.278
http://www.ncbi.nlm.nih.gov/pubmed/9021882
http://doi.org/10.2307/1419003
http://www.ncbi.nlm.nih.gov/pubmed/14857228
http://doi.org/10.1037/h0044054
http://doi.org/10.2307/1419614
http://doi.org/10.1007/s10851-006-5149-6
http://doi.org/10.1109/34.391388
http://doi.org/10.1016/0042-6989(94)90123-6


Vision 2021, 5, 10 11 of 11

40. Kruppa, E. Zur Ermittlung eines Objektes aus zwei Perspektiven mit innerer Orientierung [To determine a 3D object from two
perspective views with known inner orientation]. Sitz. Der Math. Nat. Kais. Akad. Wiss. 1939, 122, 1939–1948, (Translated by
Gallego, G., Mueggler, E., Sturn, P. arXiv 2017, https://arxiv.org/abs/1801.01454)..

41. Thompson, E.H. A rational algebraic formulation of the problem of relative orientation. Photogramm. Rec. 1959, 3, 152–159.
[CrossRef]

42. Sawada, T. A Computational Model that recovers depth from stereo-input without using any oculomotor information. J. Math.
Psychol.. under review. [CrossRef]

43. Pizlo, Z.; Salach-Golyska, M. Is vision metric? Comment on Lappin and Love (1992). Percept. Psychophys. 1994, 55, 230–234.
[CrossRef]

44. Backus, B.; Banks, M.S.; van Ee, R.; Crowell, J.A. Horizontal and vertical disparity, eye position, and stereoscopic slant perception.
Vis. Res. 1999, 39, 1143–1170. [CrossRef]

45. Kwon, T.; Li, Y.; Sawada, T.; Pizlo, Z. Gestalt-like constraints produce veridical (Euclidean) percepts of 3D indoor scenes. Vis. Res.
2016, 126, 264–277. [CrossRef] [PubMed]

46. Peek, S.A.; Mayhew, J.E.; Frisby, J.P. Obtaining viewing distance and angle of gaze from vertical disparity using a Hough-type
accumulator. Image Vis. Comput. 1984, 2, 180–190. [CrossRef]

47. Kaneko, H.; Howard, I.P. Spatial limitation of vertical-size disparity processing. Vis. Res. 1997, 37, 2871–2878. [CrossRef]
48. Bradshaw, M.F.; Glennerster, A.; Rogers, B.J. The effect of display size on disparity scaling from differential perspective and

vergence cues. Vis. Res. 1996, 36, 1255–1264. [CrossRef]
49. Gantz, L.; Bedell, H.E. Variation of stereothreshold with random-dot stereogram density. Optom. Vis. Sci. 2011, 88, 1066–1071.

[CrossRef] [PubMed]
50. Erkelens, C.J. Evidence for obliqueness of angles as a cue to planar surface slant found in extremely simple symmetrical shapes.

Symmetry 2015, 7, 241–254. [CrossRef]
51. Sawada, T. P3P. 2020. Available online: https://github.com/TadamasaSawada/P3P (accessed on 22 January 2020).
52. Weisstein, E.W. Quartic Equation. 2020. Available online: http://mathworld.wolfram.com/QuarticEquation.html (accessed on

13 February 2021).
53. Khasin, S.I. Решение урaвнения3-й, 4-й и5-й степеней нa C++ [Solution of the 3rd, 4th, and 5th degree polynomial equations in

C ++]. 2018. Available online: http://math.ivanovo.ac.ru/dalgebra/Khashin/cutil/poly34.html (accessed on 16 June 2018).
54. Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000.
55. Itseez. Open Source Computer Vision Library. 2015. Available online: https://github.com/itseez/opencv (accessed on

7 January 2020).

http://doi.org/10.1111/j.1477-9730.1959.tb01267.x
http://doi.org/10.2139/ssrn.3354468
http://doi.org/10.3758/BF03211670
http://doi.org/10.1016/S0042-6989(98)00139-4
http://doi.org/10.1016/j.visres.2015.09.011
http://www.ncbi.nlm.nih.gov/pubmed/26525845
http://doi.org/10.1016/0262-8856(84)90021-0
http://doi.org/10.1016/S0042-6989(97)00099-0
http://doi.org/10.1016/0042-6989(95)00190-5
http://doi.org/10.1097/OPX.0b013e3182217487
http://www.ncbi.nlm.nih.gov/pubmed/21642889
http://doi.org/10.3390/sym7010241
https://github.com/TadamasaSawada/P3P
http://mathworld.wolfram.com/QuarticEquation.html
http://math.ivanovo.ac.ru/dalgebra/Khashin/cutil/poly34.html
https://github.com/itseez/opencv

	Introduction 
	Analysis 
	Monte-Carlo Simulation 
	Analyzing the Retinal Images of Triangles That Have Served as Visual Stimuli 

	General Discussion 
	
	References

