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Abstract

Background: Recently high-throughput technologies have been massively used alongside clinical tests to study
various types of cancer. Data generated in such large-scale studies are heterogeneous, of different types and formats.
With lack of effective integration strategies novel models are necessary for efficient and operative data integration,
where both clinical and molecular information can be effectively joined for storage, access and ease of use. Such
models, combined with machine learning methods for accurate prediction of survival time in cancer studies, can yield
novel insights into disease development and lead to precise personalized therapies.

Results: We developed an approach for intelligent data integration of two cancer datasets (breast cancer and
neuroblastoma) − provided in the CAMDA 2018 ‘Cancer Data Integration Challenge’, and compared models for
prediction of survival time. We developed a novel semantic network-based data integration framework that utilizes
NoSQL databases, where we combined clinical and expression profile data, using both raw data records and external
knowledge sources. Utilizing the integrated data we introduced Tumor Integrated Clinical Feature (TICF) − a new
feature for accurate prediction of patient survival time. Finally, we applied and validated several machine learning
models for survival time prediction.

Conclusion: We developed a framework for semantic integration of clinical and omics data that can borrow
information across multiple cancer studies. By linking data with external domain knowledge sources our approach
facilitates enrichment of the studied data by discovery of internal relations. The proposed and validated machine
learning models for survival time prediction yielded accurate results.

Reviewers: This article was reviewed by Eran Elhaik, Wenzhong Xiao and Carlos Loucera.
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Background
In the last decade, high-throughput technologies have
been massively used alongside clinical tests to study vari-
ous diseases in order to decipher the underlying biological
mechanisms and devise novel therapeutic strategies. The
generated high-throughput data often correspond tomea-
surements of different biological entities (e.g., transcripts,
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proteins), represent various views on the same entity
(e.g., genetic, epigenetic) and are created through dif-
ferent technologies (e.g., microarrays, RNA-Sequencing).
The data are heterogeneous, of different types and for-
mats. There is an obvious necessity to integrate the data,
in order to store, access, relate, analyse and mine them
easily.
Data integration is understood as a mean to com-

bining data from different sources, creating a unified
view and improving their accessibility to a potential user
[1–3]. Data integration and biomedical analyses are sep-
arate disciplines and have evolved in relative isolation.
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There is a general agreement that uniting both these dis-
ciplines in order to develop more sustainable methods
for analysis is necessary [4, 5]. Data integration funda-
mentally involves querying across different data sources.
These data sources could be, but are not limited to, sep-
arate relational databases or semi-structured data sources
distributed across a network. Data integration facilitates
dividing the whole data space into two major dimensions,
referring to where data or knowledge about metadata
reside and to the representation of data and data models.
Biomedical experiments take advantage of a vast number
of different analytical methods that facilitate mining rel-
evant data from the dispersed information. Some of the
most frequent experiments are related to gene expression
profiling, clinical data analytics [6], rational drug design
[7, 8], which attempt to use all available biological and
clinical knowledge to make informed development deci-
sions. Moreover, machine learning-based approaches for
finding and highlighting the useful knowledge in the vast
space of abundant and heterogeneous data are applied
for improving these analytics. Metadata, in particular, are
gaining importance, being captured explicitly or inferred
with help of machine learning models. Some examples
include the use of machine learning methods for the infer-
ence of data structure, data distribution, and common
value patterns.
The heterogeneity of data makes any integrative analysis

highly challenging. Data generated with different tech-
nologies include different sets of attributes. Where data
are highly heterogeneous and weakly related two inter-
connected integrative approaches are applied: horizontal
and vertical integration (Fig. 1). The horizontal data inte-
gration unites information of the same type, but from
different data sources and, potentially, in different for-
mats. It facilitates uniting heterogeneous data, like clinical
information, from many different sources in one data
model. The vertical data integration, on the other hand,

means relating different analyses and knowledge across
multiple types of data, helping to manage links between
the patient’s gene expression, clinical information, avail-
able chemical knowledge, and existing ontologies. Most
existing approaches for data integration focus on one type
of data or one disease and cannot facilitate cross-type or
-disease integration [9, 10].

Related work
In this work horizontal integration is considered to be a
management approach in which the raw data (patients,
clinical records, expression profiles, etc.) can be “owned”
and managed by one network. Usually, each type of raw
data can define different semantics for common manage-
ment purposes. In contrast, vertical integration semanti-
cally combines the attributes of each separate type of data
that are related to one another. Additional information, in
particular for the molecular data, can be found in exter-
nal domain knowledge sources. With this newly added
information the missing parts of the studied data can be
filled in. In this way relations between attributes of the
different records can be learnt. Currently, there are many
established algorithms that address single-track data anal-
ysis [7, 8, 11, 12], and some recent successful approaches
to integrative exploration [13]. These, however, usually
only focus on one of the integration applications, either
horizontal or vertical, underutilizing the entireness of the
available information and the latent relations. We propose
a novel framework that employs both these integration
views. We show its value on a first example application to
machine learning-based survival time prediction.

Novel model
In this study we combine data from neuroblastoma (NB)
and breast cancer (BC). Via our data integration approach
whole datasets are joined, but the semantic integrity of the
data is kept and enriched. Through combining data from

Fig. 1 Horizontal and vertical data integration. Green arrows show relations between the data types (clinical, expression, CNV and disease
development, i.e. cancer progression). Horizontal integration is between patients, where the data can originate from, e.g., different institutes, but
covers the same type of data. The vertical integration is applied to combine the different data types
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multiple cancers in this way we create a network of data
where entities, like proteins, clinical features and expres-
sion features, are linked with each other [14]. Data can
be often represented as networks, where nodes indicate
biologically relevant entities (typically genes or proteins)
and edges represent relationships between these entities
(e.g., regulation, interaction). In our generated network,
nodes represent patients and edges represent similarities
between the patients’ profiles, consisting of clinical data,
expression profiles and copy number information. Such
network can be used to group similar patients and to asso-
ciate these groups with distinct features [15]. The main
challenges here are: (1) building an appropriate linked data
network, discovering a semi-structure of the data model
[16] and mapping assertions by the applied model for data
integration [17]; and (2) data cleaning, combined into a
formal workflow for data integration.
We focus on two aspects of data integration: horizon-

tal and vertical. As explained, horizontal data integration
means combining data within the same data source. In the
datasets analysed here, the data sources are, specifically:
clinical information, expression profiles and copy number
data. Each type of data is measured by a different tech-
nology and potentially available in various data formats.
As an example, we treat clinical data from two cancers
as one data source, or one entity, even if it is in different
formats. These entities are, however, semantically simi-
lar. Vertical data integration, on the other hand, is applied
to creating relations between all horizontally integrated
objects. This vertical data integration provides a connec-
tion between all different types of entities. This connec-
tion covers relations between patients through clinical
information, expression and copy number profiles. Based
on these relations we can easily detect all patients closely
related to each other by, for instance, protein mutations,
diagnosis and/or therapy.
Different databases are required for horizontal and for

vertical data integration because each of these approaches
address different aspects of the integration problem.
Horizontal data integration deals with unstructured and
heterogeneous data. Thus, we use a document-based
database (such as MongoDB), which can handle differ-
ent data types and formats. For vertical data integration a
graph-based database is applied, as it is suitable for rep-
resenting relations − crucial in this case. In this study, all
relations are established between existing records for each
entity, and represented by a semi-structure.
Data integration model with a NoSQL database can

potentially unite medical studies data, alternatively to the
most frequently used statistical/machine learning meth-
ods. Most of the NoSQL database systems share common
characteristics, supporting the scalability, availability, flex-
ibility and ensuring fast access times for storage, data
retrieval and analysis [18, 19]. Very often when applying

cluster analysis methods for grouping or joining data
issues occur − mainly with outliers, small classes, and
mostly with data dynamically changing relatedness. To
overcome these problems a NoSQL database integration
model can be applied. Further we extend the potential of
the model by using multiple datasets, regardless of the
level of heterogeneity, formats, types of data, etc. − all
very relevant in cancer studies [20].
Our integrative framework facilitates direct analyses of

the data. We first focus on a specific clinically relevant
application: modeling and prediction of the survival time
of cancer patients. This consists of applying both con-
ventional classification methods and machine learning
algorithms. Via data integration a new integrated and uni-
versal, i.e. applicable to both cancers, feature for survival
time prediction is introduced. This feature is built from
three clinical features which aremost related to survivabil-
ity. This integrated feature, further, provides a connection
to the newly developed linked data network. This fea-
ture is used, in conventional classification k-neighbours
method, to find patients that are related most closely to
the studied one. After that, via the linked data we find
other patients who may not have the new integrative fea-
ture but are still related by different types of data, like gene
expression or CNV. Machine learning models, based on
support vector and decision tree regression, are then used
for survival time prediction and cross validation.
Material andmethods
Our multilayer model for data integration consists of
linked and internal networks built for both of the studied
types of cancer: neuroblastoma and breast cancer. Both
of these cancers include several types of data for each
patient, such as expression data, copy number data and
corresponding clinical information. In order to find com-
mon mutated proteins and to provide common therapies,
we gain insight about the clinical outcome by detecting
relations between these multiple types of data. By using
such built relations we can find patients closest to the
studied patient of interest, based on semantic similarity
of diagnosis, applied therapy and gene expression profile.
With this data integration model, which contains linked
and relevant knowledge, we can build a specific network
for each studied patient.
Modeling relations between molecular data sources

and the linked information (clinical data, molecular data
sources, patient records, etc.) is a crucial aspect of
data integration in our study. In this regard two basic
approaches have been proposed. The first approach,
called here ‘internal data network’, requires data to be
expressed in terms of internal relations. These rela-
tions can be found directly in the raw data. The second
approach, called ‘linked data network’, requires the data
to be “enriched” by using external domain knowledge
sources [21].



Mihaylov et al. Biology Direct           (2019) 14:22 Page 4 of 17

Specifically, molecular data can be linked with exter-
nal domain knowledge sources, like pathway and protein
databases, by a general approach known as Linked Data
schema. Linked Data is a method of publishing structured
data so that it can be interlinked and become more infor-
mative through semantic queries. It is built upon standard
Web technologies such as Hypertext Transfer Protocol
(HTTP, [1]), Representational State Transfer (RESTful)
and Uniform Resource Identifiers (URIs) and extends
them to share information in a way that can be read
automatically by computers, mostly via RESTful APIs [22].
The structure of Linked Data is based on a set of princi-

ples and standard recommendations created by the W3C.
Single data points are identified with HTTP [1] URIs.
Similar to how a web page can be retrieved by resolv-
ing its HTTP URI (e.g., ‘http://en.wikipedia.org/wiki/
Presenilin’), data including a single entity in the Linked
Data space can be retrieved by resolving its HTTP URI
(e.g., ‘http://dbpedia.org/resource/Presenilin’). In order to
“impute” missing parts of the integrated data, like protein
annotations, protein relationships, mutations, finding hid-
den protein motifs, etc., it is necessary to use Linked Data
from different domain knowledge sources, like UniProt,
Ensembl, GO databases [23, 24]. This is defined as another
network layer over the already built one in the data
integration step. In Linked Data space all entities are
interlinked. This results in one large overarching network
where objects are interrelated. The challenge here is to
apply this network to finding more complete and reliable
information for each of the studied patients, as well as to
be able to use this information for survival time prediction
modeling.

Data description
Two datasets − neuroblastoma (NB) [12] and breast can-
cer (BC) [25], are used in this study. Data were provided
by the CAMDA 2018 challenge [26] . Similar type of
information is provided by different sources in different
formats. The neuroblastoma dataset contains RNA-Seq
gene expression profiles of 498 patients as well as Agi-
lent microarray expression and aCGH copy number data
for a matched subset of 145 patients each, and corre-
sponding clinical information. The breast cancer set con-
tains profiles for microarray expression and CNV copy
number data, and clinical information (survival time, mul-
tiple prognostic markers, therapy data) for about 2,000
patients. The types of data and information sources are
shown in Fig. 2. We integrate all data both horizontally
and vertically.

Data preprocessing
For initial data preprocessing we developed a program-
ming module in Python (version 3.7) with library scikit-
learn [27, 28] for reading in the raw files. The mod-

ule automatically discovers the delimiter which separates
each attribute in the raw data files. Each file has a header
with rows, containing specific information about the file,
the technology applied for generation of this file, types and
number of attributes, and references to other files (clin-
ical data files have reference to expression files via file
ID). Our programming module reads this information in
and uses it to create a so-called semi-structure. This semi-
structure contains attributes which exist in each type of
data. Data types include: clinical information, expression
and copy number profiles (Fig. 1). This module is used to
build a semi-structure repeatedly and iteratively, record
by record. Each record is built from fields/attributes
(all values from one record). For each record we store
aggregated information for all fields in one data struc-
ture, which contains two parameters − field name and
count of repeated fields [29]. When new fields are added
to the data semi-structure they are imported into our
database. The database consists of two layers − first: non
relational document-based database; and second: graph-
based database. This way the workflow is completed and
raw data are integrated into the database as a data semi-
structure. These fields − in each record, represent a small
set of all fields/attributes. In the document-based database
we apply a restriction (called ‘data schema’) based on the
generated semi-structure. The applied data schema over
each record for each type of data joins data in different for-
mats and from different sources. For each type of data this
data schema always contains ID and the Sample ID (repre-
senting the name of the subject, as provided in the clinical
information).

Data integration
Utilizing the semi-structure, heterogeneous data are inte-
grated into one database, where the final goal is to create
a network of relations between all types of data. In these
networks, nodes represent patients and edges represent
similarities between patient profiles. The similarity means
that two patients are related to each other by multiple
proteins, based on expression profiles and copy number
changes. These networks of relations facilitate grouping of
the patients. Patient groups can then be associated with
distinct clinical outcome.
The network has two layers. First layer, covering internal

relationships, is built with raw data, i.e. clinical informa-
tion, expression data, and copy number variants. These
are transformed into relationships between patients and
proteins. The second layer includes semantically linked
data from external domain knowledge sources. These
sources provide information about additional proteins
related to those existing in our dataset. These new rela-
tions are stored in our graph-based database. In order
to utilize the additional information from the external
knowledge sources we link them within our network via

http://en.wikipedia.org/wiki/Presenilin
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http://dbpedia.org/resource/Presenilin
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Fig. 2 Raw data specific to the investigated datasets. Along the horizontal arrow multiple different data types for a particular patient are shown.
Along the vertical arrow integrated types of data related to the studied cancers and linked to a certain patient are given

hyperlinks (URLs). This way we can avoid a visual incom-
prehensibility that would be caused by the redundancy of
information. These two layers are combined into one net-
work, where each relation is weighted. Our approach to
data integration consists of the following steps (Fig. 3).
All the data from the experimental datasets are inte-

grated horizontally with NoSQL (MongoDB) technology
and represented as a semi-structure. This results in a
semi-structure per data type, i.e. all clinical data are united
in a semi-structure, all expression data in another semi-
structure, and all copy number data in a semi-structure.

All the raw and metadata are stored in MongoDB in JSON
format. In order to integrate the data further, vertically,
we first need to find relations between already built semi-
structures for clinical records, expression profiles and
copy number data. These relationships are managed in
the graph-based database−Neo4j. For example, patient A
with semi-structure {ID, [attributes]} is related to patient
B with semi-structure {ID, [attributes]}. In this relation ID
is the important key, while the attributes provide general
information about the type of data record (clinical, expres-
sion, copy number). Such relations facilitate building a

Fig. 3Workflow of data integration of the independent datasets, performed within our framework. In data preparation phase we transform and
store the raw data of different formats in a document database, performing horizontal data integration per data type. We generate relations
between the data based on the available raw patient datasets, including clinical information and molecular data, and we store these in a
graph-based database, creating an internal network. We then look up mutated proteins within the networks and search for related information in
the external knowledge sources. This way we build the new general relations network which is considered, finally performing the vertical data
integration. We store these enriched relations in the graph-based database, together with the internal relationships



Mihaylov et al. Biology Direct           (2019) 14:22 Page 6 of 17

network, different for each studied patient. This net-
work includes expression profiles, copy number, and the
mutated proteins. In this way we can detect and link all
patients through a specific set of expressed and mutated
proteins.

Linking external data sources
Through semantic data integration, via https RESTFul
endpoints (programming access points) specifically, we
are able to find additional relationships between proteins
from the external domain knowledge sources (EDKS),
like GeneOntology compendium (GO), UniProt, Ensembl
[23, 24, 30]. Through EDKS proteins can be found that
are closely related to the ones available in the expression
profiles. The strength of relation of proteins is established
via a score mechanism [30] . For each protein, before
importing it into the graph-based database for vertical
integration, we search for related proteins. As a result a
list of proteins, containing ‘Hugo symbols’− protein iden-
tifiers, is obtained. We use these ‘Hugo symbols’ to find
a semi-structure of proteins in our database. The semi-
structure is then used to create relationships between the
proteins. Thus, relationships between proteins found in
our database are generated based also on data from EDKS.
Usually, the number of relationships generated with help

of EDKS is unfeasibly large (over a billion), increasing
dimensionality of such data. To account for that, we devel-
oped a strategy to continue working only with so-called
“trusted relationships”. These “trusted relationships” are
found by a scoringmechanism. This scoringmechanism is
introduced to rank, i.e. score, the most relevant relations
(based on semi-structures) originating from our datasets.
Internal relationships, based on raw data, have higher
score than the relations derived from linked data. We,
furthermore, define them as trusted relationships when
they occur more than 10 times among different patients.
This is necessary for differentiating the significant links
between the proteins and for reducing the noise of the
relationships between the patients through the added pro-
tein information. The noise is introduced by the external
knowledge sources, where, potentially, all proteins can be
related. The scoring mechanism also ranks the relations
originating from external knowledge sources. Naturally,
these should have lower scores, compared to the ones
derived from the real datasets. In the process of scoring
we can also improve the scores of the relations stem-
ming from the external domain knowledge sources on
the basis of the frequency with which the certain relation
appears. In the next step we classify the already inte-
grated datasets by tumor-related properties. Specifically,
we normalize the data by removing the mean and scaling
to unit variance [20]. After that, a k-neighbours classifica-
tion mechanism is applied to split the data into relatively
equal groups. Classified data are further used to remove

redundant records of the analysed patients. We then nor-
malize the data again by removing the mean and scaling
to unit variance.

Novel integrated tumor-specific feature
For survival time prediction in breast cancer the Notting-
ham prognostic index (NPI) is usually applied. It helps to
determine prognosis following the surgery. Its value is cal-
culated using three pathological criteria: the size of the
lesion, the number of involved lymph nodes, and the grade
of the tumor. The NPI can be used to stratify patients
into groups and is used to predict five-year survival (in
accordance with the more commonly used time scales for
survival in other types of cancers) [31]. We do not utilize
NPI in our framework because it only applies to one spe-
cific disease – breast cancer. In our case a universal pre-
dictor is essential, in order to account for other cancers,
e.g., neuroblastoma. Thus, we develop a novel and uni-
versal predictive parameter – Tumor Integrated Clinical
Feature (TICF). To predict patient survival time (in both
cancer studies combined) we select specific informative
clinical features. We tested different features, their combi-
nations and order, and established the optimal setup (not
shown). Specifically, the TICF feature is built by numer-
ically concatenating tumor stage, tumor size and age at
diagnosis (Fig. 3) in this exact order. The order of concate-
nation of the clinical data also shows the importance of
clinical information for tumor development and relevance
to the patient survival rate. A patient with a tumor in stage
four, naturally, will have a shorter survival time compared
to patients with a tumor in stage two. The next feature –
tumor size, is added second because with an increase of
the tumor size the survival rate of a patient is reduced. It
is also less important to the survival time than the stage
of the tumor. Age at the time of diagnosis, is concate-
nated third, and indicates that older patients have a lower
survival rate. If the order of concatenation of these TICF-
composing features would differ patients with distant
survival-related features would be incorrectly grouped. In
this manner, we provide a normalized distance between
patients, essential in our subsequent machine learning
approaches to survival time prediction.

Classification and data enrichment
We normalize the TICF feature by subtracting the mean
and scaling it according to the unit variance. Centering
and scaling are done independently for each record by
computing the relevant statistics on the samples. Mean
and standard deviation are then stored to be used in later
data analysis with the transformmethod. Patients are then
stratified into groups with regard to the TICF similarity
using a k-neighborhood approach.
Using the TICF we find a group of patients most rele-

vant to and build an individual dataset for every studied
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patient (Fig. 4). In the first step this dataset contains
only patients from the found group. It contains informa-
tion about the TICF and the related mutated proteins. In
the already semantically integrated datasets we search for
other relations between mutated proteins and patients.
These relations can be found within the vertically inte-
grated data. Within each of the defined patient groups we
detect relations of these patients to certain proteins. Using
these proteins we find relations to other patients, who
have the same mutated proteins as in the selected group.
These relations are all based on internal relationships.
We, thus, enrich each defined group with new related
patient records. The next step is to extend the number
of related proteins of the selected group by using linked
data, based on external knowledge sources. We, again,
enrich the defined group of patients through new rela-
tions to proteins, and then to other related patients. To
avoid redundancy of the linked data relationships we apply
the scoring mechanism. This generates a massive dataset,
which is different for each patient.

Survival time prediction models
Next we apply machine learning models to predict and
validate survival time of the patients. Artificial intelli-
gence, and in particular machine learning models, has
been regularly used in cancer research, with practical
implementations [32]. Artificial neural networks and deci-
sion trees, for example, have been used in cancer detection
and diagnosis for nearly 30 years [33]. Various models,
applying Support Vector Machine (SVM) to cancer prog-
nosis, have been successfully used for approximately two
decades [34].
Machine learningmodels used in our study are based on

Support Vector Regression (SVR) with different kernels:
Radial Basis Function (RBF), Linear and Poly, and Deci-
sion Tree Regression model (DTR). Similar models were
shown to perform well for survival prediction in cancer
studies [35, 36]. Moreover, using these models facilitates a
seamless cross-validation.

The TICF features are built for a selected group of
patients. We extend the selected group of patients with
new closer patients from internal networks and linked
data. This newly built set of patients includes enriched
TICF features. This set of already enriched TICF features
for the selected group and respective relations are used
as an input – first parameter to the machine learning
models. Second parameter is a number which represents
a patient’s survivability. For the survivability prediction
model we use the count of months after cancer is diag-
nosed, information available for most of the patients in
studied datasets. As a result, the machine learning mod-
els return an approximate value which represents survival
time in count of months. As mentioned, these first mod-
els are based on Support Vector Regression with different
kernels. SVR with RBF can be defined as a simple single-
layer type of an artificial neural network called an RBF
network. This RBF is used as an interpolation approach
which ensures that the fitting set covers the entire data
equidistantly. SVR-Linear represents a function for trans-
forming the data into a higher dimensional feature space
in order to enable a linear separation. SVR-Poly represents
the similarity of vectors (training samples) in a feature
space over polynomials of the original variables, allow-
ing learning of non-linear models. The feature space of
a polynomial kernel is equivalent to that of polynomial
regression. In the SVR-DTR, a decision tree represents a
regression or classification model in the form of a tree
structure. It breaks down a dataset into smaller subsets
while at the same time an associated decision tree is incre-
mentally developed. The final result is a tree with decision
nodes and leaf nodes.
These models fit the features selected for survival time

prediction from our integrated dataset and the yielded
results are directly comparable.

(Cross-)validation
We validate the outcomes of the applied machine learning
models by using randomly smaller subsets of both raw and

Fig. 4 The universal integrated TICF feature. TICF consists of three concatenated initial clinical features: tumor stage, tumor size and age at diagnosis.
The columns virtually group the patients by TICF, with regard to the first number – the tumor stage. The rows (split by dotted lines) sort patients
according to the values of the TICF, referring to the tumor size and age at diagnosis – always from left to right, following the growth of numerical axis
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integrated data, in a cross-validation setup. Specifically, a
k-fold cross-validation is applied, where the original sam-
ple is randomly partitioned into k equal-size subsamples.
Of the k subsamples, a single subsample is retained as the
validation data for testing the model, and the remaining
k −1 subsamples are used as training data. The cross-
validation process is then repeated k times (the folds),
with each of the k subsamples used exactly once as the
validation data. The k results from the folds can then be
averaged to produce a single estimation. The advantage of
this method over repeated random sub-sampling is that
all observations are used for both training and validation,
and each observation is used for validation exactly once.
10-fold cross-validation is commonly used, but in general,
k remains an unfixed parameter. This validation model
can be used to estimate any quantitative measure that is
appropriate for the data and the model.

Results
Semantic data network
We developed a novel network-based data integration
model, where we combine clinical and molecular data,
using both raw data records and external knowledge
sources. Relations derived from the raw data represent the
internal network and relations based on external domain
knowledge sources (EDKS) are represented as a seman-
tically linked network. Our semantically linked network
is connected to EDKS via RESTFul API endpoints. These
endpoints are different for each type of EDKS. As a result
we use two types of EDKS data. The first type consists of
proteins fromGO, related to the studied protein, based on
scores provided in the GO. The second type of data we
use, includes additional information about proteins in the
raw data, e.g., ‘Hugo Symbol’. These proteins often are not
completely defined by families and domains, so we use the
Hugo symbols and search for these protein domains and
families through the EKDS. Using similar proteins from
EDKS (GO) we semantically enrich our internal network
with new knowledge about relations between proteins,
which cannot be derived from the raw data. The resulting
highly dimensional network, consisting of more than one
billion relations, includes redundant information, which
we reduce via our scoring mechanism. Technically, the
fusion of the two studied types of cancer involves both
horizontal and vertical data integration, using two differ-
ent database models. The first is a document database
model where all heterogeneous raw data are integrated.
The second is a graph database model where all differ-
ent types of relations between patients and proteins are
joined. For the purpose of survival time prediction, com-
bining clinical information, we developed a novel univer-
sal Tumor Integrated Clinical Feature (TICF). The TICF
features are first identified using the raw data, based on
three existing clinical features – tumor stage, tumor size

and age at diagnosis. The TICF features are then used to
create patient similarity network that, in the next step, is
further extended with molecular information.
Figure 5 shows an example of a network of patients that

are semantically related to a studied patient – patient we
are interested in analysing. We build a TICF for all the
patients for whom the necessary clinical information is
available. Focusing now on a patient of interest, we then
find patients related to her by TICF similarity. Specif-
ically, we use the k-neighbours model to split patients
into 5 classes. This initial group contains a small set of
patients because not every patient has a TICF feature. In
the subsequent steps of the study, we use the molecular
data and find all proteins related to this selected group
of patients. Considering relationships between these pro-
teins, based on the molecular data, we can link patients
with each other. Next, we find all semantically related pro-
teins using the external, i.e. linked, data (EDKS) to still find
additional related patients.We can then combine all infor-
mation – internal and linked relations, from the found
group into one new extended, semantically enriched
dataset.
Machine learning models for survival time prediction

can then be applied to any patient within this dataset who
has a defined TICF feature.

Machine learning models for survival time prediction
Groups obtained via the TICF feature, naturally, can be
unbalanced. For example, including patients with smaller
number of data records – which presents an obstacle for
predicting the survival time. For validation we focus on
smaller datasets (approximately 25% of the whole dataset)
from the raw data which are clustered into 5 subgroups by
using the k-fold algorithm.
After the dataset is normalised and patients stratified

into groups we apply several machine learning models
for survival time prediction: Support Vector Regression
(SVR with RBF, Linear and Polynomial kernels) as well as
Decision Tree Regression (DTR).
In Fig. 6 performance – accuracy, of the machine learn-

ing models applied to survival time prediction is shown.
Survival time is predicted using the data of both cancers
combined and with our framework used for process-
ing and integrating the data. Decision Tree Regression
(DTR) and Support Vector Regression with linear ker-
nel (SVR-Linear) perform best, the latter yielding the
most accurate results for survival time prediction. The
potential of these models is in improving the accuracy of
survival time prediction by improving iteratively the train-
ing dataset over the whole integrated dataset. Specifically,
with every new studied patient we iterate over, we enrich
the training dataset with new trusted relations from our
linked relationships, defined by the increased frequency of
their use.
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Fig. 5 Example of patients related semantically via internal and linked network. The studied patient of interest is shown as a larger circle in the
middle. The vertical lines split the schema into 5 classes, as determined by the k-neighbor classification of the TICF feature. Black arrows show
patients related to the studied patient based on the molecular information. Grey arrows distinguish patients related to the studied patient based on
external linked data (from EDKS)

Fig. 6 Success rates of machine learning models for survival time prediction. Predicted-to-measured values of survival time prediction (by TICF),
where numbers correspond to months of survival time prediction. A dotted line symbolizes an ideal case of the ratio predicted to measured TICF for
survival time prediction
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Next we compare the applied models in a cross-
validation approach (Tab. 1). The validation is based on
four parameters for error evaluation: trained R2 (coeffi-
cient of determination) and trained explained variance are
related to the accuracy of the used model; while trained
negative mean square log error and negative mean abso-
lute error are related to the noise (error) level. The result-
ing accuracies (Fig. 7) again confirm that the SVR-Linear
and DTR models using TICF outperform other models,
i.e. SVR-RBF, with regard to accuracy. This shows that
SVR-Linear and DTR are more suitable, among the four
compared models, for accurate survival time prediction.
To confirm that our integrative framework is indeed

necessary to obtain best performance, we examine alter-
native approaches (see the Additional files 1, 2, 3 and
4). First we show cross-validation results using our rela-
tional network but without the TICF integrated clini-
cal feature (Additional file 1). Instead we use the clin-
ical features as separate regressors in the experiment.
Next we use the TICF feature but this time we do
not extend the patient similarity search with the rela-
tional network (Additional file 2). Finally, we look at
predictions when only separate clinical features are used
and no relational network (Additional file 3). Execu-
tional times of the applied ML models are given in
Additional file 4. As is evidenced, models building on
our novel fully integrative framework outperform the
alternatives.

Discussion
In this work we introduce a novel unified and universal
approach for integration of data generated in indepen-
dent cancer studies. We demonstrate its application to
breast cancer and neuroblastoma datasets. Our model
is built to facilitate application and extension to multi-
ple different diseases with different types of multi-omics
data. Subsequently, we highlight clinical relevance of our
data integration method by applying it to survival time
prediction, using machine learning models.
The original contribution of our work is the data inte-

gration model. A number of interesting and different
approaches, related to the similar problem were pre-
sented in the previous CAMDA challenges [26]. We

developed our strategy for data integration by using a
semantically defined network approach based on differ-
ent database models. Major objectives in our integra-
tive framework are to integrate and utilize information,
also latent, available in whole and dynamically growing
datasets for multiple diseases. Additionally to the poten-
tial extensibility of our data integration model, it also
facilitates a seamless integration with external knowl-
edge sources. The data integration challenge was solved
by using models for horizontal and for vertical integra-
tion. Specifically, we applied new database technologies:
document type database for horizontal integration and
graph database for vertical integration – MongoDB and
Neo4j, respectively. Such software technology facilitates
finding relations between the records in the integrated
datasets. The main merit of our approach is that we
are able, also dynamically, to add more data and rela-
tions. We explore these opportunities by adding new
semantically defined relations from the external knowl-
edge sources. Such approach gives us not only a solution
to the particular task of the CAMDA challenge, but can
also be applied in similar research and practical projects.
Our software platform can be easily extended and
supported.
Moreover, we apply and compare the performance of

multiple machine learning models that use the semanti-
cally linked data. Specifically, we develop a new classifica-
tion feature for survival time prediction.
The new feature – TICF, is an integrated parame-

ter, allowing semantical enrichment through the semi-
structure generated by our novel data integration model.
TICF can be used for the application of certain machine
learning models in order to find patients closely related
to the studied one. Inclusion of related patients with dif-
ferent clinical and expression parameters, as we show, is
essential for improving the accuracy of survival prediction
models.
For survival time prediction we apply supervised regres-

sion models [35, 36]. Models used in this study utilize
the TICF feature to improve the accuracy of patient
survival time prediction. Moreover, application of these
specific machine learning algorithms ensures a reliable
validation of our semantic data integration approach.

Table 1 Aggregated results of cross-validation

ML Model Train R2 Explained Variance Negative Mean Negative Median

Absolute Error Absolute Error

Mean StD Mean StD Mean StD Mean StD

SVR-RBF 0.318 0.038 0.341 0.032 −45.742 5.224 −34.455 5.594

SVR-LINEAR 0.983 0.007 0.986 0.006 −7.288 1.935 −6.109 1.509

DTR 0.996 0.000 0.996 0.427 −5.624 0.427 −4.636 0.467

SVR-POLY 0.884 0.007 0.887 0.009 −20.354 3.290 −15.581 5.382
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Fig. 7 Cross-validation of the applied machine learning models for survival time prediction. Performance of three models (SVR-Linear, SVR-RBF and
DTR) is compared. The fourth model, SVR-Poly has shown biased results (Fig. 6). Cross-validation is based on 5 subgroups defined by the TICF
feature, obtained after using k-fold algorithm. On the vertical axis the mean values with standard deviations of success rates and error rates of the
matchings of TICF feature are given

Cross-validation of these models showed stable results
with regard to achieved accuracy – both in the context of
success and error rates, in survival time prediction.

Conclusions
We developed models for defining and enriching relations
by integrating data of various types and from disparate
sources (two different cancer datasets), and consolidat-
ing them into meaningful and valuable information by the
use of semantic technologies. The use of linked and over-
layed NoSQL database technologies allowed us to aggre-
gate the non-structured, heterogeneous cancer data with
their various relationships. The applied semantic inte-
gration of different cancer datasets facilitates an enrich-
ment of the studied data by discovery of mutual internal
relations and relations with external domain knowledge
sources.
We developed machine learning based models for sur-

vival time prediction in two types of cancer – breast
cancer and neuroblastoma. We proposed a novel univer-
sal and integrative feature for classification and analysis,
investigated its performance in a cross-validation setup
with four machine learning models, and showed that the

best results are obtained with our integrative framework.
Specifically, using Support Vector Regression with Linear
kernel, and Decision Tree Regression.

Reviewers’ comments
Reviewer’s report 1: Eran Elhaik, Ph.D
The proposed framework is indeed novel but I found
the manuscript long and difficult to read. It should be
shortened and more figures should be employed to better
explain it. This can be done by adding figures showing the
pipeline and how the framework works and revise the leg-
ends to be more informative. Typos should be corrected.
Themanuscript is original and significant for works in this
field.
Author’s response: We agree with the suggestions and

improved the text. Figures illustrating the pipeline and how
the framework works are now adjusted for better clarity.
Typos are corrected and the text is optimized.

Reviewer’s report 2: Eran Elhaik, Ph.D
Is there a link to the system?
Author’s response: The system is developed internally

and, at the moment, not for public use. However, we
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uploaded the latest version of the source code into a
repository on GitHub, accessible after requesting permis-
sion. Our aim is to develop the system as a publicly
accessible tool.

Reviewer’s report 3: Eran Elhaik, Ph.D
What are the results of the framework that has been
applied to the 2 cancers? You wrote: “The potential of
these models is in improving the accuracy of survival time
prediction by improving iteratively the training dataset
over the whole integrated dataset.” Where can we see the
improving of the results accuracy?
Author’s response: The potential of these models is

shown in Figs. 6 and 7 and in the now additionally intro-
duced table. The more similar the data between two
patients, the more accurate the prediction is. We have
now added a table with aggregated numerical results with
regard to accuracy, as indicated by R2.

Reviewer’s report 4: Eran Elhaik, Ph.D
Figure 4 is unclear.
Author’s response: In Fig. 4 we present the idea of TICF

and how it is organized.

Reviewer’s report 5: Eran Elhaik, Ph.D
Figure 5 is most unhelpful. Consider adding more infor-
mation from proteins, etc. to increase clarity.
Author’s response: Fig. 5 shows how the Linked Data

concept is applied for patient data integration. The linked
data is a method of publishing structured data so that it
can be interlinked and explored via semantic queries. The
queries in our case can be done by using the information
of the relation between a mutated base (e.g., CNVs) and a
patient.

Reviewer’s report 6: Eran Elhaik, Ph.D
The legends of Figs. 6 and 7 are unclear. If I understand
correctly, Fig. 6a demonstrates the accuracy of the model
-this should be emphasizes and more numerical results
should be provided, but for which cancer are they? Also,
these figures have subplots that are not mentioned in the
legend.
Author’s response: We introduced Tab. 1 showing the

numerical results. We give an answer to the rest of the
question in our answer to question 3.

Reviewer’s report 7: Eran Elhaik, Ph.D
TCIF is used before it is defined.
Author’s response: Text is now adjusted.

Reviewer’s report 8: Eran Elhaik, Ph.D
Page 2, line 6: in order to store, to access, to analyse and to
mine it easily. -> to store, access, analyse andmine it easily.
Author’s response: Text is now adjusted.

Reviewer’s report 9: Eran Elhaik, Ph.D
You constantly using analysis when it should have been
analyses.
Author’s response: Text is now adjusted.

Reviewer’s report 10: Eran Elhaik, Ph.D
Data are Plural
Author’s response: Text is now adjusted.

Reviewer’s report 11: Eran Elhaik, Ph.D
Abstract: integration were both clinical and molecular -
>integration where both clinical and molecular
Author’s response: Text is now adjusted.

Reviewer’s report 12: Eran Elhaik, Ph.D
P. 3, line 18. “Through combining data from mul-
tiple cancers in this way we create a network of
data where entities, like proteins, clinical features and
expression features, are linked with each other” explain
now.
Author’s response: Fig. 5 shows how the Linked Data

concept is applied for patient data integration. The linked
data is a method of publishing structured data so that it
can be interlinked and explored via semantic queries. The
queries in our case can be done by using the information
of the relation between a mutated base (e.g., CNVs) and a
patient.

Reviewer’s report 13: Eran Elhaik, Ph.D
P. 3, line 26-40. There is a need for a figure here, which
would show the workflow and use the terms used in this
manuscript, like “entity”
Author’s response: Text is now adjusted.

Reviewer’s report 14: Eran Elhaik, Ph.D
P. 4, line 23. “Conventional classification k-neighbours
method is used to find patients that are linkedmost closely
to the studied one.”İ Explain how.
Author’s response: Fig. 5 shows how the Linked Data

concept is applied for patient data integration. The linked
data is a method of publishing structured data so that it
can be interlinked and explored via semantic queries. The
queries in our case can be done by using the information
of the relation between a mutated base (e.g., CNVs) and a
patient. KNN Method is used to classify patients based on
TICF features.

Reviewer’s report 15: Eran Elhaik, Ph.D
In Fig. 1, I suggest that you add another figure (ab) that
shows the integration of data for 2 patients because this is
unclear
Author’s response: Fig. 1 could potentially be extended.

However, the integration of data between two (respectively
all) patients is already shown in Fig. 5, where the concept of
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linked data is presented - the methodological background
of our study.

Reviewer’s report 16: Eran Elhaik, Ph.D
Section 4 - I suggesting using a figure showing a case study
being processed.
Author’s response: We now added the below text to the

Fig. 3.: In data preparation phase we transform and store
raw data with different formats in a document database
which is considered as horizontal data integration. After
that we generate the relations between data based on the
raw dataset for patients, molecular data and we store them
in a graph based database thus we developed the internal
network. After that for every mutation we search related
information from external knowledge sources and build the
new general relations network which is considered as ver-
tical data integration. We store these enriched relations
in the graph based database together with the internal
relationships.

Reviewer’s report 17: Eran Elhaik, Ph.D
P.4. “The first approach, called here ‘internal data net-
work’, requires data to be expressed in terms of internal
relations.” give examples to such connections and where
connections cannot be found
Author’s response: Connections are based on the rela-

tions of patients to proteins, information directly available
in the raw data. However, there exist no data concern-
ing relations between proteins and these cannot be derived
from the internal data network. We discover these pro-
tein relations based on the linked data, finally finding the
relations between patients.

Reviewer’s report 18: Eran Elhaik, Ph.D
P. 7. Line 29. “These trusted relationships” are found by
a scoring mechanism. This scoring mechanism is intro-
duced to rank, i.e. score, themost relevant relations (based
on semi-structures) originating from our datasets." Can
you expand on that?
Author’s response: Internal relationships, based on raw

data, have higher score than the relations derived from
linked data. We, furthermore, define them as trusted rela-
tionships when they occur more than 10 times among
different patients. This is necessary for differentiating the
significant links between the proteins and for reducing the
noise of the relationships between the patients through the
added protein information. The noise comes from exter-
nal knowledge sources where potentially all proteins can be
related.

Reviewer’s report 19: Eran Elhaik, Ph.D
P. 7. Line 39. “In this way we normalize the data.” Unclear
how.
Author’s response: Specifically, we normalize the data by

removing the mean and scaling to unit variance [20]. After

that a classification mechanism is applied to split the data
into relatively equal groups.

Reviewer’s report 20: Eran Elhaik, Ph.D
P 10, line 58. “took some smaller datasets from the raw
data” how small?
Author’s response: It is 25%. We added this information

in the text.

Reviewer’s report 21: Eran Elhaik, Ph.D
Check reference 4. “Bio*Medical Informatics”? reference
12 has a lot of authors. Reference 20 what’s going on there?
Check all your references.
Author’s response: Adjusted in the text now.

Reviewer’s report 1: Wenzhong Xiao
While the overall framework of the work is described in
the text and the figures and can be understood concep-
tually, the details of the approach applied to the CAMDA
datasets of the two cancers are apparently lacking or diffi-
cult to follow at places, making it difficult to evaluate the
quality of the resulting network after the integration. For
examples, a) on page 6 line 61, “By generating such rela-
tions a network is built, different for each studied patient.
This network includes expression profiles, CNV for the
horizontal integration, and the mutated proteins.” How
does this network look like for a patient?What are the dif-
ferent types of nodes and relationships on the network?
(optional) Just as a suggestion, the clarity of these details
can potentially be easily addressed by a figure showing a
representative small region of the network of a selected
patient. b) on page 7, line 27, “we developed a strategy
to continue working only with so-called trusted relation-
ships . . . by a scoring mechanism.” What was the scoring
mechanism used?
Author’s response: a) We agree with the remark and

we think the graphical interpretation of the reply can be
seen in Fig. 5, which is the methodologic background of
our study. b) Internal relationships, based on raw data,
have higher score than the relations derived from linked
data. W, furthermore, define them as trusted relation-
ships when they occur more than 10 times among dif-
ferent patients. This is necessary for differentiating the
significant links between the proteins and for reduc-
ing the noise of the relationships between the patients
through the proteins. The noise comes from external
knowledge sources where potentially all proteins can
be related.

Reviewer’s report 2: Wenzhong Xiao
The “integrated tumor specific feature” proposed by the
authors (tumor size, tumor stage, and age at the time
of diagnosis) across different cancers is innovative and
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potentially important. Again, some of the details are
apparently missing. For examples, a) on page 8, line 41,
“Within each of the defined patient groups we detect rela-
tions of these patients to certain proteins. Using these
proteins we find relations to other patients, who have
the same mutated proteins as in the selected group.”İ
What was the algorithm used? This is particularly rel-
evant since it is not clear to this reviewer how the
mutated proteins are identified for each patient in the
two datasets, as apparently there is no DNA sequenc-
ing data in ether of the datasets b) similarly, on page
8, line 47, “The next step is to extend the number of
related proteins of the selected group by using linked data,
based on external knowledge sources. We again enrich
the defined group of patients through new relations to
proteins, and then to other related patients.” Again, what
was the algorithm? c) on page 10, line 34, is there a
difference in “weight”İ between the connection of the
patients based on studied data and linked data? If yes,
how the weights were defined? (optional) Just as a sugges-
tion, could the author please consider demonstrating any
improvement in performance by integrating the datasets
of the two cancers comparing with only the data from
one cancer?
Author’s response: a) Molecular raw data consist of

records for each patient - their copy number informa-
tion (CNV) and expression profiles, where each value is
reported per protein (as a unique Hugo Symbol). Based on
that we develop relations between patients and proteins,
i.e. the internal relationships creation. b) The names, i.e.
Hugo Symbols, of the mutated proteins are obtained from
the raw datasets directly. A particular Hugo Symbol is
searched for in a specific external knowledge source, e.g., in
Uniprot, considering also related Hugo Symbols. This way,
through vertical integration, external network is developed
by relating the proteins to patients, i.e. patient records.
This is the conceptual background for our study. c) Internal
relationships, based on raw data, have higher score than
the relations derived from linked data. W, furthermore,
define them as trusted relationships when they occur more
than 10 times among different patients. This is necessary
for differentiating the significant links between the proteins
and for reducing the noise of the relationships between
the patients through the proteins. The noise comes from
external knowledge sources where potentially all proteins
can be related.

Reviewer’s report 3: Wenzhong Xiao
On page 1, line 23, “With lack of effective integration
strategies novel models are necessary for efficient and
operative data integration were both clinical and molec-
ular information can be effectively combined.” “were”
should be “where”.
Author’s response: Adjusted in the text now.

Reviewer’s report 4: Wenzhong Xiao
On page 1, in the Abstract, consider keeping the verb
tenses consistent.
Author’s response: Adjusted in the text now.

Reviewer’s report 5: Wenzhong Xiao
In Fig. 2, how do the authors extract mutation information
from the aCGH and Illumina gene profiles?
Author’s response: For the aCGH we use properties, i.e

fields (columns), “sample_characteristics_CH1” or “sam-
ple_characteristics_CH2” and other to define the relations
of the tumors with expression profiles of the patients from
where we can relate the genes and the mutations respec-
tively. For Illumina gene profiles the approach is similar.

Reviewer’s report 6: Wenzhong Xiao
In Fig. 3, consider including aCGH, Affymetrix SNP6.0
and patient information (which are shown in Fig. 2) in this
flowchart
Author’s response:We now edited Fig. 3 for better clarity.

Reviewer’s report 1: Carlos Loucera
The authors propose an interesting approach to data inte-
gration based on the construction of a relational network
that combines heterogeneous data, like different views of
the each sample, expression of distinct tumors or pat-
terns mined from external resources. Furthermore, the
authors propose a novel score (TICF) in order to pre-
dict the survival time of a patient. This score is defined
by combining several categorical variables into a sin-
gle ordinal characteristic. Finally, the survival prediction
model is validated using a classical k-fold cross-validation
strategy. My main criticism to the paper is that the
authors do not provide enough information on the dif-
ferent methods and algorithms that make up the pro-
posed methodology. It is very difficult to implement the
paper as it is, even if the data is available (by accept-
ing CAMDA terms). Regarding the data, there is a lack
of descriptive statistics and contextual information. The
text is written by a person who has worked with the
CAMDA datasets in mind, which in my humble opinion
is a mistake.
Author’s response: We think that it is important for the

research community to be able to test and even extend
software presented in scientific publications. Therefore, we
uploaded the latest version of the source code of our tool
into a repository on GitHub, accessible after requesting
permission. Our ultimate goal is to develop the system
as a publicly accessible tool. Importantly, our aim for the
moment is to present our approach and to discuss its poten-
tial applications. We are, moreover, actively working on
extending the tool to other datasets. With regard to the
datasets, as they had been previously thoroughly char-
acterised in the corresponding publications (METABRIC:
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Curtis et al., Nature 486, and Dream Challenge, Margolin
et al, Sci Transl Med 5; Neuroblastoma: Fischer lab, KÃűln
- Stigliani et al, Neoplasia 14, Coco et al, IJC 131, Kocak et
al, Cell Death Dis 4, Theissen et al, Genes Chromosomes
Cancer 53), we decided to not go into details for the sake
of space. We do, however, briefly present the data in the
‘Data description’ section of the ‘Material and methods’.

Reviewer’s report 2: Carlos Loucera
Although the methodology provides an interesting frame-
work to combine several information sources into a single
structured model, a relational network, the authors do
not provide any kind of biological or clinical interpreta-
tion: neither the mined relations nor the results. I do not
understand how the TICF features are used.
Author’s response: We show biological relevance of our

results by using the survival analysis as the example use
case. We describe how the TICF features are used in Fig. 4.

Reviewer’s report 3: Carlos Loucera
In page 9, line 14 the authors refer to an enriched TICF
for a selected group of patients. This arises the first
question, how is this group selected? Later, in line 17,
the author refers to the second parameter (the survival
score) in a per patient basis. As I understand it, the
group enriches the TICF feature. How? What are the
main differences between the combined feature and the
enriched one? These questions should be addressed in
the paper. The authors should clarify this essential part
of the methodology since it seems a dangerous loop:
group by TICF, extract knowledge and feature enrichment
of TICF.
Author’s response: Corrections of the text on page 9,

line 14: “(...) The TICF features are built for a selected
group of patients. We extend the selected group of patients
with new closer patients from internal networks and
linked data. This newly built set of patients includes
enriched TICF features. This set of already enriched TICF
features for the selected group and respective relations
are used as an input - first parameter to the machine
learning models.” İ

Reviewer’s report 4: Carlos Loucera
From a machine learning point of view the paper lacks
in several aspects. First and foremost, a score is used to
reduce the network size, how this score is constructed
should be well documented in the paper, which it is not the
case. There are two critical unanswered questions, what
kind of distribution the score has and how the decision
threshold is computed.
Author’s response: We thank for this very valuable

remark and address the concerns below. Internal relation-
ships, based directly on raw data, have higher score than
relations derived from the linked data. We, furthermore,

define them as trusted relationships when they occur more
than 10 times among different patients. This is necessary
for differentiating significant links between the proteins
and for reducing the noise of the relationships between the
patients through the proteins. The noise comes from exter-
nal knowledge sources, where potentially all proteins can
be related.

Reviewer’s report 5: Carlos Loucera
Although the problem at hand deals with survival pre-
diction, the authors only provide a classical regression
solution. In regard to the standardization of the TICF
feature, the implementation rises many questions. As out-
lined in the paper the parameters are learned using the
whole dataset (lines 26-33) but it should be learned in
a per-fold basis: learning the preprocessing parameters
during the training phase, then applying the learned
transformation to the validation subset. Furthermore, the
estimator comparison is not well constructed, from the
regression scores it seems that the hyperparameters for
the RBF and Polynomial kernels are not optimized for
the dataset.
Author’s response: We start training the models while

the data are integrated and the TICF features gener-
ated. This is an initial training and for each studied
patient the models are additionally trained for each new
patient by finding new relations. In general, survival
time prediction is only used as an example application
of the framework. For survival time prediction in both
cancers the TICF feature is used for classification pur-
poses using the KNN model. After the dataset is nor-
malised and patients stratified into groups we apply sev-
eral machine learning models for survival time predic-
tion: Support Vector Regression (SVR with RBF, Linear
and Poly kernels) as well as Decision Tree Regression
(DTR).

Reviewer’s report 6: Carlos Loucera
This leads to a very important question for which the
authors do not provide any answer: how the hyperpa-
rameters are set. To be more confident about the vali-
dation I would expect a nested cross-validation scheme.
As the TICF feature is used by combining other fea-
tures and later enriched, I would expect a performance
comparison between the three sets of features: the not-
combined ones, the combined but unenriched ones and
the combined and enriched cases. In its current form
the paper feels like an extended abstract, promising but
unfocused.
Author’s response: This is a very valuable suggestion. We

here want to first show and discuss the potential of vertical
and horizontal data integration on cancer data use cases.
Statistical testing of the features is not the major scope of
this first publication.
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Reviewer’s report 7: Carlos Loucera
The validation rises many questions, why do the authors
only use a subset of the data?. The method is not
properly explained to the point that it could be very
hard to implement it,not to mention the inability to
reproduce the results. Due to these facts I do not
endorse the publication of the paper in its current
form.
Author’s response: In our opinion, the validation mod-

els are applicable and comprehensive. For the sake of
reproducibility, we now uploaded the latest version of the
source code into a repository on GitHub, accessible after
requesting permission. We also reproduce the results in an
extended study (see: https://www.mdpi.com/2078-2489/
10/3/93).

Reviewer’s report 8: Carlos Loucera
- Since scikit-learn has been used, in order to deal
with the survival analysis problem I highly recommend
either the scikit-survival or the lifelines python pack-
age. - I recommend the authors to find the best hyper-
parameters and perform the validation by means of a
nested cross-validation scheme. The scikit-learn package
has a well documented example. - Maybe the authors
are using the default hyperparameter values provided
by the scikit-learn API? If so, I recommend to imple-
ment a hyperparameter search strategy (even a simple
random search could yield better results for the RBF
and Polynomial kernels) - I recommend the authors to
extract some kind of interpretation of the constructed
network with some sort of unsupervised learning algo-
rithm working on the graph. - I highly encourage the
authors to better describe the methodology, be more
careful about the validation schema and use the whole
dataset when dealing with the validation. - I would
include some stratification of the validation metrics, such
as stratifying the results by tumor type and subtype
(if available).
Author’s response: We thank the reviewer for the valu-

able recommendations. We did address some of them
already in our answers to previous questions. Our aim is to
develop a tool based on the methodologies we used in the
study, and the tool will consider your recommendations.

Reviewer’s report 9: Carlos Loucera
Poly kernel sounds too informal, use polynomial kernel
instead
Author’s response: Adjusted in the text now.

Reviewer’s report 10: Carlos Loucera
It is often advised to perform a simple random split (with
a fixed set of hyperparameters) of the data and analyze
the results on the test set (in addition to other validation
schemes, in order to showcase a typical use case).

Author’s response:We are grateful to the reviewer for his
suggestion and we will consider it in the extension of our
study.

Reviewer’s report 11: Carlos Loucera
When talking about the first and second parameters (lines
14-16, page 9), you should use more standard names, such
as features (input) and response (output).
Author’s response:We agree with the suggestion.

Reviewer’s report 12: Carlos Loucera
Once all the previous issues have been resolved, I would
recommend to revise the English, although it should be
mentioned that the text is concisely written, in an easy to
follow way
Author’s response:We now revised the text.
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