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Abstract
A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reac-

tions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted

reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of

this approach for the synthesis of pyridines.
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Introduction
A broad range of synthetic applications demonstrates that 1,2-

oxazine derivatives constitute a versatile class of N,O hetero-

cycles [1-13]. Considerable attention has been paid to 6H-1,2-

oxazines 1 bearing a C-4,C-5-double bond [14-18], which are

useful intermediates in the synthesis of γ-lactams [19], γ-amino

acids [20], amino alcohols [20], aziridines [21], pyrrolizidines

[22], and pyrrolidine derivatives [15,23,24]. In the context of

our  ongoing  exploration  of  the  synthetic  potential  of  these

heterocycles  we  were  interested  to  modify  the  substitution

pattern of the C-4,C-5 double bond of 6H-1,2-oxazines [25-27].

Herein, we describe our results dealing with the halogenation of

6H-1,2-oxazines  1  and  the  use  of  the  resulting  products  as

precursors  in  palladium-catalyzed  cross  coupling  reactions.

Results and Discussion
Not much is known about halogenated 6H-1,2-oxazines and

only a few mostly inefficient procedures are described [28-32].

This prompted us to investigate a more practical access to halo-

genated 6H-1,2-oxazines. Gratifyingly, the desired 4-bromo-

substituted 6H-1,2-oxazines 2a–2c could be prepared in a one-

pot procedure by bromine addition to precursors 1a–1c [14] and

HBr elimination by treatment with triethylamine (Scheme 1).
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The 4-bromo-6H-1,2-oxazines were obtained in reasonable to

good yields. The bromination of 3-phenyl-substituted 6H-1,2-

oxazine 1a often resulted in a mixture of several brominated

products  which  are  easily  separable  by  chromatography.

Depending on the reaction scale and the amount of bromine

used (1.5 to 3 equiv) by-products such as 3a, 4 and 5 could be

isolated in varying yields. The unexpected formation of 4,5-

dibromo-6H-1,2-oxazine 3a can obviously be rationalized by

addition of bromine to 2a and elimination of HBr during the

bromination reaction of 1a.

Scheme 1: Brominations of 6H-1,2-oxazines. a) Br2, Et2O, −30 °C,
2 h. b) Et3N, −30 °C to r.t., overnight.

The literature describes just one related 4-chloro-substituted

6H-1,2-oxazine which was prepared by a hetero-Diels–Alder

cycloaddition–elimination sequence of 2-chloro-1-nitroso-1-

phenyl-ethene and 1-bromo-2-ethoxyethene in low yield (22%)

[32]. As demonstrated in Scheme 2, a more efficient approach

consists in chlorination of 6H-1,2-oxazines 1a,b by addition of

chlorine and subsequent base-induced dehydrochlorination. The

expected 4-chloro-6H-1,2-oxazines 6a,b were obtained in good

yields. In analogy to the aforementioned bromination, the chlor-

ination of 3-phenyl-6H-1,2-oxazine 1a also led to dihalogena-

tion  furnishing  4,5-dichloro-substituted  compound  7a  as  a

by-product  in  13% yield.

Scheme 2: Chlorinations of 6H-1,2-oxazines. a) Cl2, Et2O, −30 °C. b)
Et3N, −30 °C to r.t.

With the 4-halogenated 6H-1,2-oxazines 2 and 6 in hand, palla-

dium-catalyzed cross couplings offer an efficient and useful

approach  for  the  synthesis  of  novel  functionalized  6H-1,2-

oxazines.  The  Suzuki-coupling  of  the  4-bromo-substituted

heterocycles 2a,b with phenylboronic acid in the presence of

Pd(PPh3)4 and sodium carbonate at 80 °C in toluene gave the

expected 4-phenyl-substituted 6H-1,2-oxazines 8a or 8b in 82

and 77% yield (Scheme 3).

Scheme 3: Suzuki-couplings of 4-bromo-6H-1,2-oxazines. a)
ArB(OH)2, Pd(PPh3)4, Na2CO3, toluene, 80 °C, 3 h.

4-Bromo-6H-1,2-oxazine  2a  also  serves  as  suitable  model

substrate  for  Sonogashira-reactions  (Scheme  4).  When  the

coupling reaction of 2a with various terminal alkynes, such as

phenylacetylene,  trimethylsilylethyne  and  1-hexyne,  was

performed under typical conditions [PdCl2(PPh3)2, CuI, Et3N,

toluene], the expected 4-alkynyl-substituted heterocycles 9a–9c

were isolated in good yields. In contrast, when the same reac-

tion conditions were applied to the coupling of 2a and methyl

propargyl  ether,  product  9d  was  obtained  only  in  very  low

yield.  In  addition,  Sonogashira  coupling  of  2a  and  methyl

propargyl  ether  performed  by  an  alternative  protocol

(Pd(OAc)2, CuI, PPh3, NHiPr2 in DMF) afforded the expected

product 9d and a byproduct bearing a 4-enyne moiety at 4-posi-

tion. This indicates an addition of a second alkyne molecule to

the primary product 9.  Similar results were observed for the

Sonogashira reaction of 2a  with propargylic alcohol [33].

Scheme 4: Sonogashira-couplings of 4-bromo-6H-1,2-oxazines. a)
PdCl2(PPh3)2, CuI, Et3N, toluene, r.t., 6–20 h.
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After successful simple cross couplings of mono-halogenated 2,

the 4,5-dibromo-3-phenyl-6H-1,2-oxazine 3a seemed to be an

attractive candidate for a twofold Sonogashira reaction (Scheme

5). Treatment of 3a with an excess of phenylacetylene under

conditions  as  described  in  Scheme  4  provided  5-bromo-4-

alkynyl-substituted 6H-1,2-oxazine 10a  as single product in

65% yield. When the Sonogashira coupling was performed with

trimethylsilylethyne  under  the  same reaction  conditions  an

inseparable 85:15-mixture of mono-alkynylated product 10b

and bis-alkynylated compound 11b was obtained in reasonable

yield. These reactions certainly deserve further optimization,

however, they already show the potential of compounds such as

3a to serve as precursors for two subsequent coupling reactions.

Scheme 5: Sonogashira-couplings of 4,5-dibromo-6H-1,2-oxazines. a)
PdCl2(PPh3)2, CuI, Et3N, toluene, r.t., 4 h to overnight.

Conclusion and Perspective
In conclusion, we have successfully demonstrated that a series

of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8, 9, and

10  are easily accessible in short  reaction sequences starting

from precursors 1. These 6H-1,2-oxazines should allow access

to many interesting five- and six-membered heterocycles. As

illustrated in  Scheme 6,  the  4-hex-1-ynyl-3-phenyl-6H-1,2-

oxazine 9c  can be converted into the trisubstituted pyridine

derivative 12 by treatment of 9c with boron trifluoride etherate

in the presence of an excess of 1-hexyne via an azapyrylium

intermediate [34,35]. Additional investigations are required to

optimize the preparation diynes of type 11. Conversion of the

new  functionalized  6H-1,2-oxazines  to  highly  substituted

pyridine  derivatives  will  also  be  reported  in  due  course.

Scheme 6: Preparation of trisubstituted pyridine derivatives: a)
BF3·OEt2, CH2Cl2, −78 °C to r.t., overnight.

Experimental
Bromination of 6H-1,2-oxazine 1a, typical
procedure
6H-1,2-Oxazine  1a  (5.35  g,  26.3  mmol)  was  dissolved  in

diethyl ether (200 mL) and treated with bromine (2.75 mL, 53.7

mmol) at −30 °C under argon atmosphere. After 2 h Et3N (54.0

mL, 390 mmol) was added. The reaction mixture was warmed

to  r.t.  overnight  and  quenched  with  water  (100  mL).  The

aqueous phase was extracted with CH2Cl2 (2 × 50 mL) and the

combined organic phases were dried with Na2SO4. Purification

of  the  crude  product  by  column  chromatography  (SiO2,

hexane:EtOAc 8:1,  then  4:1)  gave  the  4-bromo-substituted

6H-1,2-oxazine 2a (5.11 g, 69%), the 4,5-dibromo-substituted

by-product 3a (0.821 g, 9%), and starting material 1a (0.335 g,

6%).

4 -Bromo-6 -e thoxy-3 -pheny l -6H -1 ,2 -oxaz ine  (2a ) :

yellow–brown oil. 1H NMR (CDCl3, 300 MHz): δ = 1.23 (t, J =

7.1 Hz, 3 H, CH3), AB part of ABX3 system (δA = 3.68, δB =

3.95, JAX = JBX = 7.1 Hz, JAB = 9.8 Hz, 2 H, OCH2), 5.58 (d, J

= 5.2 Hz, 1 H, 6-H), 6.70 (d, J = 5.2 Hz, 1 H, 5-H), 7.35–7.50,

7.50–7.60 (2 m, 3 H, 2 H, Ph) ppm. 13C NMR (CDCl3, 75.5

MHz): δ = 14.8 (q, CH3), 64.3 (t, OCH2), 94.7 (d, C-6), 112.9

(s,  C-4),  127.8, 128.0, 128.8, 129.7, 133.1 (4 d, s,  Ph, C-5),

156.2 (s, C-3) ppm. For the complete characterization, see ref.

[31].

4,5-Dibromo-6-ethoxy-3-phenyl-6H-1,2-oxazine (3a): brown

oil. 1H NMR (CDCl3, 300 MHz): δ = 1.25 (t, J = 7.1 Hz, 3 H,

CH3), AB part of ABX3 system (δA = 3.76, δB = 3.97, JAX =

JBX = 7.1 Hz, JAB = 9.7 Hz, 2 H, OCH2), 5.71 (s, 1 H, 6-H),

7.38–7.48,  7.49–7.56  (2  m,  3  H,  2  H,  Ph)  ppm.  13C NMR

(CDCl3, 75.5 MHz): δ = 14.7 (q, CH3), 65.0 (t, OCH2), 99.8 (d,

C-6), 114.4, 124.8 (2 s, C-4, C-5), 128.1, 128.9, 129.9, 133.3 (3

d, s,  Ph),  155.9 (s,  C-3) ppm. IR (neat):  3065–2900 (=C–H,

C–H), 1630 (C=N), 1600 (C=C) cm−1. HRMS (80 eV, 40 °C)

m/z calcd for C12H11
79Br2NO2: 358.9157; found: 358.9160.

Chlorination of 6H-1,2-oxazine 1b, typical
procedure
Chlorine gas was passed into diethyl ether (28 mL) at −30 °C

until the solution became dark yellow. Then, 6H-1,2-oxazine 1b

(0.200 g, 1.00 mmol) was added and the reaction mixture was

monitored by TLC; upon complete consumption, triethylamine

(2.00 mL, 27.8 mmol) was added at −30 °C and the mixture was

slowly warmed to r.t. After addition of brine, the phases were

separated, the aqueous phase was extracted with CH2Cl2 (2 ×

20  mL)  and  the  combined  organic  phases  were  dried  with

Na 2 SO 4 .  Column  chromatography  (S iO 2 ,  hexane ,

hexane:EtOAc 9:1, then 4:1) afforded the 4-chloro-substituted

product 6b (0.182 g, 78%) as pale–yellow oil.
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Ethyl 4-chloro-6-ethoxy-6H-1,2-oxazine-3-carboxylate (6b): 1H

NMR (CDCl3, 300 MHz): δ = 1.22 (t, J = 7.1 Hz, 3 H, CH3),

1.40 (t, J = 7.2 Hz, 3 H, CH3), AB part of ABX3 system (δA =

3.68,  δB  =  3.95,  JAX  =  JBX  =  7.1  Hz,  JAB  =  9.6  Hz,  2  H,

OCH2), 4.40 (q, J = 7.2 Hz, 2 H, OCH2), 5.72 (d, J = 5.0 Hz, 1

H, 6-H), 6.34 (d, J = 5.0 Hz, 1 H, 5-H) ppm. 13C NMR (CDCl3,

75.5 MHz): δ = 13.9, 14.7 (2 q, CH3), 62.5, 64.6 (2 t, OCH2),

95.3 (d, C-6),  121.1 (s,  C-4),  122.7 (d, C-5),  148.5 (s,  C-3),

160.3 (s, C=O) ppm. IR (neat): 3105–2975 (=C–H, C–H), 1745

(C=O),  1615  (C=N)  cm−1.  C9H12ClNO4  (233.7):  calcd.  C,

46.27;  H,  5.18;  N,  5.99;  found:  C,  46.35;  H,  5.16;  N,  6.08.

Suzuki-coupling of 4-bromo-substituted
6H-1,2-oxazine 2a, typical procedure
6H-1,2-Oxazine 2a (0.0935 g, 0.33 mmol), phenylboronic acid

(0.122 g, 1.00 mmol) and Pd(PPh3)4 (0.016 g, 0.0138 mmol)

were dissolved in a mixture of toluene/MeOH (3 mL/0.75 mL)

in a heat-gun-dried and argon-flushed flask.  A 2M Na2CO3

solution (1.5 mL) was finally added and the reaction mixture

was heated for 15 h at 80 °C. Then, the reaction mixture was

cooled to r.t.  and washed with 2M Na2CO3  (with 1% NH3)

solution. After separation of the phases, the aqueous phase was

extracted with CH2Cl2 (3 × 5 mL) and the combined organic

phases were dried with Na2SO4. The crude product was puri-

fied by column chromatography (SiO2, hexane:EtOAc 9:1, then

4:1)  to  afford  the  Suzuki  product  8a  (0.076  g,  82%)  as  a

pale–yellow  solid,  mp  68–70  °C.

6-Ethoxy-3,4-diphenyl-6H-1,2-oxazine (8a): 1H NMR (CDCl3,

300 MHz): δ = 1.25 (t, J = 7.1 Hz, 3 H, CH3), AB part of ABX3

system (δA = 3.75, δB = 4.01, JAX = JBX = 7.1 Hz, JAB = 9.8

Hz, 2 H, OCH2), 5.73 (d, J = 4.9 Hz, 1 H, 6-H), 6.37 (d, J = 4.9

Hz, 1 H, 5-H), 7.05–7.10, 7.15–7.27, 7.30–7.35 (3 m, 4 H, 4 H,

2  H,  Ph)  ppm.  13C NMR (CDCl3,  75.5  MHz):  δ  =  15.0  (q,

CH3),  64.2  (t,  OCH2),  93.0  (d,  C-6),  124.0  (d,  C-5),  128.0,

128.2, 128.4, 128.7, 129.0, 130.2, 133.9, 136.5 (5 d, 3 s, Ph,

C-4), 157.7 (s, C-3) ppm. IR (KBr): 3040–2930 (=C–H, C–H),

1620 (C=N), 1600 (C=C) cm−1. C18H17NO2 (279.3): calcd. C,

77.39; H, 6.13; N, 5.01; found: C, 77.82; H, 6.37; N, 5.08.

Sonogashira-coupling of 4-bromo-substi-
tuted 6H-1,2-oxazine 2a, typical procedure
6H-1,2-Oxazine 2a (0.850 g, 3.19 mmol), trimethylsilylethyne

(0.87 mL, 6.17 mmol), PdCl2(PPh3)2 (0.114 g, 0.16 mmol), CuI

(0.019 g,  0.10 mmol)  and Et3N (1.3 mL) were dissolved in

toluene (15 mL) in a heat-gun-dried and argon-flushed flask and

the reaction mixture was stirred at r.t. for 20 h. The reaction

mixture was quenched with water (5 mL). The aqueous phase

was  extracted  with  CH2Cl2  (3  ×  10  mL)  and  the  combined

organic phases were dried with Na2SO4.  Purification of the

crude  product  by  column  chromatography  (SiO2,  hexane:

EtOAc  20:1,  then  4:1)  afforded  the  4-alkynyl-substituted

6H-1,2-oxazine  9b  (0.711  g,  74%)  as  a  colorless  oil.

6-Ethoxy-3-phenyl-4-(trimethylsilylethynyl)-6H-1,2-oxazine

(9b): 1H NMR (CDCl3, 250 MHz): δ = 0.71 (s, 9 H, SiMe3),

1.21 (t, J = 7.1 Hz, 3 H, CH3), AB part of ABX3 system (δA =

3.68,  δB  =  3.96,  JAX  =  JBX  =  7.1  Hz,  JAB  =  9.7  Hz,  2  H,

OCH2), 5.62 (d, J = 5.1 Hz, 1 H, 6-H), 5.69 (d, J = 5.1 Hz, 1 H,

5-H), 7.34–7.44, 7.67–7.73 (2 m, 3 H, 2 H, Ph) ppm. 13C NMR

(CDCl3, 125.8 MHz): δ = −0.7 (q, SiMe3), 14.9 (q, CH3), 64.2

(t, OCH2), 92.0 (d, C-6), 99.5, 101.9 (2 s, C≡C), 114.0 (s, C-4),

127.7, 128.7, 129.5, 130.1, 132.9 (4 d, s, Ph, C-5), 155.5 (s,

C-3) ppm. IR (neat): 3085–2900 (=C–H, C–H), 2160 (C≡C),

1620 (C=C), 1580 (C=N) cm−1. C17H21NO2Si (299.5): calcd.

C, 68.19; H, 7.07; N, 4.68; found: C, 68.17; H, 7.08; N, 4.74.
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