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Abstract: Regarding wireless sensor network parameter estimation of the propagation model is
a most important issue. Variations of the received signal strength indicator (RSSI) parameter are
a fundamental problem of a system based on signal strength. In the present paper, we propose
an algorithm based on Bayesian filtering techniques for estimating the path-loss exponent of the
log-normal shadowing propagation model for outdoor RSSI measurements. Furthermore, in a series
of experiments, we will demonstrate the usefulness of the particle filter for estimating the RSSI
data. The stability of this algorithm and the differences in determined path-loss exponent for both
method were also analysed. The proposed method of dynamic estimation results in significant
improvements of the accuracy of RSSI values when compared with the experimental measurements.
It should be emphasised that the path-loss exponent mainly depends on the RSSI data. Our results
also indicate that increasing the number of inserted particles does not significantly raise the quality
of the estimated parameters.

Keywords: path loss exponent; particle filter; Bayesian filtering; received signal strength; WSN

1. Introduction

The ubiquitous wireless technology, in addition to providing easy connection to the
network, fulfils many other functions in everyday life. The radio signal used in protocols
ZigBee, WiFi, or Bluetooth, apart from the basic functionality of data transmission, may
be used for another purpose. The received signal indirectly provides a lot of information
and can therefore be implemented in many ways. One of the primary uses are attempts
to locate an object (device) on the basis of received signal strength indicator (RSSI). Many
papers describe the use of RSSI for indoor location [1–7] and outdoor location [8–13]. The
main reason for these applications is the wide availability and affordability of devices using
the received signal strength indicator. Additional advantages of these devices are low-level
energy consumption and quick access to the RSSI [2].

Depending on the signal strength between the transmitter (e.g., router) and receiver
(e.g., smartphone), it is possible to estimate the distance between them. A complex floor
plan with many obstacles may cause inaccurate measurement of distance. Using several
transmitters permanently placed in known locations allows a more precise determination
of the area in which the receiver is located. The use of trilateration techniques in this case
may not give satisfactory results due to fluctuations of the signal caused by multipath
propagation and shadowing effect. Indoors these techniques are more accurate than those
based on GPS [1,3,8].

In wireless sensor networks (WSNs), a set of sensors that have been put into place
over a large area for monitoring, e.g., environmental properties, requires correct data
transmission between network nodes. In order to determine the position of an unknown
node in the network, the distance between it and the known nodes must first be determined.
This can be achieved using the RSSI. Communication is the most energy-consuming process

Sensors 2021, 21, 1934. https://doi.org/10.3390/s21061934 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0522-6223
https://orcid.org/0000-0002-1693-5316
https://orcid.org/0000-0002-1956-3941
https://orcid.org/0000-0003-3644-9769
https://doi.org/10.3390/s21061934
https://doi.org/10.3390/s21061934
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21061934
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21061934?type=check_update&version=2


Sensors 2021, 21, 1934 2 of 11

in all operations of a sensor network. Moreover, the method based on RSSI measurements
also does not introduce communication overhead, which is definitely an advantageous
feature in the case of WSN nodes, which typically have limited power [14–17].

Due to the characteristics of wireless transmissions, a signal received from one place at
several intervals has variable strength [1,3]. The process of estimating the distance between
a transmitter and a receiver requires an appropriate model. Even such a simple concept of
solving this problem can be really difficult at times. This is due to two main factors. The
first one is directly related to the specificity of the RSSI signal. Here, the measured RSSI
values strongly depend on the conditions under which these measurements are made. The
second factor is the difficulty of determining an appropriate optimal path-loss model under
given conditions [18,19].

In the context of WSNs, three models based on RSSI signal propagation attract the
most attention. They are: the free-space model, the 2-ray ground model, and the log-
normal shadow model [20]. The log-normal shadow model is the most universal of those
mentioned above. Commonly analysed components of the radio channel is the mean path
loss. In the literature many different approaches for the path-loss modelling in various types
of wireless systems can be found. The most common methods used for estimation path-
loss exponent are the linear regression with the Least Square Method [21], Multivariate
Linear Regression [22] or Generalised Additive Model described in Reference [23]. In
the case of a non-linear relationship, a non-linear regressions are used [24]. Statistical
methods are also used to estimate path-loss exponent. The Bayesian statistics approach
to the estimation of the path-loss exponent are used successfully [25]. Some researchers
also use hybrid methods combining several approaches. Many more unique methods for
creating predictive models have emerged. These approaches are based on machine learning
methods, such as back propagation neural networks, support vector regression, or random
forest [26].

For improving localisation, the Bayesian filtering method, along with the Kalman
method [27], is often applied in relation to systems based on RSSI signal measurements [28–35].
The particle filter (PF) algorithm has been the subject of many modification and extension
proposals. The authors in Reference [28] argue that a particle filter is an accurate Bayesian
filtering algorithm that can improve the performance of RSSI-based indoor localisation. In
their work, they used modified particle filtering extended by a Kalman filter to reduce the
impact of multipath effects and noise on the RSSI. In Reference [29], the authors explain
that the existing models of device-free localisation are not accurate enough under certain
circumstances. They, therefore, proposed a model based on the variability of RSS. Since the
model is highly non-linear, they employed a particle filter-based tracking method. They
observed that the proposed model corresponds well with experimental measurements.
The authors in Reference [30] describe a particle filter algorithm for distance estimation,
using multiple antennas on the receiver’s side and only one transmitter. The distance was
predicted as the hidden state of a stochastic system and thus a particle filter was used.
Two propagation models were applied for modelling, i.e., a log-normal and a ground
reflection one. The use of a particle filter in the Novel Cooperative Localisation Algorithm
is proposed in Reference [31]. For maritime search and rescue operations, the authors of
this paper demonstrated that the measurement information coming from WSN nodes is
inaccurate due to the wave shadow effect. They used the particle filter method to reduce
measurement errors. Reference [25] presented a statistical approach in the path-loss model,
and the estimation of the model parameters was based on the concepts of Bayesian statistics.
Three methods were compared: the grid method, the Metropolis-Hasting method and
the Gauss-Newton method. It was shown that the Gauss–Newton algorithm provides
satisfactory accuracy and consistency compared with the grid and Metropolis–Hastings
methods. It was also revealed that taking the parameter uncertainties into account in
the positioning phase improves positioning accuracy compared to the methods in which
the path-loss parameters are assumed to be known accurately. Reference [32] presents a
method that was based on the uncertainty method and depends on the properties of the
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radio signal propagation. The authors used the uncertainty factor to estimate the distance.
A different approach is presented in Reference [33], which describes the optimisation of
the path-loss model based on the use of the optimisation algorithms, such as the firefly
algorithm and particle swarm optimisation. The result of the operations performed is an
effective correction of the estimated distance values. In another paper [34], the generalised
extended interpolation method was applied to define the attenuation model for the param-
eters of the real environment. The developed model additionally allowed consideration
of the variety of the parameters of the equipment. In the case of the log-normal shadow
model, most experiments were focused on improving the accuracy of the location. In
Reference [35], the authors proposed a two-function path loss model. They defined the
rules for determining the parameters for small and larger values of estimated distances.

Optimising RSSI measurements is necessary due to the high noise caused by ob-
stacles and sudden signal fading. Additionally, a change in the environmental parame-
ters (temperature, humidity) can affect the indicator without altering the position of the
transmitters [11,36,37]. In most works, the impact of precipitation is usually neglected.
This is due to errors in estimating the distance in the case of bad weather conditions. In
Reference [36], the influence of precipitation was taken into account, making distance
estimation more robust. Here, introducing additional parameters to the model leads to
the complexity of calculations, but the model is better suited to reality. Reference [37]
presented the process of creating a model with additional parameters, such as the Leaf Area
Index and Trunk Diameter at Breast Height. Such additional parameters were related to the
model enhancement for the given conditions. In this case, redundancy of the parameters
defining a given model can induce complications.

The main novelty of this article results from the introduction of a method of dynamic
estimation of the path-loss exponent parameter for outdoor RSSI measurements. In this
paper, the path-loss exponent was estimated simultaneously with the estimation of the
RSSI values using a Bayesian particle filter. Furthermore, the effect of changing the number
of particles on the accuracy of the RSSI and the estimation of the path-loss exponent was
also investigated.

This work is organised as follows: Section 2 describes the measurement stand, while
Section 3 introduces the particle filtering algorithm used to estimate the of path-loss
parameter. Section 4 shows the experimental results that demonstrate the advantages of
the proposed models and algorithms. Finally, Section 5 presents the paper’s conclusions.

2. Measurement Test Stand

The proposed system for measurements of RSSI values between two WSN nodes
consists of radio XBee XB24-Z7WIT-004 modules with XBee 2 mW Series 2 wire antenna
modules [38] and a programming platform based on the Esp32 module [39]. In order to
establish the wireless connection, two Digi XBee modules were used. In both radios, the
firmware was set to the XB24-ZB family. This wireless modules operate in the 2.4 GHz
band at 250 kbps baud rate. The parameters of the XBee modules are shown in Table 1.

Table 1. Summary of XBee module parameters.

Model XBee XB24-Z7WIT-004

Protocol ZigBee
Transmission speed 250 kbps
Inner range up to 40 m
Outer range up to 120 m
Frequency 2.4 GHz
Communication UART
Output power 2 mW
Antenna Omnidirectional wire
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To perform all measurements, an original program in the C/C++ language was written.
This handwritten program allowed a connection to be established between the two XBee
modules and has the following functionalities:

• sending packets,
• measurement of packet loss,
• RSSI measurement,
• measurement of temperature and humidity,
• displaying the measured values,and
• saving measurements on the SD card.

The distance between the devices was changed and the measurement results were
saved on the SD card of one of the modules. After the series of measurements was com-
pleted, the data was downloaded and further processed. A schematic diagram of the
measurement system is shown in Figure 1. During the measurements, the measuring de-
vices were placed on the platforms at a height of 1 m above the ground. The measurements
were made in an open agricultural area.

Figure 1. Model of the measuring system.

3. Estimation of the Path-Loss Exponent

Modelling signal propagation is an important topic in some applications, such as the
Wireless Sensor Network location system. The most typical information used to estimate
node distance in a WSN is the Received Signal Strength Indicator [40]. In a open space
environment, the power of received signal is determined by applying Friis law (1) and
depends on the distance between the transmitter and the receiver [12]:

Pr(d) = PtGtGr

(
λ

4πd

)2
, (1)

where Pr(d) is the signal power, Pt is the transmitted signal power, Gt is the gain of the
transmitter antenna, Gr is the gain of the receiver antenna, λ is the wave length, and d is
the distance.

Moreover, in various environments the power of the transmitted signal decays with
distance. In such cases, this relationship can be modelled by the log-normal shadowing
model (2), which is widely used in wireless communications:

Pr(d) = P0 − 10n log
d
d0

+ ξσ, (2)

where Pr(d) is the received power at distance d from the transmitter, P0 is the received
power measured at reference distance d0 from the transmitter, n is the path-loss exponent,
and ξσ is the zero mean Gaussian noise (the variance of the distribution is σ2) which
represents the random effect caused by shadowing.

The path-loss exponent n values typically vary between 1 and 3 in outdoor and 3
to 5 in indoor environments [12,13,35]. However, the path-loss exponent can suddenly
change when there are obstacles in sight. Since its value can change with time, a technique
to track the exponent is highly desirable. The adoption of a wrong parameter value can
induce errors in determining the distance. In such cases, a Bayesian filter is a way to obtain
good results.
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A particle filter is a Bayesian filter method based on a set of random samples, called
particles [41]. Particle (i) has an associated weight wi(t) directly related to likelihood
p(ni(t)|z(t)), where ni(t) is the state of the i-th particle and z(t) is the observed RSSI value,
at a given time t.

In this paper, the state of the i-th particle is composed only by the path-loss exponent
parameter n. Typically, the Bayesian filtering algorithm has three steps: prediction, update,
and resampling. In the prediction step, the random particles N are created with an ni value
in the range from 0 to 5 with a Gaussian distribution. In the next iteration, the particles
update their state randomly. The particle filter used the worst value of standard deviation
σ taken from our measurements, e.g., σ = 6.038 m, as a process noise parameter. In the
update step, according to the used propagation model shown in (2), we will calculate the
following expression:

p(z(t)|ni(t)) =
1

σ
√

2π
exp

(
− (z(t)− Pri(d))2

2σ2

)
, (3)

where Pri(d) is defined by the propagation model (2), but using the appropriate parameter
ni stored in the i-th particle. Next, the weights are updated and normalised by applying:

wi(t) = wi(t− 1)p(z(t)|ni(t)), (4)

and:

wi(t) =
wi(t)

∑N
j=1 wj(t)

, (5)

where wi(t) are normalised weights.

Algorithm 1: The estimation algorithm of the path-loss exponent.
input :RSSI data for corresponding distances d,

Ns-number of RSSI points for each d,
Nd-number of measured distances,
N-number of added particles,

output :An average path-loss exponent n

for i = 1 to Nd do
for k = 1 to N do

Generate N random particles according to propagation model (2) within n
range [0,5]

end
for j = 1 to Ns do

for k = 1 to N do
Calculate N samples from (3) using (2) and corresponding weights wk
from (4)

end

Calculate total weight: ws = ∑N
i=1 wj

k
for k = 1 to N do

Normalise weights: wk = wk/ws
end
for k = 1 to N do // Resampling step

Replacement particles according to the weight wk
end

end
end

To avoid degeneration problems in the particle system, the standard resampling
procedure is added [41]. Iterations are then repeated until all experimental points are
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reached. Finally, the path-loss exponent is computed by means of a weighted sum of the
state information from all the particles:

n(t) =
N

∑
i=1

wi(t)ni(t). (6)

Next, the procedure is repeated for each measured distances d. The implemented
particle filter is summarised in Algorithm 1.

4. Results

Real outdoor RSSI measurements were performed at several distances, ranged from
1 to 100 m between two ZigBee nodes. A series of 60 measurements (Ns) was carried
out for each measured distance (d). The results are presented in Figure 2. The average
air temperature and humidity during measurements were 16.04 ◦C and 48.43%. The
observed values of the RSSI versus the distance decrease according to the logarithmic
function. We approximated RSSI data using a logarithmic function and determined the
path-loss exponent n. We then calculated n using the Scilab computation package and did
an approximation of the measurement points. The value obtained in this way was equal to
nprx = 1.465. The results of those calculations are presented in Figure 2 (solid line). This
value will be a reference value for the path-loss exponent values np f estimated later in this
paper by using PF.

The main aim of this work is to measure and denoise the collected RSSI data using
a particle filter method. Simultaneously, the path-loss exponent is calculated. In the first
stage of the research, the particle filter was applied to the experimental data to test its
effectiveness. For this purpose, a series of estimations of RSSI values and their standard
deviation were performed. The results of the standard deviation of RSSI estimation for
distances equal to 15 m and 50 m and for different numbers of inserted particles are
presented in Figure 3. For comparison, in the same Figure 3, the values of the standard
deviation of non-estimated measurements (real) are also provided (marked in orange).

The results show that the average statistical error of the estimated values remains at
a similar average level of 3.25 dBm for d = 15 m and 4.20 dBm for d = 50 m, respectively.
Moreover, the values of the standard deviation do not practically depend on the number of
inserted particles. Here, its standard deviation shows a much lower value compared to the
real measurement results.

Figure 2. Received signal strength indicator (RSSI) measurements data and calculated path-loss
model for different distances. The value of path-loss exponent estimated by approximation is printed
in the figure.
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Figure 3. The standard deviation of RSSI data estimated by particle filter for measurement distances
equal to 15 m (a) and 50 m (b) for different numbers of inserted particles. The standard deviation of
real experimental data for the same distances are also presented.

Table 2 summarises the values of the standard deviation obtained for the considered
values of RSSI measurements. All results were characterised by one relationship. In
addition, all estimated RSSI values are characterised by a lower spread of numerical values
as compared to the real measurements. Figure 4 reveals that the estimated RSSI values
approximate the experimental data very well, resulting in the lowering of the value of the
standard deviation.

Table 2. The standard deviation of the RSSI (dBm) after particle filter estimation for different measurement distances. The
last line in the table contains the standard deviation of the RSSI for unchanged experimental data.

N 1 m 5 m 10 m 15 m 20 m 25 m 35 m 50 m 75 m 100 m

10 4.7380 4.9273 3.0805 3.2388 3.8798 3.3774 4.8484 4.0309 3.5413 2.6726
20 4.6047 4.3316 3.2480 3.5055 3.5714 3.3771 4.7689 3.9080 3.7422 2.9418
40 4.7551 4.6782 3.4310 3.1773 3.9372 3.3068 4.8925 3.8574 3.8550 3.3002
60 4.6849 4.6651 3.5001 3.0721 3.6401 3.3065 4.9909 4.2261 3.7606 3.1380
80 4.6858 4.7416 3.4993 3.2059 3.7123 3.3036 5.1008 4.2058 3.7228 3.0494
100 4.5819 4.7945 3.3329 3.2812 3.6523 3.2285 5.0231 4.1202 3.6936 3.0661
200 4.6767 4.9602 3.4595 3.3238 3.7904 3.4360 4.9966 4.4103 3.8727 3.1008
400 4.6504 4.8714 3.3543 3.2291 3.6616 3.4145 5.0875 4.4483 3.8143 3.1369
600 4.6996 4.8601 3.3951 3.2314 3.6337 3.3746 5.0485 4.4613 3.8584 3.1408
800 4.6603 4.7929 3.3253 3.2452 3.7226 3.4023 5.0324 4.2627 3.8850 3.2024

1000 4.6514 4.7766 3.3454 3.2629 3.6548 3.3802 5.0670 4.2654 3.8538 3.1575

Real 6.0211 6.0380 4.4740 4.1058 4.8169 4.2999 5.7238 5.9673 5.0651 4.2553
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Figure 4. The real RSSI data and estimated particle filter data for the number of inserted particles
equal to 100 and distances equal to: 15 m (part a) and 50 m (part b), respectively. The experimental
Ns points amount to 60.

The above results demonstrate the usefulness of the particle filter for estimating RSSI
data. It should be emphasised that RSSI data directly affect the value of the path-loss
exponent. Subsequently, we used the algorithm to estimate the RSSI data, as well as the
path-loss exponent, i.e., we applied the same algorithm to real measurement data, Pr(i), to
estimate np f . As before, the path-loss exponent estimation was performed for a different
number of particles. The results are shown in Table 3. The obtained values of np f differ
from the reference value nax by less than 2%.

Table 3. The estimated path-loss exponent np f for different numbers of inserted particles. The
approximated path-loss exponent: nprx = 1.465.

Number of Inserted Estimated Path-Loss
Particles Exponent

10 1.4421
20 1.4472
40 1.4423
60 1.4494
80 1.4522
100 1.4432
200 1.4482
400 1.4497
600 1.4477
800 1.4468

1000 1.4463

Figure 5 summarises our results. We can see that the path-loss exponent curves for
data approximated and estimated by PF are very similar. Indeed, the difference between
the RSSI results for a distance of 75 m does not exceed 0.5 dBm (see zoomed part of the
figure). For different numbers of inserted particles, differences between the estimated
values are even smaller.

Figure 5 also shows the mean values of the raw RSSI measurements (marked with
diamond) and the corresponding RSSI values after using a particle filter (marked with
squares). The observed mean values are similar to each other. Note that the mean RSSI
values after using the filter better define the shape of the approximated curve. This is a
direct result of the use of a Bayesian filter which is a non-linear filter [42].
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Figure 5. Approximated and estimated path-loss model for different distances. The inset shows the
zoomed last point of the presented results.

5. Conclusions

We successfully used the Bayesian particle filter to estimate the path-loss exponent for
experimental RSSI measurements. We realise that comparing the value of the estimated
np f with nax is not practical. However, it gives us information about the quality of the filter
used and confirms that Bayesian particle filters can be successfully used to estimate n.

In future work, we intend to investigate the effect of changing the inserted particles
on the efficiency of the particle filter. Next, we plan to test the stability of a chosen filter on
the gradual reduction in the number of experimental points (input RSSI data). This will be
the topic of future research.

The most important results of this study include the following:

• The particle filter can be successfully used to predict the path-loss exponent.
• The standard deviation value of the estimated RSSI data is approximately 30% lower

than that of the original data.
• Increasing the number of inserted particles does not significantly raise the quality of

the estimated results, finally extending the computation time.
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