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Introduction
The central nervous system (CNS) can be subject to numer-
ous pathological conditions, which can affect its develop-
ment, functionality, or cause premature cell death, resulting in 
neurodevelopmental, neuropsychiatric, and neurodegenera-
tive disorders. Although these disorders have different etiolo-
gies and pathophysiological mechanisms, many of them have 
some degree of dysfunction and alteration of the synapses and 
can thus be categorized as synaptopathies.1,2 In this review, 
we will discuss how synapses are affected in the most com-
mon diseases affecting the CNS, and how advances in synap-
tic biomarker discovery provide new tools for the study of 
those diseases. We will mainly focus on neurodegenerative 
conditions, and in particular on Alzheimer’s disease (AD), 

which is the predominant cause of dementia affecting approx-
imately 50 million people worldwide.3 Although the exact 
mechanisms of synaptic loss and dysfunction in the different 
diseases are still poorly understood, there is evidence that a 
reduction in synaptic activity and density is one of the earliest 
events in many of the diseases of the CNS and may even 
appear before neuronal loss.4,5 The significant role of synapse 
dysfunction in the disease pathology and progression of syn-
aptopathies has therefore prompted a keen interest in detect-
ing and quantifying synaptic proteins. Molecular brain 
imaging6 and analysis of cerebrospinal fluid (CSF)7 are used 
in conjunction to study synaptic proteins, with the aim of 
using them as biomarkers for prognosis, to follow disease pro-
gression and to evaluate effects of drug testing.
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Pathophysiology of Synaptic Dysfunction and Loss
Synaptic functions

The neuronal synapses are the functional units of neurotrans-
mission in the brain, with an estimated 100 trillion intercon-
necting synapses8 in an elaborate and complex network. 
Synapses are formed during development and the early postna-
tal period. After reaching the maximum density at 2 to 4 years 
of age,9,10 in the following years synapses are physiologically 
eliminated in a process known as pruning.11 Synapses that sur-
vive to adulthood are the ones stably maintained, although we 
have a certain degree of synapse formation and elimination 
throughout life.12

Neuronal signal transmission in the CNS requires the pres-
ence of functional synapses, with properly arranged pre- and 
postsynaptic compartments. The presynaptic compartment 
contains all the structures for formation, storage, and release of 
neurotransmitter-containing vesicles. Following an action 
potential, the increase of Ca2+ in the presynaptic terminal trig-
gers synaptic vesicles to fuse with the presynaptic membrane 
upon which neurotransmitters are released into the synaptic 
cleft.13 Subsequently, neurotransmitters interact with receptors 
on the postsynaptic compartment (the dendritic spine), and 
through the activation of different signaling pathways14 the 
neuronal signal is transmitted further. Synapses can be excita-
tory or inhibitory, using glutamate and GABA, as neurotrans-
mitters, respectively.15 The dendritic spines are the primary 
location of excitatory synapses.

Synapse formation, maturation, and elimination is a 
dynamic series of events that can be defined as synaptic plas-
ticity. Processes representing synaptic plasticity are phenom-
ena termed long-term potentiation (LTP) and long-term 
depression (LTD), through which, during memory formation, 
signaling via preferred synapses is enhanced or reduced. 
Selection of synapses seems to be activity-dependent, LTP is 
usually considered as a protective mechanism and LTD as 
inductive of elimination.16 These 2 processes are considered 
the basis for memory formation and storage.17,18 LTP is iden-
tified by the addition of new receptors at the postsynaptic 
density (PSD) and the consequent enlargement of the spine 
head resulting in transmission of a stronger signal.19 On the 
contrary, during LTD a series of events lead to spine shrink-
age and elimination.18 Many different mechanisms for synap-
tic elimination have been suggested (for extensive review, see 
Cardozo et al20 and Maiti et al21) Elimination of weaker and 
unnecessary synapses and maintenance of the stronger ones 
are processes that balance each other, to ensure proper con-
nectivity between brain regions and signal refinement.22,23 
For proper synaptic activity, a balance is needed, and altera-
tions between synapse formation and elimination can cause 
synaptic dysfunction and impaired brain network activities.21 
To understand pathological mechanisms and at which stage 
synapses are affected is of utmost importance to define targets 
and intervention strategies.

Synapse and neuronal loss in brain disorders

As mentioned, a balance in synapse formation and pruning is 
essential for proper connectivity and brain functionality. For 
instance, excessive synaptic pruning during adolescence is one 
of the hypothesized mechanisms for schizophrenia, which 
most commonly manifests with an onset in late adolescence or 
early-adulthood.24-26 The term “synaptopathy” is applied to 
refer to all diseases that are characterized by a progressive syn-
aptic dysfunction and loss.20 AD, the most common neurode-
generative disease, can be therefore considered both a 
synaptopathy and a proteinopathy.

AD pathology is identified by the presence of extracellular 
deposits of amyloid-β (Aβ) plaques, formed by the aggregation 
of Aβ peptides, and neurofibrillary tangles (NFTs) that are 
intraneuronal accumulations of hyperphosphorylated and 
truncated tau protein, respectively.27,28 Along with these main 
hallmarks, gliosis, neuroinflammation,29-31 and vascular dys-
function32,33 are also present, which reflects the complexity of 
AD. However, it is synaptic loss which best correlates with cog-
nitive symptoms34-36 and it is also apparent in the early stages 
of the disease pathophysiology.37,38 The number of synapses in 
the brain decreases during normal aging but this decrease is 
exacerbated in AD and, consequently, the synapse-to-neuron 
ratio is lower in AD brains compared with age-matched non-
demented individuals.39 In AD, brain biopsies show synaptic 
loss in neocortical regions and the hippocampus,40,41 the latter 
showing the greatest reduction by approximately 50%.42-44

How the major AD hallmarks, tau and Aβ, pathologically 
interact with synapses needs more investigation. However, most 
studies identified the oligomeric forms of Aβ and tau, rather 
than larger aggregates, to be the synaptotoxic species.45-49 Both 
in vivo50 and ex vivo51 Aβ oligomers (Aβo) disrupt LTP, proba-
bly interfering with NMDAR (N-methyl-d-aspartate receptor) 
activity and downstream pathways,52 in addition to causing oxi-
dative stress, impairing axonal transport, and causing nerve cell 
death (reviewed in Cline et al53). In AD, Aβ and tau act in con-
cert and studies have identified their simultaneous presence in 
the postsynaptic compartment.54,55 Aβo have been suggested to 
bind to a variety of targets,56 including cellular prion protein 
(PrPc),57 neuroligin 1, neurexin-2α,58 PirB, EphB2,59 shank, syn-
Gap, Na/K-ATPase,60 ultimately leading to impairment of LTP 
and synapse loss.45,50,61 Phosphorylated tau oligomers can relo-
cate from axons to dendrites, interfering with NMDAR and 
AMPAR (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 
acid receptor) and impairing glutamatergic transmission.62,63

Moreover, as points of transmission of signals between neu-
rons, synapses seem also to help the spreading of the pathology 
via prion-like mechanisms, and some studies show the possi-
bility of Aβo and tau oligomers to be transferred from neuron 
to neuron.64-69

Tau aggregation, without Aβ pathology, is also a pathological 
hallmark of other neurodegenerative diseases, the so-called 
tauopathies.70 Tauopathies include, among others, some forms of 
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frontotemporal lobar degeneration (FTLD), namely FTLD-
tau, progressive supranuclear palsy (PSP), and corticobasal 
degeneration (CBD). Although all tauopathies have in common 
the presence of tau aggregates in the CNS, the characteristics of 
these aggregates differ among them and are different from the 
NFTs of AD. PSP shows filamentous aggregates in astrocytes 
and oligodendrocytes, while in CBD tau accumulation in neu-
rons is less fibrillar and in astrocytes it accumulates in the form 
of astrocytic plaques.71 As introduced above, oligomeric tau has 
been connected to synaptic damage through different path-
ways,63 also involving activation of microglia and astrocytes 
through inflammatory processes,72 and animal models of tau 
pathology show early synaptic loss prior to neuronal death.73,74

As the combination of Aβ and tau pathology define AD, 
accumulation of aggregated α-synuclein (α-syn) is the patho-
logical feature of several diseases, which are commonly collec-
tively referred to as α-synucleinopathies.75 Among the most 
common synucleopathies are Parkinson’s disease (PD), 
Parkinson’s disease dementia (PDD), dementia with Lewy 
body (DLB), and multiple system atrophy (MSA). PD, PDD, 
and DLB show accumulation of the so-called Lewy neurites 
(LN) and Lewy bodies (LB), where α-syn is the principal com-
ponent.76 The physiological role of α-syn at the synapse is not 
precisely understood yet77; however, it is commonly accepted 
that its dyshomeostasis and accumulation leads to cell damage 
and it is responsible for synaptic impairment and neuronal 
damage.78,79 Alpha-syn, localized mainly presynaptically, is 
involved in synaptic vesicle regulation and trafficking,80,81 and 
in the SNARE complex formation.82,83 It also interacts with 
membrane lipids and can associate with mitochondria,84 the 
Golgi-endoplasmic reticulum system,85 and the endolysosomal 
system. Pathologic α-syn can interfere with all these organelles, 
consequently impairing-related pathways.86,87 The protein can 
change its conformation and aggregate, giving rise to oligom-
ers, fibrils, and larger aggregates.88 Which form is responsible 
for toxicity is still a matter of debate. However, as discussed for 
AD, the oligomeric form of α-syn has been suggested to be the 
responsible for the synaptic damage in dopaminergic neu-
rons,89,90 and the possibility for oligomeric α-syn of spreading 
in a prion-like manner has been proposed.91,92 At a cellular 
level, typically PD and DLB are distinguished from MSA, 
inasmuch the accumulations of LN and LB are mainly present 
in neurons, while in MSA, α-syn accumulation appears in oli-
godendrocytes.93 Moreover, MSA inclusions seem to be more 
compact and aggressive,94 in line with the increased severity of 
the disease.95 However, it was most recently reported that also 
neurons in MSA show α-syn oligomers depositions.96 A recent 
study showed that α-syn filaments differ in DLB and MSA.97 
PD and DLB are usually distinguished based on the symp-
toms, with DLB being the second most common type of 
dementia.98 PD, similar to AD, starts many years before symp-
toms become overt and at that point, patients had already lost 
up to 60% motor neurons in the substantia nigra.99

Nonetheless, α-syn was first identified and characterized in 
relation to AD when it was found to be a major non-amyloid 
beta component of Aβ plaques.100 In fact, Lewy pathology can 
be also found in over half of all patients with AD.101-103 To 
further complicate the clinical picture, α-syn depositions are 
found in tauopathies like PSP and CBD, and NFTs have been 
found in PD brains.104,105

Comorbidities and co-occurrence of different pathologies 
make diagnosis of these diseases challenging. Synapse damage 
is a common and early first change in the disease development 
and prolonged synaptic damage can lead to synaptic loss. 
Neuronal damage and death seem to be a follow-up event seen 
only at later stages. For these reasons, the investigation of syn-
aptic biomarkers has the potential to find a way to diagnose the 
disease in its early stages and also to give us information on the 
main pathological mechanisms involved.

Current Climate of Fluid Biomarkers in Dementia
Imaging and CSF biomarkers

The core CSF biomarkers for AD (Aβ42/Aβ40, total-tau, and 
phospho-tau), reflecting the defining Aβ and tau neuropathol-
ogies, consistently demonstrate diagnostically significant 
changes across studies106 and now have prominent positions in 
biological and diagnostic criteria for AD.28,107 The concentra-
tions of these core AD biomarkers, however, are no different 
from healthy controls in the majority of dementias outside of 
the AD continuum108,109 which can be of great utility in the 
differential diagnosis of patients with cognitive symptoms. An 
exception can be made for Creutzfeldt–Jakob disease (CJD), 
which presents vastly increased levels of t-tau, whereas the con-
centrations of p-tau181 remain normal or only marginally 
changed in CJD.110,111

Together with CSF biomarkers, positron emission tomog-
raphy (PET) and magnetic resonance imaging (MRI) are used 
to provide a clearer view of pathology and atrophy patterns in 
the brains of living humans. MRI allows for the measurement 
of brain atrophy and provides information on regional, struc-
tural, and functional integrity of the brain.112 In the research 
of neurodegenerative disorders, PET tracers for protein aggre-
gation such as Aβ113,114 and tau,115 as well as glucose metabo-
lism as a measure for neuronal activity116,117 and synaptic 
density,118 have been developed. Together with CSF biomark-
ers, MRI and PET are nowadays included in the research 
diagnostic criteria for AD.28,119 However, the availability of 
PET scans is limited and when possible expensive, thus it is 
not always applicable.

Blood biomarkers
In certain instances, the biomarkers field is rapidly evolv-
ing from CSF into blood, which is a more easily accessible 
biological fluid. Despite the latest advancement in devel-
oping CSF biomarkers for synaptic integrity and large 
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high-resolution mass spectrometry proteomic studies 
demonstrating the presence of synaptic proteins in 
blood,120,121 to date no studies have shown positive results 
for any pre- or postsynaptic biomarkers in blood correlat-
ing to any neurodegenerative disease phenotype.

The advancement of ultrasensitive methodologies has ena-
bled, however, the detection of the CSF core biomarkers and 
neuronal injury, like neurofilaments, in blood. New evidence 
from high-resolution mass spectrometry,122,123 single molecule 
array (Simoa),124 and fully automated immunoassays,125 which 
are highly sensitive and alleviate confounding matrix effects in 
blood, suggests that Aβ peptide ratios are specific markers of 
individuals with Aβ- positive brain scans. In addition, recent 
evidence has shown that plasma p-tau181 concentrations are 
higher in individuals with AD dementia than in healthy con-
trols.126 Plasma p-tau181 correlates with tau PET in Aβ-
positive AD individuals and, encouragingly, can accurately 
identify elderly controls and mild cognitive impairment (MCI) 
individuals with a positive Aβ-PET scan (area under the curve 
[AUC] > 0.85).127-129 Conversely, although significant increase 
of plasma t-tau has been vastly observed in individuals with 
AD, the plasma t-tau levels between control, MCI, and AD 
groups substantially overlapped.130

The neurofilaments are cytoskeletal protein abundantly 
expressed in neuronal axons, among which neurofilament light 
polypeptide (NfL) is the smallest of the neurofilament proteins 
(for a detailed review on neurofilament structure and function, 
please see Khalil et  al131). A moderate-to-good correlation 
between NfL concentration in blood and CSF has been 
observed in several studies and many CSF findings of increased 
NfL in neurodegenerative diseases have subsequently been 
replicated in blood.132 Although not a specific marker for AD, 
blood NfL has the potential to track or predict many aspects of 
neurodegeneration, including cognitive performance,133 the 
degree of postmortem pathology,134 structural imaging,135 and 
glucose metabolism.136,137

Fluid Biomarkers for Synapse Pathology
The pathophysiology of synaptopathies and the significance 
of synapses in cognition make a convincing argument for the 
need and use of biomarkers of synapse pathology as represen-
tation of cognitive and synaptic function. Clinically, synaptic 
biomarkers may link synaptic degeneration with the cognitive 
status and decline of the patient, and they could be imple-
mented together with cognitive tests to have a more precise 
description of the patient’s symptoms, especially at early 
stages. Moreover, synaptic biomarkers can help to understand 
the underlying pathological processes ongoing during cogni-
tive diseases, as different proteins could reflect different 
mechanisms, thus helping the diagnosis. In addition, synaptic 
biomarkers can also be used during drug development, to 
monitor the efficacy of treatments on synaptic functioning in 
drug trials.

Pre- and postsynaptic biomarkers

Biomarkers for synaptic dysfunction can be divided into pre- 
and postsynaptic biomarkers depending on the localization of 
the protein. The presence of synaptic proteins in CSF was first 
demonstrated in the late 1990s,138,139 but for a long time, most 
studies still involved postmortem brain tissue. However, in the 
last decade, advances in mass spectrometry and immunoassays 
have allowed the accurate quantification of synaptic proteins in 
biofluids. As of today, there are 4 main presynaptic biomarkers, 
growth-associated protein 43 (GAP-43), synaptosomal-associ-
ated protein 25 (SNAP-25), synaptotagmin-1, and α-syn, and 
1 postsynaptic marker, neurogranin.

GAP-43. GAP-43 is a presynaptic protein which plays an 
important role in memory and information storage.140 It is 
anchored on the cytoplasmic side of the presynaptic plasma 
membrane and is mainly expressed in the hippocampus, 
entorhinal cortex, and neocortex of the adult brain. At the syn-
apse, upon intracellular Ca2+ increase, GAP-43 is phosphoryl-
ated by protein kinase C. This leads GAP-43 to interact, 
among others, with synaptophysin and SNAP-25, facilitating 
synaptic vesicle recycling.141 Studies have found GAP-43 CSF 
levels to be significantly increased in patients with AD com-
pared with controls142 and also other neurodegenerative disor-
ders.143 CSF GAP-43 levels were also increased in preclinical 
and clinical patients with AD compared with controls. How-
ever, in an antibody-based explorative study, no significant 
changes in patients with PD or DLB were found in compari-
son with controls.144 Altered CSF GAP-43 levels have also 
been reported in progressive multiple sclerosis (MS),143,145 
inflammation,146 stroke,147 and PD,109 but not in frontotempo-
ral dementia (FTD).109

SNAP-25. SNAP-25 is a presynaptic protein with a key role in 
neuronal survival and cognitive function due to its essential 
part in vesicular exocytosis, neurite outgrowth, and LTP.148 
SNAP-25, together with vesicle-associated membrane pro-
teins (VAMPs) and syntaxins, forms SNARE complexes, 
which mediate synaptic vesicle apposition to the presynaptic 
membrane thus allowing for the Ca2+-triggered vesicle fusion 
during exocytosis.149 SNAP-25 has, in various studies using 
both enzyme-linked immunosorbent assay (ELISA) and mass 
spectrometry-based assays, shown to have significantly higher 
CSF levels in AD, even at a very early stages.7,150-152 Increased 
CSF levels of SNAP-25 have also been found in patients with 
PD153 and patients with sporadic CJD.154 In addition, SNAP-
25 has been associated with several psychiatric diseases such as 
attention deficiency hyperactivity disorder (ADHD), schizo-
phrenia, and bipolar disorder.149 Furthermore, there are 2 splic-
ing variants of SNAP-25: SNAP-25A and SNAP-25B. Mass 
spectrometry–based methods to quantify both total SNAP-25 
and the 2 isoforms have therefore been developed to study 
potential differences in the roles of the isoforms of SNAP-25 
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in disease. Nine amino acids differentiate the 2 protein iso-
forms, which also differ in their effects on neurotransmis-
sion.155 To our knowledge, no studies have investigated the 
different isoforms in CSF. However, a postmortem brain tissue 
study by Barakauskas et al155 found significantly decreased lev-
els of total SNAP-25 and SNAP-25A but not of SNAP-25B, 
indicating a specific differential expression of SNAP-25A in 
schizophrenia.

Synaptotagmin-1. Synaptotagmin-1 is a calcium sensor vesicle 
protein vital for fast synchronous neurotransmitter release in 
hippocampal neurons.156 It is a transmembrane protein 
anchored in the vesicle membranes containing 2 Ca2+-binding 
domains. In response to Ca2+-binding at elevated concentra-
tions, synaptotagmin-1 triggers the vesicle fusion, but the exact 
molecular mechanisms remain to be elucidated (for review see 
Park and Ryu157). Initial CSF studies of synaptotagmin-1 
found it to be decreased in a CSF pool from patients with 
early-onset AD compared with a CSF pool from healthy con-
trols.138 Two decades later, Öhrfelt et  al158 quantified synap-
totagmin-1 in individual CSF samples from patients with AD, 
MCI, and controls, demonstrating significantly increased con-
centrations of synaptotagmin-1 in patients with AD and MCI, 
the highest being MCI due to AD. These findings have been 
corroborated in a recent study where synaptotagmin-1 was 
quantified in patients in the AD continuum and cognitive 
decline from other dementias.159,160

In the same study by Tible et al, in addition to synaptotag-
min-1, the concentrations of GAP-43 and SNAP-25 were 
quantified. All 3 presynaptic proteins were significantly 
increased in AD and MCI-AD compared with the other dis-
orders. However, only SNAP-25 and GAP-43 levels were also 
significantly higher in AD versus MCI-AD. Only synaptotag-
min-1 concentrations were significantly lower in other neuro-
degenerative disorders compared with controls. Recently, 
Clarke et al161 compared synaptotagmin-1 and SNAP-25 con-
centrations in patients with FTD and demonstrated increased 
levels in patients with AD biomarker profile compared with 
those patients with an FTD profile.

Alpha-synuclein and its forms. Alpha-syn is a key player in the 
etiology of different neurodegenerative conditions and as such, 
it has been studied as a possible biomarker for their detection. 
However, besides being a possible cause for diseases, it is also a 
presynaptic protein, taking part in many synaptic processes as 
previously described, which is why it is important to include it 
in this review. The synucleins family comprises α-, β-, and γ-
synuclein, which are soluble proteins encoded by 3 different 
genes. Among them, α-syn is the most studied.162

Total α-syn. Studies of α-syn in CSF have mainly been 
focused on α-synucleinopathies and were based on immuno-
logical assays measuring total α-syn (t-α-syn); however, they 
have been largely inconsistent. For instance, in PD compared 

with controls, t-α-syn has been found in several studies to be 
slightly decreased163-165 which is supported by several meta-
analyses which concluded that there are significantly lower lev-
els of t-α-syn in PD (10%-15%). However, in other studies no 
significant difference has been found,166,167 and the diagnostic 
performance of t-α-syn is not considered sufficient for clinical 
utility due to significant overlap between the populations.168-170 
Other synucleinopathies, like DLB and MSA, have also shown 
a similar decrease compared with healthy controls, while 
tauopathies such as PSP and CBD seem to show no signifi-
cant difference.163,165,171 For AD in comparison with healthy 
controls, t-α-syn levels seem to be elevated171-174; however, 
several studies showed no significant difference.175-179 Patients 
with CJD, on the other hand, have a more pronounced increase 
in CSF t-α-syn, both compared with controls and with other 
neurodegenerative diseases.178,180,181 An explanation for the 
inconclusive findings of CSF α-syn is that leakage into the 
CSF from synapse breakdown occurs simultaneously as α-syn 
is retained in pathological inclusions. In addition, the extensive 
reduction in synapse number over time might lead to a decrease 
of α-syn production. Together these events might contribute to 
the confounding results.166,182 Another contributing factor for 
the varying results might be due to technical variation such as 
handling of samples or quantification methods leading to low 
reproducibility.182 Moreover, α-syn is largely expressed outside 
of the CNS and highly abundant in blood, with red blood cells 
(RBCs) as its major source. Thus, blood contamination during 
CSF acquisition might represent another source of variation, 
skewing the t-α-syn concentration results in CSF.183,184

Despite the possible problems just discussed, there have 
been many studies evaluating α-syn as blood biomarker for 
dementias. Studies for α-syn in plasma and serum in PD have 
all shown similar conflicting results as in CSF.185-188 However, 
a meta-analysis indicates that plasma t-α-syn is significantly 
higher in PD than in controls.189 In a study by Laske et al,190 
decreased serum concentrations of t-α-syn in DLB were 
found but with no difference for AD compared with controls. 
There are also a few studies on RBC t-α-syn191-193 which 
showed significantly decreased levels of the protein in PD and 
AD compared with controls. Studies on t-α-syn in saliva have 
also been performed, but with limited success in differentiat-
ing PD from controls.194-196

Oligomeric, phosphorylated, and aggregated forms of α-
synuclein. The inconclusive results of t-α-syn as a diagnostic 
biomarker have sparked research into pathological forms of 
α-syn, such as oligomeric (o-α-syn), phosphorylated (Ser129) 
(p-α-syn), and aggregated forms of α-synuclein. Oligomeric 
α-syn in CSF seems to be increased in PD compared with 
controls169 but not in AD and DLB.174,197 Furthermore, Par-
netti et al198 found that the diagnostic accuracy of PD can be 
improved by using the ratio of oligomeric/total α-syn in CSF. 
In plasma,199 serum,200 and RBC,193,201 significantly elevated 
levels have been reported for PD, but also non-significant 
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results exist.202-204 In a study by Vivacqua et  al,205 increased 
saliva levels of o-α-syn were found for PD. Phosphorylated α-
syn, one of the main disease-associated posttranslational modi-
fications (PTMs),206 is hard to quantify due to its low CSF 
concentration, but similar to the oligomeric and the total form, 
it has been found elevated in PD169 and its diagnostic accu-
racy increases when its ratio to other α-syn forms are used.207 
Phosphorylated-α-syn has also been indicated to be elevated 
in CJD181 and not increased in AD.174,179 Plasma p-α-syn has 
been found to be significantly increased in PD compared with 
controls.185,203 For the measurement of pathogenic α-syn aggre-
gates in CSF, aggregation assays have been developed. Assays 
based on real-time quaking-induced conversion (RT-QuIC) or 
protein misfolding cyclic amplification (PMCA) have shown 
very promising results (specificity > 95%, sensitivity > 80%) in 
discriminating synucleinopathies (PD, MSA, and DLB) from 
nonsynucleinopathies (AD and controls).208-210

Neurogranin. Neurogranin is an intracellular 7.5-kDa protein, 
concentrated in the dendritic and postsynaptic compartment of 
synaptic spines of neurons.211,212 There it binds via its central 
IQ domain213 to the Ca2+-signaling mediator calmodulin, 
enhancing signaling for processes important in memory for-
mation and to phosphatidic acid at the inner plasma mem-
brane.214 A neurogranin knockout mouse model showed 
deficits in spatial memory and synaptic plasticity.215 In a first 
study, CSF neurogranin was shown by immunoprecipitation 
and Western blot to be increased in AD.216 After the develop-
ment of immunoassay methods using ELISA,217 Singulex,218 
and Mesoscale,219 these findings have been verified in several 
studies and neurogranin consistently showed increased levels in 
CSF of AD patients as compared with controls.121,220-224 This 
increase appears to be specific for AD, as CSF from patients 
with other neurodegenerative diseases, with the exception of 
CJD,225 do not show such an increase.161,226,227 High levels of 
neurogranin in CSF during prodromal AD have been shown to 
be predictive of more rapid progression toward AD.217,219

Besides full-length neurogranin, CSF contains mainly frag-
ments of the C-terminal half (with a variety of different trun-
cations at their C-terminal and N-terminal ends).216,217 Two 
intracellular enzymes have been identified that can generate 
cleavages in the functionally important IQ domain and at the 
very C-terminal end (calpain-1 and prolyl endopeptidase, 
respectively).228 Whether these different fragments of neuro-
granin have roles in different physiological or pathophysiologi-
cal functions is still unknown. In a comparison study, different 
ELISAs and the Singulex assay were found to have similar per-
formance in predicting AD, in spite targeting different parts of 
neurogranin.229 However, this does not rule out that particular 
neurogranin fragments could yield more discriminatory power 
to detect AD. Overall, it can be said that neurogranin may be a 
useful biomarker in CSF to detect early degeneration of neu-
rons and it appears to be fairly specific for AD among several 
tauopathies.

Plasma concentrations of neurogranin are detectable with 
conventional ELISAs but are unchanged in AD and do not 
correlate with CSF neurogranin, probably due to the contribu-
tion of peripherally expressed neurogranin peptides to blood 
neurogranin measurements.121,220

Emerging synaptic biomarkers

Recently, other studies identified more synaptic proteins in 
CSF, which have been investigated without success so far or 
that show promise as synaptic biomarkers, thus worth to be 
mentioned in this section. Wesenhagen et  al have recently 
reviewed 29 proteomic studies that investigated AD-related 
changes in CSF protein abundances. In total, 97 proteins, 
including the synaptic proteins neurofascin, NPTX1, NPTX2, 
and neurexin 1, were reported by 2 or more studies and associ-
ated with AD.230 One of the reviewed studies231 reported a 
synaptic biomarker panel where only the 3 synaptic proteins 
neurofascin, NPTX1, and neurexin 1 were significantly low-
ered in AD. Similarly, Lleó et al232 found that 6 synaptic pro-
teins, calsyntenin-1, glutamate receptor 4 (GRIA4), 
neurexin-2A, neurexin-3A, syntaxin-1B, and thy-1 membrane 
glycoprotein, were increased in CSF in preclinical AD even 
before the core CSF biomarkers for neurodegeneration.

In explorative proteomics, high-resolution separation meth-
ods such as gel electrophoresis, isoelectric focusing, and high-
performance liquid chromatography are used in conjunction 
with mass spectrometry and bioinformatics to study differences 
in protein expression due to diseases, genetic variations, or ther-
apy. A major advantage of using an explorative approach to study 
protein abundances is that many hundred proteins and protein 
variants can be studied simultaneously without existing hypoth-
eses or bias. Thus, the discovery of novel biomarkers could lead 
to new insights on disease mechanisms and eventually the for-
mulation of novel hypotheses. However, using the explorative 
approach to identify biomarkers in biofluids from individual 
patient samples is challenging and the overlap of identified bio-
marker candidates among these studies has historically been 
relatively low. These discrepancies may be due to a low number 
of study participants, differences in sample handling, and other 
analytical parameters. Another possible approach to identify 
new candidate biomarkers is setting up targeted assays based on 
proteins of interest from studying the literature and/or public 
databases. Commonly shotgun proteomics, to identify possible 
proteins of interest, is also used in the selective process. In this 
way, several potential biomarker candidates can be validated in a 
targeted setting in larger cohorts. Among emerging synaptic 
biomarkers, of special note are neuronal pentraxins and the syn-
aptic vesicle glycoprotein 2A.

Neuronal pentraxins. Neuronal pentraxin I (NPTX1, also 
called NP1) and II (NPTX2, also called NP2), and the neu-
ronal pentraxin receptor (NPTXR) are widely expressed at 
excitatory synapses, where they bind to AMPA receptors and 
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are suggested to be involved in synaptic plasticity.233,234 All 3 
neuronal pentraxins have lately received much attention and 
have been shown in several studies to have decreased CSF lev-
els in AD and MCI groups compared with controls.231,235-242 
CSF pentraxin levels also correlate with cognitive performance 
and hippocampal volume.150,242,243 Few studies have been per-
formed on other diseases but NPTXR has also been associated 
with other neurological diseases such as MS244 and FTD.245 
Furthermore, in a study by Magdalinou et al246 both NPTXR 
and NPTX1 were found to be decreased in between atypical 
parkinsonian disorders (PSP, MSA, CBD) and controls.

SV2A. Recent studies using [11C]UCB-J PET have identified 
SV2A as the first in vivo marker of synaptic density247 which 
demonstrates widespread synaptic loss in AD.118 SV2A is a 
synaptic vesicle transmembrane protein, which in brain is 
widely expressed in neurons.248 SV2A has been described to be 
located in the dense-core vesicles249,250 and in small synaptic 
vesicles,251 most probably in both. Although its exact mecha-
nism needs more investigation, it is involved in regulation of 
neurotransmitter release252,253 and expression and trafficking of 
synaptotagmin.254 Compared with the typical pattern of hypo-
metabolism seen in AD using [18F]FDG, the spatial extent of 
decreases in [11C]UCB-J uptake was significantly more con-
fined. The reduction in hippocampal binding is in line with the 
early loss of entorhinal cortical cell projections to the hip-
pocampus, and reductions of hippocampal SV2A seen in post-
mortem studies in AD brain tissue.255,256 More recently, 
changes in [11C]UCB-J PET have been observed in PD,257 
PSP,258 cortical basal syndrome, and epilepsy247 suggesting that 
SV2A could be a global marker for synaptic density, unlike 
CSF synaptotagmin-1, SNAP-25, GAP-43, and neurogranin, 
which are rather specific to AD or amyloidopathies. Recently, 
SV2A has been detected in CSF and shown to be reduced in 
AD259; however it is yet to be determined whether CSF SV2A 
can be used as a marker for synaptic density in other dementias 
and whether it has a meaningful correlation with [11C]UCB-J 
(Figure 1). 

Miscellaneous: other emerging synaptic biomarkers

The Rab family are key synaptic proteins involved in both recy-
cling of neurotransmitter receptors and exocytosis of neuro-
transmitters. Of special note is the family member ras-related 
protein 3a (Rab3a), highly abundant in brain tissues, which has 
been connected with several neurodegenerative diseases (AD, 
PD, and DLB) due to its regulation of Aβ production and 
interaction with α-syn.262 The protein has been investigated by 
Bereczki et al,153 which however did not find any significant 
difference in CSF between patients with PD and control. A 
second important protein family for neurotransmitter exocyto-
sis is the granin family, which is constituted of dense-core vesi-
cle proteins involved, inter alia, in neuropeptide biogenesis and 
secretion. The proteins have not only been associated with 

neurodegenerative diseases, such as AD, but also with other 
synaptopathies, such as schizophrenia and depression.263 Three 
of the key granins: chromogranin-A, secretogranin-2, and neu-
rosecretory protein VGF, have been found to have significantly 
lower CSF concentrations in AD.231,264

Another synaptic protein involved in the pathology of AD is 
contactin-2, a cell-adhesion protein that interacts with APP and 
beta-secretase 1 (BACE1). Chatterjee et  al265 found that the 
protein was reduced in both brain tissue and CSF in AD. The 
less well-studied members of the synuclein family, beta-synu-
clein (β-syn) and gamma-synuclein (γ-syn), are also present in 
proteinaceous aggregates in some α-synucleinopathies.266 Oeckl 
et al167 was the first to measure all 3 synucleins protein family 
members, α, β, γ in CSF. They found increased concentrations of 
all synucleins in AD and CJD; however for PD, DLB, and atypi-
cal parkinsonian syndromes the concentrations were not altered. 
Furthermore, a high correlation between the 3 synucleins was 
seen. In another study by Oeckl et al,267 β-syn was quantified in 
blood and found it to be increased in AD and CJD compared 
with controls but not in other neurodegenerative diseases, such 
as PDD, DLB, amyotrophic lateral sclerosis (ALS), and FTD.

14-3-3. 14-3-3 proteins refer to a family of 7 isoforms which 
are highly expressed in the brain, accounting for 1% of its soluble 
protein content. They are also particularly enriched at synapses 
(presynaptic) and important modulators of synaptic functions, 
such as neurotransmission and plasticity. 14-3-3 protein detec-
tion by Western blot has since long been used to detect CJD, 
albeit this technique is only semi-quantitative. However, more 
recently, 14-3-3 have been studied in the context of other neuro-
degenerative pathologies. 14-3-3 isoforms have not only been 
found to co-localize in LB in PD and NFTs in AD, but also 
been found to interact with key proteins such as tau and α-syn. 
They have also been genetically linked to both neurodegenera-
tive diseases (PD, AD, and CJD) and neuropsychiatric disorders 
(schizophrenia and bipolar disorder).268,269 A recent study by 
Antonell et  al270 found significantly increased gamma 14-3-3 
concentrations in both FTD and AD compared with controls. 
For AD, increased concentrations were found already in a pro-
dromal stage and the protein level was also significantly higher at 
later stages compared with FTD. Furthermore, when analyzing 
for 14-3-3, 96% of subjects were positive for neurodegeneration 
when applying the AT(N) system, compared with 94% for neu-
rofilament light and 62% for neurogranin.270

Synaptophysin is one of the most used synaptic biomarkers 
in immunohistochemistry since it is the most abundant inte-
gral synaptic vesicle and plasma membrane protein. In studies 
of AD postmortem brain tissue, it has been shown that the 
synaptophysin content is reduced.271,272 Several studies have 
reported that the protein is not detectable in CSF,139,138,273 pos-
sibly due to its high hydrophobic profile.139 However, it has 
recently been reported to be detected in exosome preparations 
from body fluids.274,275
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Neuronal-derived exosomes. A recent approach for the dis-
covery of new synaptic biomarkers has been based on isolat-
ing neuronal exosomes from blood (plasma). As discussed 
previously, blood is an easily accessible peripheral fluid, pre-
ferred to CSF, which entails a more invasive extraction pro-
cedure. However, blood has the disadvantage of being further 
away from the brain and give peripheral contribution to the 
levels of the protein. Studying neuronal exosomes enriched 
from blood gives the advantage to use blood while hopefully 
better reflecting brain pathogenic processes. Explorative pro-
teomic analysis has tried to map the protein content of the 
neuronal exosomes and confirmed the presence of several 
synaptic proteins such as Rab3a and GRIA4.276 In plasma 
samples, Goetzl et al274 reported significantly decreased neu-
ronal-derived levels of synaptophysin together with synapto-
podin, synaptotagmin-2, and neurogranin in patients with 
AD and FTD compared with controls. In the same study, 
GAP-43 and synapsin-1 were also detected, but were found 
to have significantly lower levels only in AD. Furthermore, in 

another study by Goetzl et  al,277 plasma neuronal–derived 
exosome levels of NPTX2, neurexin 2, GRIA4, and neuroli-
gin 1 were found to be significantly decreased in AD, where 
also GluR4 and neuroligin 1 correlated with cognitive loss. 
Another protein that has been quantified in neuronal 
exosomes is α-syn, found to have increased concentrations in 
PD compared with controls.278 For proteins such as neuro-
granin or α-syn, where peripheral expression complicates the 
quantification in blood, neuronally derived exosomes seem 
like an excellent option. However, even if this has promise, it 
is limited by expensive and time-consuming sample prepara-
tion, which as of today restricts its potential for high-
throughput biomarker screening and its use in clinical 
routine. Nevertheless, exosomes are being connected to an 
increasing number of synaptopathies and they have even 
been implicated in the propagation of disease-associated 
proteins such as tau, Aβ, PrPC, and α-syn.279,280 They are a 
relatively unexplored source for synaptic biomarkers, which 
makes them a vital part of the field (Figure 2).

Figure 1. Synaptic and neuronal biomarkers location. The picture is a schematic representation of the most studied synaptic biomarkers described in this 

review. As it can be noticed, most of the candidate biomarkers are localized presynaptically, with the exception of neurogranin and neuronal pentraxins 

(NPTX), which has also been described to be present presynaptically.260 Many proteins are involved in synaptic vesicle assembly and neurotransmitters 

release, like synaptotagmin-1 (syt 1), synaptophysin, SNAP-25, and SV2A.248 α-Synuclein (α-syn) can be found as a soluble form in the cytoplasm, but 

also associating with membrane lipids as, for instance, with synaptic vesicles and mitochondria.87 GAP-43 shows high density in the presynaptic terminal, 

where depending on its phosphorylation status, participates in neuronal growth modulating actin or in synaptic plasticity modulating synaptic vesicle 

trafficking.141 Together with actin filaments and microtubules, neurofilaments are cytoskeletal elements of the neurons, providing mechanical strength and 

stability.131 Tau protein, mainly expressed in axons, binds to tubulin and induce its polymerization into microtubules, which support axon outgrowth and 

elongation.261 α-syn indicates synuclein; DCV, dense-core vesicles; GAP-43, growth-associated protein 43; LTP, long-term potentiation; NPTX, neuronal 

pentraxin; SNAP-25, synaptosomal-associated protein 25.

Figure made with www.biorender.com.
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Conclusions and Future Perspective
Synapses are essential interconnecting points for neurons and 
are primarily affected in neurodegenerative and neurodevelop-
mental disorders.72 Accumulation of misfolded proteins seems 
to directly affect them,35 leading to their dysfunction and loss, 
which is closely related to the cognitive deficits seen in these 
aging disorders. This review summarizes latest studies on more 
established and newly investigated synaptic proteins as candi-
date biomarkers for synapse dysfunction and neuronal injury in 
different neurodegenerative diseases, in relation to both CSF 
and blood (Table 1).

Current CSF synaptic biomarkers are altered in AD but 
seemingly not in other neurodegenerative disorders. This can 
reflect a higher response of synapses and neurons to Aβ-
mediated damage, probably making AD the pathology with 
the highest synaptic damage. However, more efforts are needed 
to characterize synaptic loss in non-AD dementias and other 
synaptopathies. Increasing evidence suggests that synaptic dys-
function is also involved in neurodevelopmental diseases290,291 
and neuropsychiatric disorders.26,292 Thus, the study of these 

conditions may help understanding differences or commonali-
ties between synaptopathies.293

It can be noticed that most of the synaptic biomarkers 
described are represented by presynaptic proteins294 and, in AD, 
glutamatergic synapses appear to be primarily affected.6,294-297 
Among the reviewed synaptic proteins, neurogranin is the most 
extensively studied and the evidence presented thus far is seem-
ingly specific for AD or Aβ deposition. The other synaptic pro-
teins also show changed levels in relation to AD, with most of 
them showing increased CSF concentrations, but also in non-
AD neurodegenerative diseases (eg, PD, tauopathies), even 
though in these diseases they are less investigated. NfL is a good 
marker for general neuronal loss and it would be suitable to rep-
resent the “N” in the ATN criteria119,298 given that CSF t-tau 
also mainly changes in AD and CJD. Blood NfL strongly reflects 
CSF NfL.299 Elucidating the mechanisms of release of these 
proteins into biofluids would be of importance to understand 
their changes in concentration, thus connecting pathological 
mechanisms to biological responses and increase the interpreta-
bility of this biomarker category.

Figure 2. Proteomic approaches in synaptic biomarkers discovery and validation. Proteomic studies can start with large explorative investigations in 

brain tissue, which might lead to the discovery of new candidate biomarkers. However, these studies can be seen as starting points, and they have no 

clinical utilities. Thus, investigations in CSF are needed to be able to translate the biomarker discovery into a tool of clinical use. Once the biomarker has 

been validated in CSF, further investigations can be carried in blood, a biofluid with higher accessibility and cheaper to use. On the other hand blood is 

further away from the brain and the targeted protein level might be susceptible to peripheral contribution, resulting in lower biomarker specificity and 

confounding results. A possible approach to overcome this problem is the use of plasma-derived neuronal exosomes. These investigations can be carried 

out with a targeted or non-targeted approach. In the diagram, pros and cons of both approaches are highlighted. ELISA indicates enzyme-linked 

immunosorbent assay; IP, immunoprecipitation; LC-MS, liquid chromatography-mass spectrometry; PRM, parallel reaction monitoring; SIMOA, single 

molecule array; WB, Western blot.

Figure made with www.biorender.com.
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Understanding the pathological mechanisms responsible 
for synaptic damage is of central importance also during synap-
tic biomarker investigation. Brain studies could be a starting 
point, helping to understand the pathophysiological events and 
for selecting biomarker candidates. The next steps may involve 
the investigation of biofluids, like CSF, ideally followed by 
studies in blood, representing the way to bring the investiga-
tion further and possibly find synaptic biomarkers of clinical 
utility. The future of biomarkers ideally would be able to rely on 
sampling blood, which is a more accessible source than CSF. 
However, the possible contribution of peripheral expression of 
the biomarker protein, as discussed for neurogranin and α-syn, 
can represent a problem and, to date, we still have no blood 
biomarkers reflecting synaptic pathology. Neuronal-derived 
exosomes in blood can represent an alternative; however the 
complexity and variability of the exosome enrichment proce-
dure is currently a drawback for large studies and routine use.

Future directions of research should consider more longi-
tudinal studies, to compare protein time-related changes with 
the disease progression. The contribution of sex differences 
should be also considered in more detail, as developing evi-
dence suggests that differing biomarker profiles do exist but 
is protein-specific.300,301

In conclusion, the available evidence on CSF synaptic bio-
markers points toward the possible use of these proteins as 
indicators of synaptic alteration and elimination in synaptopa-
thies, and their use to follow cognitive deficits in neurodegen-
erative diseases. More efforts are needed to assess their possible 
use in blood. Mechanistic studies will possibly help under-
standing how those proteins are affected in pathological pro-
cesses thus increasing their value as potential biomarkers. 
Moreover, developing assays for their quantification using 
highly sensitive and high-throughput platforms will push syn-
aptic protein quantification toward broader investigations. This 
overview of the field will hopefully highlight possible gaps and 
guide future studies.
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