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Gynecology, St Joseph Hospital, Marseille, France, 3 Department of Gynaecology and Obstetrics, Pôle Femme Enfant,
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7 Service de Rhumatologie, Hôpital Sainte Marguerite, AP-HM, Marseille, France

Background: Cord blood (CB) samples are increasingly used as a source of
hematopoietic stem cells in transplantation settings. Maternal cells have been detected
in CB samples and their presence is associated with a better graft outcome. However, we
still do not know what influences the presence of maternal microchimerism (MMc) in CB
samples and whether their presence influences CB hematopoietic cell composition.

Patients and Methods: Here we test whether genetic, biological, anthropometric and/or
obstetrical parameters influence the frequency and/or quantity of maternal Mc in CB
samples from 55 healthy primigravid women. Mc was evaluated by targeting non-shared,
non-inherited Human Leukocyte Antigen (HLA)-specific real-time quantitative PCR in
whole blood and four cell subsets (T, B lymphocytes, granulocytes and/or hematopoietic
progenitor cells). Furthermore CB samples were analyzed for their cell composition by flow
cytometry and categorized according to their microchimeric status.

Results: MMc was present in 55% of CB samples in at least one cell subset or whole
blood, with levels reaching up to 0.3% of hematopoietic progenitor cells. Two factors were
predictive of the presence of MMc in CB samples: high concentrations of maternal
serological Pregnancy-Associated-Protein-A at first trimester of pregnancy (p=0.018) and
feto-maternal HLA-A and/or –DR compatibility (p=0.009 and p=0.01 respectively). Finally,
CB samples positive for MMc were significantly enriched in CD56+ cells compared to CB
negative for MMc.

Conclusions: We have identified two factors, measurable at early pregnancy, predicting
the presence of maternal cells in CB samples at delivery. We have shown that MMc in CB
samples could have an influence on the hematopoietic composition of fetal cells. CD56 is
the phenotypic marker of natural killer cells (NK) and NK cells are known to be the main
effector for graft versus leukemia reactions early after hematopoietic stem cell
org April 2021 | Volume 12 | Article 6513991
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transplantation. These results emphasize the importance of MMc investigation for CB
banking strategies.
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INTRODUCTION

Umbilical Cord Blood (CB), obtained at the time of delivery, is a
good source of hematopoietic stem cells and a useful tool for
stem cell transplantation for a variety of hematological and non-
hematological malignancies and disorders (1, 2). Compared to
the conventional adult stem cell sources of bone marrow and
peripheral blood, CB are associated with lower incidences of
acute and chronic graft versus host disease (GVHD), while
maintaining good graft versus leukemia (GVL) activity (3, 4),
possibly because of their tolerogenic cell composition, with a
majority of naïve T cells and a high proportion of highly
suppressive regulatory T cells (5, 6).

Moreover, contrary to what was believed and taught for a long
time, during pregnancy, feto-maternal exchange is not only an
exchange of nutrients, hormones, antibodies, oxygen and carbon
dioxide; a feto-maternal exchange of cells is also established (7).
Fetal cells reach the maternal blood stream, leading to a small
quantity of persisting cells in the mother called fetal
microchimerism (Mc) (8). Inversely, maternal cells reach the
fetal blood stream to persist as maternal Mc in the child (9) and
in most cord blood samples (10).

Maternal cells were initially quantified in CB samples mainly
because of the fear that they might contribute to the development of
GVHD (11). The frequency of maternal nucleated cells in cord
blood has been evaluated with variable results ranging from 0% to
100% depending on the sensitivity of detection methods (10, 12–
14). The current consensus is that maternal cells are commonly
detected in CB samples and amounts are significant (12). Moreover,
maternal cells of the CB graft have been recently detected in 19% of
27 unrelated recipients post-CB transplantation (15). Maternal cells
may be beneficial as recipients positive for MMc-CB tended to have
lower relapse, mortality, and treatment failure than patients
negative (15).

During pregnancy, maternal cells are sensitized to the child’s
paternally –inherited antigens (IPAs) and can develop a B and T
cell immunity against the IPAs of the fetus. Thus, maternal Mc
present in CB samples is likely to contribute to superior GVL
effects and low rates of disease recurrence when the CB used for
hematopoietic stem cell transplantation is matched for IPAs with
the unrelated recipient (16).

Conversely, the fetal immune system develops a tolerogenic
response toward maternal cells, a tolerance to non-inherited
maternal antigens (NIMAs). The NIMAs tolerance has been
hypothesized as having a beneficial impact on graft outcome when
the recipient shares a mismatch antigen with the CB donor’s mother
and this has been supported by two studies showing better transplant
outcome after NIMA-matched transplants (17, 18).

As the beneficial role of maternal cells in the fate of the CB
transplant is increasingly evidenced (19), here, we propose to
org 2
identify genetic, biological, anthropometric and obstetrical
factors predicting their frequency and quantity. Furthermore
we evaluate whether the presence of maternal cells influences the
hematopoietic CB cell composition.
PATIENTS AND METHODS

Cord Blood Collection and Maternal Blood
Tests
CB samples were collected from 55 healthy primigravid women
who had no history of blood transfusion. Samples were obtained
by double clamping the umbilical cord segment and drawing CB
(~15mL) by venipuncture into lithium heparin tubes from three
maternities in Marseille, France (32 from St Joseph, 22 from Nord
and one from La Conception maternity). All CB samples were
processed within 24 hours from delivery.

All pregnancies were healthy singleton pregnancies with 21
live girls and 34 live boys. Obstetrical, anthropometric and
clinical characteristics of mothers and children from whom CB
samples were collected are detailed in Supplementary Table S1.

A first trimester serum screen (12 ± 2 weeks of amenorrhea),
which measures fetal or placental specific proteins, Pregnancy
Associated Plasma Protein A (PAPP-A) and free beta human
chorionic gonadotropin (b-hCG), has been conducted for 46 of
the 55 primigravid women. The level of each serum marker was
measured and expressed as the multiple of the median (MoM) of
the expected normal median for women with pregnancies of the
same gestational day using values established in a previous study
(20). Combined with the mother’s age and ultrasound
examination to measure nuchal translucency, PAPP-A and b-
hCG concentrations are routinely used to assess the risk of Down
syndrome or other fetal aneuploidies.

Collection of Samples and HLA
Genotyping
An aliquot of 350µL of blood collected from each primigravid woman
at first trimester of pregnancy and of CB collected at delivery, were kept
frozen at -40°C. Genomic DNA was extracted from both samples with
the EZ1 DNA blood kit (Qiagen, Hilden, Germany) using a Biorobot
EZ1 system according to the manufacturer’s instructions.

HLA-A, B and DRB1 genotyping was performed on all DNA
samples at Etablissement Français du Sang, Marseilles France, to
further investigate maternal Mc in CB samples by HLA-
specific PCR.

Study Approval
The study has received the approval of the ethics committee
(CPP Sud-Méditerranée II) and is registered at the INSERM
(Biomedical Research Protocol RBM-04-10) and as a collection
April 2021 | Volume 12 | Article 651399

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Haddad et al. Prediction of Maternal Cells in CB
(DC-2008-327). All participants signed an informed consent
form according to the Declaration of Helsinki (21).

Cord Blood Cell Separation for
Chimerism Analyses
CB samples collected in heparin lithium vacutainers were
processed to isolate peripheral blood mononuclear cells
(PBMC) by gradient centrifugation with Histopaque 1077
(Sigma-Aldrich, MO, USA) and cell subsets were obtained by
immuno-magnetic cell sorting (RoboSep™-S, STEMCELL™

Technologies, Canada). B cells, T cells, granulocytes and
hematopoietic progenitor cells (HPC) were respectively sorted
with EasySep® human whole blood CD19, CD3, CD66b positive
selection kit and human cord blood CD34 positive selection kit
following manufacturer’s recommendations.

Fractions were checked for purity by flow cytometry with the
MACSQuant® device (Miltenyi Biotec, Germany) using CD20-
VioBlue®; CD4-(VIT4)-FITC; CD8-PE and CD66abce-APC
fluorescent antibodies, following manufacturer’s recommendations.
Cell fractions with purity higher than 95% were kept for
microchimerism analysis.

Cord Blood Cell Composition Analyses
CB samples were analyzed for their cell composition with the
following combinations of fluorescent antibodies: anti CD20-
VioBlue® for B cells, CD3-FITC or PE for T cells, CD4-(VIT4)-
FITC and CD8-PE for T helper or cytotoxic T cell subsets
respectively, CD66abce-APC for granulocytes, CD16-PE and/or
CD56-APC for NK cells, CD45-VioBlue® for all leukocytes and
CD34-PE for HPC. Isotype controls were used in parallel. All
antibodies were from Miltenyi Biotec, except CD34-PE from
STEMCELL™ (STEMCELL™ Technologies, Canada). Analyses
were realized on a MACSQuant® device (Miltenyi Biotec, Germany).

Quantification of Maternal Mc by
HLA-Specific Real Time Polymerase
Chain Reaction
All DNA samples were evaluated for total DNA concentrations by
real-time PCR for b-globin, as previously described (22), using a
reference b-globin standard curve common to all the HLA-specific
PCR assays. The equivalent DNA of one cell (genome equivalent of
1 cell: 1 gEq) corresponded to 6.6 pg of human DNA. Maternal Mc
was quantified in CB DNA samples using primers and probes
specific for non-shared, non-inherited HLA-DRB1*01, *15/16, *03,
*04, *07, *08, *10, *11, *12, *14 gene sequences, previously validated
for specificity and sensitivity (12, 22–24), as well as newly validated
HLA-A*01, *02, *11 and DRB1*13 sets, all following the same
rigorous validation steps as described previously (23). All primer
and probe sets were synthetized by TIB MolBiol (Berlin, Germany).
PCR assay sensitivity per reaction-well was of 1 gEq of
microchimeric cell in 20,000 gEq of host cells (0.005%), thus
DNA samples were adjusted to ~20,000 gEq (132ng) per well and
tested for Mc in ten replicate wells (for a combined final sensitivity
of 0.0005%). Quantitative PCR assays were done using Light Cycler
FastStart DNA MasterPLUS reaction kits on a LightCycler®480
instrument (Roche Diagnostics) as previously described (22).
Frontiers in Immunology | www.frontiersin.org 3
Statistics
Statistical analyses were conducted using GraphPad Prism 6
software (La Jolla, CA, USA). The non-parametric Mann-
Whitney test was used to compare biological, anthropometric
or obstetrical parameters (baby’s weight, PAPP-A or bhCG
concentrations,…) as well as cord blood cell composition (%
of different subsets) between CB positive or negative for
maternal Mc. The Chi2 comparison test was used to
determine whether type of deliveries, hospital-dependent
collection procedures could influence the presence or
absence of MMc in CB samples.

To test whether feto-maternal HLA compatibility could
influence MMc quantities, CB samples were divided into
negative, slightly positive, moderately positive or highly
positive categories. The number of maternal cells per million
of CB cells found per subset was added up for all the subsets and
divided by the number of subsets tested, giving mean values of
total MMc per CB ranging from 0.3 to 818 gEq/106. CB were
defined as slightly, moderately or highly positive for MMc when
mean values of total MMc were respectively, ≤10gEq/106,
comprised between 10 and 100 gEq/106 or ≥100gEq/106. When
sample sizes were small for comparisons, the Fisher’s exact test
was assessed (2X2 or 2x4, http://vassarstats.net/fisher2x4.html).
P-values < 0.05 were considered significant.
RESULTS

Maternal Mc From Different Cell Types in
Cord Blood Samples
Fifty-five umbilical CB samples from healthy primigravid women
have been tested for MMc by NIMAHLA-specific Q-PCR.Mc was
assessed in whole blood (WB), and/or PBMC, CD3+ (T cells),
CD19+ (B cells), CD66+ (granulocytes) and/or CD34+
(hematopoietic progenitor cells, HPC) fractions (Figure 1).

MMc was present in 30 of the 55 samples (55%) in at least one
cell compartment/type with the highest frequencies being in
sorted T cells (37%), then granulocytes (29%), B cells (24%) and
HPC (12%).

Among the 30 samples positive for MMc, four had high
quantities of MMc in whole blood comprised between 110 and
305 gEq/106 of cord blood cells (75th percentile of positive values).
As expected, the four CB samples having the highest levels in WB
had high levels in cell subsets (CB #38, #45, #48 and #79, Figure 1)
reaching up to 451gEq/106 of sorted T cells, 798 gEq/106 of sorted B
cells, 1276 gEq/106 of granulocytes or 3021 gEq/106 of sorted HPC.

Obstetrical and Anthropometric
Parameters That Could Influence
Maternal Cell Traffic
As samples were mainly collected in two different hospital
maternities, we first tested whether collection procedures could
induce differences in MMc detection prevalence between the two
centers. There were no significant differences in the prevalence of
MMc between CB samples collected in one center or the other,
as 14 out of 22 (64%) UCB were positive in the first and 15 out
April 2021 | Volume 12 | Article 651399
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of 32 (47%) in the second (p=0.22). Moreover, there was no
significant differences in the prevalence of MMc whether the CB
was processed within the same day (N=21) or 24 hours after
delivery (N=34) with respectively, 67% and 47% (p=0.16), nor
did the type of delivery influence maternal passage, as two out of
the five (40%) CB samples collected after C-section had MMc
versus 28 of the 50 samples (56%) collected after vaginal delivery
(p=0.29). Moreover, quantities of MMc were not higher in
positive samples collected after C-section than in positive
samples collected after vaginal delivery (data not shown,
p=0.48). CB samples from children conceived after in vitro
fertilization treatment did not show differences for MMc
compared to CB samples from normal pregnancies.

There was also no effect of the baby’s gender (p=0.4), baby’s
weight or number of gestation weeks (Supplementary Figures
S1 and S2) on the presence or not of maternal cells in CB
samples. Of note, but to be taken with caution given the low
number, the four CB samples positive for maternal CD34+ cells
were from babies heavier than babies whose CB was negative
(Supplementary Figure S3).

High Levels of Maternal Circulating
Concentrations of Trophoblast-Derived
Protein PAPP-A During the First Trimester
Correlate With MMc in CB at Delivery
Maternal circulating concentrations of PAPP-A and b-hCG,
were measured at 12 (±2) week gestation for 46 of the 55
primigravid healthy women from whom CB was tested.
Frontiers in Immunology | www.frontiersin.org 4
High levels of maternal serum PAPP-A concentrations at first
trimester significantly correlated with the presence of MMc at
delivery in whole cord blood (Figure 2, p=0.018). As pregnancies
conceived using assisted reproductive technologies (ART) have
low levels of PAPP-A and could distort the results (25), we did
the same analysis excluding four samples issued from ART;
results remained significant (p=0.013). There was also a
significant correlation between maternal PAPP-A quantities
and MMc levels in cord blood (Spearman correlation, p=0.043,
data not shown).

On the other hand, elevated PAPP-A concentrations were not
predictive of the presence of MMc in any particular cell subset.

A tendency to lower maternal serum b-hCG concentrations
in CB samples positive for MMc was observed but not
s ignificant ly di fferent from CB negat ive for MMc
(Supplementary Figure S4).

Feto-Maternal HLA-A and/or DR
Compatibility Is More Frequent in CB
Samples Positive for MMc
Mother/child HLA compatibility was classified into either
compatibility or incompatibility from the child’s perspective
for HLA-A, -B or -DR loci (see Supplementary Table S2). CB
samples positive for MMc in whole blood were significantly more
often HLA-A or DRB1 compatible from the child’s perspective
than CB samples negative for MMc (Figure 3A, p=0.009 and
p=0.01 respectively). There was no significant difference for
HLA-B compatibility between positive and negative CB.
FIGURE 1 | Maternal cells originating from different cell types in cord blood samples. Maternal Microchimerism (MMc), expressed in genome equivalent of cells per million of
host cells (gEq/106) is quantified in 55 CB samples. MMc is tested in DNA extracted from whole blood (WB), peripheral blood mononuclear cells (PBMC), T cells (CD3+), B
cells (CD19+), granulocytes (CD66+) or from hematopoietic progenitor cells (HPC, CD34+). For example cord blood #45 has 305 genome equivalent of maternal cells per
million (gEq/106) of total cells in whole cord blood and this same cord blood sample has 451 gEq of maternal cells per million of cord blood sorted T cells.
April 2021 | Volume 12 | Article 651399
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Moreover, CB with the highest quantities of MMc (See
statistical methods) were those for which there was a greater
feto-maternal HLA-A and/or DRB1 compatibility from the
child’s perspective (Figure 3B, p=0.0072 Fisher’s exact test 2x4).

Differences in CB Hematopoietic Cell
Composition Between Cord Blood Positive
or Negative for MMc
Finally, we asked whether the presence of MMc in cord blood
samples could have an influence on their hematopoietic cell
composition. Cord blood units positive for MMc consistently
trended toward containing more T cells (CD3+ in general, or
specifically CD4+ and CD8+ cells), granulocytes (CD66+),
monocytes (CD16+), NK cells (CD56+ or CD16+/CD56+), but
were only significantly enriched in CD56+ cells compared to CB
units negative for MMc (Figure 4). An inversed tendency,
although not significant, was observed for B cells, being
enriched in CB negative for MMc.
DISCUSSION

Since the first successful umbilical cord blood transplantation in
1989 to treat a child suffering from severe Fanconi anemia (26),
allogeneic hematopoietic stem cells from CB samples have
Frontiers in Immunology | www.frontiersin.org 5
increasingly been used as a curative treatment for many cancers
and inherited non-malignant diseases (27). CB transplantation
requires less stringent donor/recipient HLA matching than other
sources of hematopoietic stem cells, which is a strong advantage,
knowing that almost three quarters of patients do not have an HLA-
matched alternative source (28). From a practical point of view, CB
samples have also the advantage to be easily cryopreserved and
banked. Because the most serious issue in cord blood banking is the
cost, it remains to be seen on what criteria some should be stored
rather than others (29).

Over sixty years ago, several authors had demonstrated, by
tagging, prior to delivery, maternal erythrocytes with radioactive
elements, that maternal cells could cross the placenta and be
found in infant’s peripheral blood or in CB units (30). Since then,
the presence of nucleated maternal cells in CB samples has been
studied with non-invasive methods, thanks to PCR assays among
others, and MMc is obviously a common phenomenon in CB
samples (7, 10, 12–14, 31–34).

The current study has the particularity to test MMc from
primigravid women. We showed that 33% of CB contained MMc
in whole blood and the frequency was up to 55% when looking
for its presence in whole blood and/or at least one of the T, B,
granulocyte or hematopoietic progenitor cell subsets. Compared
to the most recent studies using real time PCR assays (12, 13),
our results are slightly lower than those obtained by Kanaan et al.
(12) (52.9% in whole blood and 85.2% in any cell subset), but
higher than those obtained from Kanold et al. (13) who showed
only 11% of CB being positive for MMc even when testing cell
subsets. Differences are likely coming from sensitivity of the Q-
PCR assays. Kanaan et al. used the same highly sensitive panel of
HLA-specific QPCR assays we previously developed to target
NIMA (23), while Kanold et al. used sequence polymorphism
systems having less sensitivity (0.01%) (13). Another very likely
influence, could be gravidity of women from whom CB were
tested. Although the pregnancy history was not always provided
in previous reports, to our knowledge, this is the only study
testing CB only from primigravid women. This arbitrary choice
was i) to avoid any other confounding source of Mc (i.e. from an
older brother or sister passing through maternal flow), ii)
because primigravidity is a recommended criteria for CB
transplantation as CB from primigravid women are associated
with larger blood volume and higher cellular content, pledge of
transplantation success (35).

Importantly and contrary to what was initially thought, CB
samples carrying maternal Mc are likely to be a better option for
transplantation, as graft-versus-leukemia effect may be mediated
by maternal cells (16). For 37% of CB samples, MMc was found
in T lymphocytes, in agreement with recently described greater
MMc quantities in memory T cells (12). Nevertheless, MMc was
not quantitatively higher in any particular cell subset and was
found across all subsets tested. MMc was found among sorted
HPC (CD34+) in 4/34 CB, with levels reaching up to 0.3% of
maternal CD34+ cells in one CB. Giving that adequate CD34+
cell doses in CB transplantation for hematologic malignancies
has been evaluated at ≥1,5 x105/kg (2), using such maternally
enriched CD34+ cell CB as the one described here, would mean
FIGURE 2 | Maternal serological pregnancy-associated protein A (PAPP-A)
concentrations are predictive of the presence or not of maternal Mc in CB
samples. Cord blood samples are separated into two groups, positive or
negative for maternal Mc in whole blood, and both groups analyzed for
serological PAPP-A concentrations of the mother at first trimester. PAPP-A
concentrations are significantly higher in the positive group than in the
negative group (Mann Whitney test, p=0.018, with mean concentrations of
1.41 and 1.01 MoM, respectively). Mean concentrations are indicated with
red lines and standard deviations with black lines.
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that a 70kg adult recipient would receive a non-negligible
amount of 3,000 maternal CD34+ cells. As expected, CB
samples being highly positive for MMc in whole blood were
systematically positive in cell subsets, which may provide a
practical advantage for rapid screening of MMc in CB.

Two biological and immunological parameters were
significantly correlated with the presence and quantity of
MMc: maternal serum PAPP-A concentration at first trimester
and feto-maternal HLA-A and DRB1 compatibility.

PAPP-A (or papalysin 1) is a secreted metalloproteinase
produced by the fetal syncytiotrophoblast cells and
subsequently released in the maternal circulation. PAPP-A
activates the insulin-like growth factor (IGF) pathway (36) and
is an important protein in promoting decidual vascularization
(37). Decreased first trimester PAPP‐A concentrations are a
predictor of adverse pregnancy outcome, with a significant
reduction of the placental volume and its vascularization (38).
Conversely, high levels of PAPP-A have generally no pregnancy
consequences, except cases of placenta accretes (39). We showed
that high levels of maternal serum PAPP-A concentrations at
Frontiers in Immunology | www.frontiersin.org 6
first trimester were significantly predictive of the presence of
MMc at delivery in whole cord blood. Such correlation, never
reported before, seems to indicate that the pressure exerted on
the maternal vascular system by fetal trophoblast cells secreting
large amounts of PAPP-A promotes feto-maternal exchange
resulting in higher quantities of MMc in CB and possibly in
the child’s circulation.

Maternal-fetal histocompatibility has been one of the first
proposed factor to regulate the presence and quantities of
naturally occurring maternal cells in the progeny. It comes
from observations in the field of transplantation, where the
HLA relationship between donor and recipient is of
importance as chronic GvHD is more likely when the donor is
homozygous for an HLA allele for which the recipient is
heterozygous, giving compatibility from the recipient’s
perspective. Indeed, when testing MMc in whole blood samples
from 30 informative second- and third-trimester fetuses, Berry
et al. showed that MMc in fetal blood was associated with
maternal HLA-DRB1 and/or DQB1 compatibility from child’s
perspective (40). However, no such study has been done in cord
A

B

FIGURE 3 | Feto maternal HLA-A, B and/or DR compatibility and presence of maternal Mc in CB samples. (A) Qualitative analyses of HLA-A, B and/or DR
compatibility from the child’s perspective with the presence or not of maternal Mc in CB samples. Cord blood samples are separated into negative or positive for
MMc in whole blood. The frequency of HLA-A, -B and DR compatible (in red) or incompatible (in grey) CB samples from the child’s perspective is calculated in each
group. P values are calculated by comparing compatibility frequencies between negative and positive samples (Two-tailed Fisher’s test 2x2). P values < 0.05 are
noted *. (B) CB with the highest quantities of maternal Mc are those for which there is a greater feto-maternal HLA-A and/or DRB1 compatibility from the child’s
perspective. Cord blood samples are separated into negative, slightly positive, moderately positive or highly positive for MMc. Slightly positive samples had a mean of
MMc per subset tested inferior or equal to 10gEq/106, moderately positive samples had a mean of MMc per subset tested comprised between 10 and 100 gEq/106
and highly positive samples a mean superior to 100gEq/106. The frequency of HLA-A and/or DR compatible (in red) or incompatible (in grey) CB samples from the
child’s perspective is calculated in each group. P value is calculated by comparing compatibility frequencies between negative and the three categories positive
samples (P= 0.002, Two-tailed Fisher’s test, 2×4).
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blood because mothers are rarely HLA typed. Similarly to what
was found in fetuses, our results showed that high levels of
maternal Mc in cord blood were associated with maternal
compatibility from the child’s perspective at the HLA-DRB1
loci, but also the HLA-A loci.

Compatibility from the child’s perspective leads to a capacity
of maternal (donor) lymphocytes to evade HLA-mediated
immune detection by the child (host), but a preserved ability
of maternal (donor) lymphocytes to recognize and react to host
tissues. Interestingly, child-to-mother HLA-A compatibility has
been previously found in children with Biliary Atresia (BA), an
inflammatory cholangiopathy, for which high levels of MMc
have been identified in the livers of patients (41, 42). This
suggests that the particular HLA relationship of patients with
BA with their mothers may result in an increase in MMc. It
remains to be seen whether such an HLA relationship
dangerously increases the maternal-fetal exchange to the point
of later triggering an autoimmune disease in the recipient. Yet,
two recent studies investigated whether MMc measured in cord
blood could predict the risk of future celiac disease or type 1
diabetes in children but did not find an association (43, 44).

Finally and importantly, we asked whether the presence of MMc
in cord blood samples could have an influence on the hematopoietic
composition of fetal cells. We found that CB samples positive for
MMc had an enriched composition of immune fetal cells, in
particular CD56+ cells compared to CB negative.

CD56 is the phenotypic marker of natural killer cells (NK
cells). Interestingly, CB units with higher doses of nucleated cells
have been associated with faster engraftment and better overall
Frontiers in Immunology | www.frontiersin.org 7
survival (2, 29). Moreover, NK cells are known to be the main
effector for GVL reactions early after hematopoietic stem cell
transplantation and are enriched in umbilical cord blood
compared to peripheral blood (45). It is to note that if a CB
sample carrying maternal Mc is enriched in CD56 positive cells it
does necessary mean that the CD56+ cell subset is enriched in
maternal cells. On the contrary, the increased number of CD56+
cells in CB positive for MMc is unlikely coming from MMc itself
because of their small number, but rather, MMc could influence
the number of CD56+ fetal cells. Supporting this hypothesis, in a
previous study from Kanaan et al., maternal cells were not
increased in the NK subset (12).

Although CD56 is the surface antigen that characterizes NK
cells, it can also be expressed by many more immune cells,
including alpha beta T cells, gamma delta T cells, dendritic cells,
and monocytes (46). Thus, it would be interesting to further
analyze, with other surface markers and gating strategies, which
particular cell fraction is increased among the CD56 positive cells
in CB positive for MMc.

Another important subset to analyze, in a context of maternal
cells, would be the regulatory T cells. Indeed, Mold et al. reported
that the human fetal immune system generates regulatory T cells
(CD41CD25highFoxP3Tregs) that suppress fetal immune
responses to maternal antigens, and that this tolerance persists
at least until early adulthood (47).

In conclusion, we have identified factors predicting the presence
of maternal cells in CB samples; we have a better understanding of
the immune composition of CB samples in the context of maternal
cells. These findings are important issues for CB banking strategies.
FIGURE 4 | Differences in cord blood hematopoietic cell composition between cord blood positive or negative for MMc. Cord blood are separated into positive for
MMc (black circles) or negative for MMc (grey circles) and their respective percentage of different cell types evaluated. The following combinations of fluorescent
antibodies are used to define the different cell populations: anti CD20-VioBlue® for B cells, CD3-FITC for T cells, CD4-(VIT4)-FITC and CD8-PE for T helper or
cytotoxic T cell subsets respectively, CD66abce-APC for granulocytes, CD16-PE and/or CD56-APC for NK cells, CD3-FITC/CD16-PE/CD56-APC for NKT cells,
CD45-VioBlue® for all leukocytes and CD34-PE for hematopoietic progenitor cells. P values <0.01 are noted **.
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Indeed, clinical practice may be improved by selecting CB from
women with elevated PAPP-A concentrations and/or issued from
HLA-compatible pairs, to increase the chances of obtaining aMMc-
enriched CB, pledge of transplantation success.
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