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INTRODUCTION
Liver cancer causes a staggering amount of morbidity and 

mortality worldwide, with more than 900,000 newly diagnosed 
cases each year and more than 800,000 deaths (1). In the United 
States, liver cancer is one of the few cancers that has shown an 
increase in incidence and mortality over the last 20 years. Ninety 
percent of cases of liver cancer are hepatocellular carcinoma 
(HCC), and survival is highly dependent on the stage of the 
disease at diagnosis. The five-year survival rate is 34% when the 
cancer is localized (44% of patients), 12% when regional (27% 
of patients), and 3% when a distant disease is found (18% of 
patients; ref.  2). There is a large, well-defined population that 
is at significantly increased risk for HCC, including individuals 
with chronic hepatitis B (HBV) infection or with cirrhosis from 
various causes including hepatitis C (HCV; ref. 3), nonalcoholic 
fatty liver disease (NAFLD; ref.  4), heavy alcohol use (5), afla-
toxin, and other conditions (6). Worldwide, there are 350 million 
individuals with chronic viral hepatitis infection and 50 million 

with cirrhosis (7). In the United States, 4.5 million individuals 
have chronic HCV and 29 million have been diagnosed with 
NAFLD. Up to one third of those with cirrhosis and between 
25% and 40% with HBV will develop HCC over their lifetime, 
with an up to 8% annual risk for patients with cirrhosis (8). A 
growing group of individuals at risk for liver cancer, including 
29 million in the United States, have NAFLD, and 20% of the 
HCC that develops in this population occurs without cirrhosis 
(9). Medical societies throughout the world recommend screen-
ing for the highest risk populations, currently with abdominal 
ultrasound imaging with or without alpha-fetoprotein (AFP). 
Overall adherence to international guidelines, however, remains 
low, with less than one in five eligible individuals worldwide 
receiving some level of surveillance and less than 2% following 
recommended screening (10–12). Many factors contribute to 
low adherence to screening guidelines, including the identifica-
tion of high-risk individuals, the requirement of infrastructure, 
and personnel needed for imaging-based screening methods 
(11). Current screening tests that include ultrasound imaging, 
with or without AFP, have shown limited sensitivity, varying 
from 47% to 84% with specificities from 67% to over 90% (13). 
Additionally, the lack of noninvasive diagnostic approaches for 
NAFLD suggests that the population not currently covered by 
HCC screening recommendations is increasing. Therefore, there 
is a great need for the development of accessible and sensitive 
screening approaches for HCC worldwide.

One recent avenue for overcoming these challenges has been 
the development of novel blood-based cell-free DNA (cfDNA) 
biomarkers for the detection of cancer. Somatic mutation–based 
approaches have been used as biomarkers for liver cancer but are 
limited by the need for tissue-based mutation identification and 
by the few changes detectable in plasma (14). Methylation pro-
filing, both at specific sites and throughout the whole genome, 
and copy-number changes have also provided feasible avenues 
for the detection of liver cancer, but their detection sensitivities 
in very early-stage disease remain suboptimal (15–20). Recently 
developed multicancer early detection tests appear useful for 
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approximately 2.4 Gb of the genome using the DELFI approach 
(23). The fragmentation profiles were consistent among indi-
viduals without cancer but highly variable among patients with 
HCC (Fig. 1A). Profiles of patients with cirrhosis were closer to 
noncancer individuals without cirrhosis than they were to those 
from patients with HCC (Fig. 1A). Likewise, patients with viral 
hepatitis had fragmentation profiles nearly identical to those of 
noncancer individuals without liver disease (Fig. 1A).

To examine the origins of cfDNA fragmentation patterns, 
we compared genome-wide fragmentome profiles with high-
throughput sequencing chromosome conformation capture 

the detection of many cancers (including liver cancer) in an 
average-risk cohort (21), but there are no published reports of 
using these approaches in a population at high risk of HCC. 
Additionally, the cost of most cfDNA-based tests is much higher 
than estimates of what would be affordable for screening tests 
in the United States and worldwide (21). Combining these 
approaches with AFP has increased performance but requires 
two separate tests and still has limitations in early-stage disease 
(22). We have previously developed an approach called DNA 
evaluation of fragments for early interception (DELFI) that 
utilizes genome-wide fragmentation profiles to provide a high-
performing and cost-effective approach to cancer detection (23, 
24). Zhang and colleagues applied a variation of this approach to 
evaluate noninvasive detection of liver cancer in China, but the 
underlying source of fragmentation changes in these patients 
was not explored (25). Fragmentation and methylation informa-
tion has also demonstrated the ability to differentiate patients 
with liver cancer from those without cancer (26), although 
such an approach requires two distinct methods of cfDNA 
library preparation and analysis. To date, no study has validated 
genome-wide approaches for detecting HCC in independent 
groups or across different high-risk populations.

Here we describe the development of a genome-wide frag-
mentome approach to detect individuals with liver cancer. 
We examine the molecular origins of cfDNA in these patients 
and identify genomic and chromatin features associated with 
fragmentation changes. Finally, we use this approach to 
detect liver cancer in the US population and validate this 
model in a separate Hong Kong cohort.

RESULTS
Clinical Cohorts and Genomic Analyses of cfDNA

We examined plasma samples from 501 individuals, includ-
ing 75 individuals with HCC and 426 without cancer. Among 
individuals without cancer, 133 had conditions that increased 
HCC risk, including cirrhosis from all causes or viral hepatitis 
without cirrhosis. Blood samples were prospectively collected 
from patients with HCC at various cancer stages and from high-
risk individuals at the Johns Hopkins Hospital, whereas the 
remaining samples were identified through screening efforts at 
other US or EU hospitals (US/EU cohort; Table 1; Supplemen-
tary Table S1). We isolated 0.5 to 5 mL of plasma from each of 
these individuals, generated genomic libraries, and sequenced 
the cfDNA fragments using low-coverage whole-genome 
sequencing (∼2.6× coverage) with an average of 49 million high-
quality paired reads per sample comprising 9 Gb of sequence 
data (Supplementary Table  S2; refs. 23, 24). In addition to 
the US/EU cohort, we examined as a validation cohort whole-
genome sequence data from 223 patients from Hong Kong, 
including patients with resectable early-stage HCC (n = 90, stage 
A = 85, B = 5), HBV (n = 66), and HBV-related cirrhosis (n = 35), 
as well as healthy individuals without liver disease (n = 32; Hong 
Kong cohort; Table 1; Supplementary Table S3; refs. 15, 27).

Genome-wide cfDNA Fragmentation Profiles 
Informed by Underlying Chromatin Structure

We evaluated the fragmentome and generated fragmentation 
profiles across the genome in 473 nonoverlapping 5-Mb regions, 
each region comprising  ∼80,000 fragments, and spanning 

Table 1. Patient demographics and clinical information

Patient 
characteristic

Noncancer 
individuals 
n = 426

Cancer 
patients 
n = 75 P valuea

Age
 Mean 57.5 64.5 <0.001
 Range 27–81 38–88
Sex
 Male 235 63 <0.001
 Female 191 12
Liver disease
 None 293
 Hepatitis B 26 1
 Hepatitis C 29 1
 Cirrhosis 78 69 <0.001
  HCV 53 41
  HBV 2 4
  EtOH 13 12
  NAFLD 3 11
Child–Pugh stage
 A 20 49 <0.001
 B 10 21
 C 10 5
 Unknown 38
BCLC stage
 0 7
 A 17
 B 30
 C 21
Previous treatment
 Yes 28
 No 47
Validation cohort 

(Hong Kong)b
133 90

Liver disease
 None 32
 Cirrhosis (HBV) 35 90
 Active HBV 66
BCLC stage
 A 85
 B 5

Abbreviations: BCLC, Barcelona Clinic Liver Cancer staging system; 
EtOH, alcohol associated.
aP values were calculated to compare data from individuals with 
and without liver cancer for the following variables: mean ages 
using Student unpaired two-tailed t tests, sex distribution, cirrhosis 
etiology, and Child–Pugh stage using a χ2 test.
bValidation cohort data were obtained from Jiang et al. (15).
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Figure 1.  Genome-wide fragmentation profiles reflect underlying chromatin structure. A, Fragmentation profiles of 501 individuals in 473 nonover-
lapping 5-Mb genomic regions. Fragmentation profiles for individuals with cancer show marked heterogeneity as compared with noncancer individuals 
with and without liver disease. B, Comparison of plasma fragmentation features to reference A/B compartments. Track 1 shows A/B compartments 
extracted from liver cancer tissue (28). Track 2 shows a median liver cancer component extracted from the HCC plasma samples of 10 liver patients with 
high tumor fraction by ichorCNA (56). Track 3 shows the median fragmentation profile in the plasma for these 10 HCC samples, and track 4 shows the 
median profile for 10 healthy plasma samples. Track 5 shows A/B compartments for lymphoblast cells (28). These five tracks show chromosome 22 as an 
example, with darker shading indicating informative regions of the genome where the two reference tracks differ in domain (open/closed) or magnitude. 
C, Among these informative bins, for each chromosome, the log odds of the plasma component matching the HCC reference track in domain. Log odds 
greater than 1 indicate more similarity to the HCC reference track, whereas log odds less than 1 indicate more similarity to the lymphoblast reference 
track. The extracted HCC component has the greatest similarity to the HCC reference track, and the noncancer plasma has the greatest similarity to the 
lymphoblast reference track; the HCC plasma track is intermediate to the two.
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(Hi-C) open (A) and closed (B) compartments. We found 
that cfDNA patterns of healthy individuals were highly cor-
related to those of lymphoblastoid cells (Fig. 1B). Analysis of 
cfDNA profiles from 10 HCC patients with high ctDNA levels 
revealed that their fragmentome reflected two components: 
one resembling the profile of individuals without cancer and 
a separate cfDNA component that had high similarity to 
A/B compartments previously estimated from liver cancers 
(Fig.  1B; ref.  28). Additionally, when these two components 
were estimated, the cfDNA profiles of the predicted liver com-
ponent had high similarity to genome-wide A/B compart-
ments of liver cancer, whereas the profiles of patients with 
HCC were intermediate in similarity to liver cancer (Fig. 1B 
and C). In contrast, the profiles of individuals without cancer 
were closer to A/B compartments of lymphoblastoid cells 
(Fig.  1B and C). These analyses suggested that cfDNA frag-
mentomes from individuals with HCC represent a mixture 
of cfDNA profiles of chromatin compartments of cells from 
peripheral blood as well as those from liver cancer.

Disease-Specific Transcription Factors Inferred 
from Genome-wide cfDNA Fragmentation

As chromatin organization reflects underlying cellular 
transcriptional programs (29–31), we examined whether 
cfDNA fragmentation characteristics might reflect changes 
derived from altered DNA binding of transcription fac-
tors (TF) in liver cancer. To identify DNA binding sites 
for all known TFs, we analyzed 5,620 chromatin immuno-
precipitation sequencing (ChIP-seq) experiments from the 
ReMap 2020 database (32). For each TF, we calculated the 
aggregate cfDNA coverage across all binding sites identified 
(4,000–490,000 per sample) compared with the overall adja-
cent genomic coverage, producing a single metric for each 
TF in each sample. We compared these TFs in patients with 
and without HCC to identify those TFs with the largest and 
smallest differences in genome-wide binding site coverage in 
cfDNA (Fig. 2A and B). Gene set enrichment analyses using 
the DisGeNET database of gene–disease associations revealed 
that differences in cfDNA TF binding coverages between 
individuals with HCC and individuals without cancer were 
predicted to be related to liver and other cancers (Fig.  2C 
and D). Additionally, the top-scoring individual TFs repre-
sented those with known biological relevance to chromatin 
organization and liver cancer, whereas the low-scoring TFs 
did not (Table 2; Supplementary Table S4). These included 
members of the activator protein 1 (AP1) complex, including 
JUN, JUND, ATF2, and ATF7 genes, which integrate extracel-
lular signals (33) and have been linked to liver tumorigenesis  
(34, 35); Transcriptional Enhancer Factor Domain Fam-
ily member 4 (TEAD4), which has been shown to have 
oncogenic roles in HCC (36, 37); Poly(C)‑binding protein 
2 (PCBP2) transcriptional coregulator, which when overex-
pressed is associated with a worse prognosis in patients with 
HCC (38); Prohibitin 2 (PHB), which promotes progression 
in HCC (39); and AT-rich interacting domain 3A (ARID3A), 
an oncogenic TF that when upregulated promotes liver can-
cer malignancy (40). A similar analysis of cfDNA fragmenta-
tion data from our recent study of patients in the LUCAS 
lung cancer diagnostic trial (23) revealed an enrichment of 
coverage differences in binding sites of TFs related to lung 

cancer (Fig.  2C and E). Altogether, these observations sug-
gest that changes in cfDNA fragmentation in patients with 
liver and other cancers result from the multitude of altered 
transcriptional profiles present in the cancer cells.

Genomic Changes in HCC Are Revealed from 
cfDNA Fragmentomes

As the cfDNA fragmentome may comprise changes related 
to large-scale genomic alterations released from cancer cells 
(23, 24), we also examined chromosomal gains and losses in 
the circulation of these patients. In addition to the genome-
wide fragmentation profiles resulting from chromatin and 
TF changes observed in patients with liver cancer (Fig.  3A), 
our analyses revealed an altered representation of chromo-
somal arms matching those commonly gained or lost in 
liver cancer as reported in previous The Cancer Genome 
Atlas (TCGA) large-scale genomic studies of HCC (n =  372; 
Fig. 3B). These included increased cfDNA representation of 
1q, 7p, 7q, and 8q and decreased levels of 4q, 8p, 9p, 13q, 
and 21q, all known to be gained or lost, respectively, in HCC 
(41, 42). Importantly, these alterations were observed in the 
patients with HCC but not in individuals without cancer, 
even if they had cirrhosis or chronic liver disease (Fig. 3B).

DELFI Model for HCC Detection
Given the direct connection between genomic and chro-

matin changes in liver cancer and cfDNA fragmentation, we 
used a machine learning approach to determine if changes 
in cfDNA fragmentomes could distinguish patients with 
HCC from those without cancer. We previously used this 
approach to develop a robust classifier for lung cancer 
detection that was externally validated in an independent 
population (23). We determined the performance of this 
classifier in the US/EU cohort by repeated 5-fold cross-
validation, generating a score for each individual that is an 
average over 10 cross-validation repeats (DELFI score). The 
resulting model included a combination of regional and 
large-scale fragmentation characteristics that were optimal 
for identifying individuals with liver cancer (Supplementary 
Fig.  S1; Fig.  3C). These features comprised the majority of 
the informative chromosomal, chromatin, and local changes 
identified above, comprising  >90% of the variance of the 
fragmentation profiles across samples.

As clinical characteristics may affect tumor biomarkers, we 
investigated whether measures of liver dysfunction or demo-
graphic parameters such as age, sex, race, or weight were asso-
ciated with DELFI scores in individuals without cancer where 
this information was available (Supplementary Table S1). We 
observed no association of DELFI scores with age (R = 0.18, 
P = 0.08, Spearman correlation; Supplementary Fig. S2A) and 
no difference in DELFI scores between males and females 
(P  =  0.58, Wilcoxon test; Supplementary Fig.  S2B). Asians 
and African Americans have been shown to have a higher 
incidence of liver cancer that is diagnosed at later stages (43), 
and we observed small differences in fragmentation scores 
among high-risk individuals without cancer across these or 
other racial or ethnic groups, although these analyses are 
limited by lack of information on clinical covariates in some 
of these cases (P = 0.037 in patients with viral hepatitis and 
P  =  0.026 in patients with cirrhosis, Kruskal–Wallis test; 
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Figure 2.  Fragmentation profiles in patients with HCC highlight liver-specific TFs. A, The coverage at and around the TF binding sites (TFBS) for the 
9 TFs for which the relative coverage at the binding site had the highest separation of HCC from noncancer samples. The mean is plotted for each group, 
with ± 1 SD shown by shading. These confidence intervals (CI) show separation, highlighting that differences in coverage at a TFBS can provide informa-
tion on cancer status. B, The coverage at and around the TFBS for the 9 TFs that had the lowest separation of HCC from noncancer samples in the US/EU 
cohort. These CIs are largely overlapping, reflecting their status as TFBS with poor discrimination. (continued on next page)
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Supplementary Fig. S3). Among individuals with cirrhosis, we 
observed a correlation between the degree of liver disease as 
measured by the Child–Pugh score and DELFI scores (R = 0.58 
P  =  8.6e−5, Spearman correlation; Supplementary Fig.  S4). 
Increased body mass index (BMI), a risk factor for NAFLD and 
liver cancer, was not associated with changes in DELFI scores 
in patients with viral hepatitis (R = 0.027, P = 0.85, Spearman 
correlation); however, lower BMI in patients with cirrhosis was 
associated with higher DELFI scores, perhaps due to cachexia 
in patients with severe cirrhosis (R = −0.23, P = 0.043, Spear-
man correlation; Supplementary Fig. S5).

We next examined the relationship between DELFI scores 
and the presence and stage of liver cancer in a population at 
high risk for liver cancer. The DELFI scores for 133 individu-
als who were cancer-free were low, with median DELFI scores 
of 0.078 or 0.080 for those with viral hepatitis or cirrhosis, 
respectively. In contrast, the 75 patients with HCC had sig-
nificantly higher median DELFI scores across all Barcelona 
Clinic Liver Cancer staging system (BCLC) stages, including 

stage 0 = 0.46, stage A = 0.61, stage B = 0.83, and stage C = 0.92 
(P  <  0.01 for stages 0, A, B, or C, Wilcoxon rank sum test; 
Fig. 4A). A receiver operator characteristic (ROC) curve of the 
DELFI approach to identify patients with HCC revealed an 
area under the curve (AUC) of 0.90 [95% confidence interval 
(CI), 0.86–0.94] among high-risk individuals (Fig.  4B). Per-
formance remained robust for early-stage HCCs, with AUCs 
of 0.9 and 0.81 for BCLC stage 0 and A. Individuals with 
advanced-stage HCC (BCLC C) were almost perfectly detected 
among the individuals analyzed (AUC > 0.97; Fig. 4C).

To extend these analyses to individuals at low risk for devel-
oping liver cancer, we examined the ability of a DELFI model 
to distinguish between individuals with cancer and those from 
a general population (n  =  293) without viral hepatitis or cir-
rhosis. In this larger cohort where additional features could 
be included in cross-validated training, we used the features 
of the model above and also included cfDNA coverage at 
ChIP-seq–derived TF binding sites from liver cell lines available 
in the ReMap database to create a DELFI model for a general 
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Figure 2. (Continued) Gene set enrichment analysis of TFs analyzed in both HCC and lung adenocarcinoma showed TFs are selectively enriched in 
numerous pathways related to liver and lung cancer, respectively (C), including adult liver carcinoma and adenocarcinoma of the lung (D and E).
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population (Fig. 3C). This approach had high performance for 
cancer detection (AUC  =  0.98) among these individuals. We 
evaluated the performance of this model at 98% specificity, a 
threshold appropriate for an average risk population (24), and 
observed an overall sensitivity of 88% in this setting (Fig. 4B), 
with sensitivity above 75% across all stages. Use of a model that 
did not incorporate TF binding sites led to a slightly reduced 
performance, and there was a high correlation among the 
rank-ordered scores using our DELFI models for high-risk and 
screening populations (R = 0.48, P = 2e−5; Supplementary Figs. 
S6A, S6B, and S7).

To examine the relationship between fragmentation profiles 
and liver cancer progression, we assessed whether the size, 
number, and characteristics of liver cancer lesions as well as the 
etiology of neoplasia were related to aberrant fragmentation 
profiles, where this information was available. We found that 
the tumor size and lesion number were positively correlated to 
DELFI scores (R = 0.42 and 0.31, P = 0.00026 and P = 0.0064, 
respectively, Spearman correlation; Supplementary Fig.  S8A 
and S8B), consistent with the notion that the fragmentation 
profile was related to overall tumor burden. Among patients 
with liver cancer at resectable stages (0, A, and B), the cancer 
etiology, including viral hepatitis, or cirrhosis due to alco-
hol, NAFLD, or idiopathic sources, yielded similar DELFI 
scores (P = 0.43, Kruskal–Wallis test; Supplementary Fig. S9). 
These observations suggest that fragmentation profiles were a 
result of ongoing tumor-related cfDNA processes and were not 
affected by early events in tumorigenesis.

To examine the real-world impact of this method in the 
context of HCC detection, we compared the performance of the 
DELFI fragmentome with the current screening measurement 
of AFP levels. AFP levels were elevated above the recommended 
screening threshold of 20 ng/mL in 39 of 75 (52%) individuals 

with cancer, consistent with previous reports (44). Among indi-
viduals that had AFP levels below 20 ng/mL and who have been 
undetected by this approach, DELFI detected 30 of 36 (83%). 
The use of AFP measurements would have detected 8/24 (33%) 
stage 0/A patients, 17/30 (57%) stage B patients, and 14/21 
(66%) stage C patients (Supplementary Fig. S10). In contrast, the 
DELFI approach detected 19/24 (79%) stage 0/A patients, 25/30 
(83%) stage B patients, and 20/21 (95%) stage C patients. Over-
all, genome-wide cfDNA fragmentation analyses had improved 
performance compared with AFP detection of HCC, and the 
combination of DELFI and AFP may provide an improvement in 
detection over the DELFI approach alone, as we observed these 
to have a combined sensitivity of 92% at a combined specificity 
of 80%.

External Validation of DELFI Model in an East 
Asian Population with HCC

In addition to our cross-validated analysis of the US/EU 
cohort, we tested the fixed DELFI model in the 223 patients 
from the Hong Kong cohort. These included patients who had 
largely resectable early-stage HCC (n = 90, stage A = 85, B = 5) 
and 101 with cirrhosis or HBV infection. These samples were 
sequenced previously using a different sequencer (HiSeq 2000 
vs. Novaseq; 76-bp vs. 100-bp read length), different library 
preparation, and a higher number of PCR cycles (14 vs. 4 
cycles), but we observed similar genome-wide patterns to our 
earlier analyses (Supplementary Fig. S11). The fragmentation 
profiles of patients with viral hepatitis and cirrhosis, as well as 
healthy individuals, had highly consistent profiles throughout 
the genome, whereas those of patients with HCC were variable 
and disordered (Supplementary Fig.  S12). Additionally, the 
chromosomal changes observed in plasma in the Hong Kong 
cohort were similar to those in the initial US/EU cohort, as well 

Table 2. Top scoring TFs in US/EU cohort samples

TF Gene name AUC

Cell type in 
ChIP-seq 
experiment Gene function Link to HCC

ZNF512 Zinc Finger Protein 512 0.836 K-562 Unknown Undescribed

ZNF184 Zinc Finger Protein 184 0.826 K-562 Unknown Undescribed
PCBP2 Poly(C)-binding protein 2 0.791 Hep-G2 Transcriptional 

coregulator
Overexpression contributes to poor prognosis 

and enhanced cell growth in HCC (38)
JUN Jun Proto-Oncogene, 

AP-1 Transcription 
Factor Subunit

0.785 Hep-G2 TF Promotes HBV-related liver tumorigenesis (59)

PHB2 Prohibitin 2 0.771 K-562 Transcriptional 
coregulator

Functions in mitophagy of HCC (39)

ATF2 Activating Transcription 
Factor 2

0.770 Hep-G2 TF, HAT Mediates suppression of liver tumor formation 
(34)

ATF7 Activating Transcription 
Factor 7

0.765 MCF-7 TF Regulates growth of liver cancer (60)

TEAD4 TEA Domain Transcription 
Factor 4

0.760 Hep-G2 TF Oncogenic role in HCC (36)

ARID3A AT-rich interacting domain 3A 0.756 Hep-G2 TF Facilitates liver cancer malignancy (40)
JUND JunD Proto-Oncogene, AP-1 

Transcription Factor Subunit
0.754 HT29_DSMO TF Involved in PARγ signaling and NAFLD 

development (61)
Abbrevation: HAT, histone acetyltransferase.
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Figure 3.  High-dimensional fragmentation features reflect liver cancer biology and are incorporated in DELFI machine learning approaches. A, A heat 
map reflecting the complexity of genome-wide fragmentation and TF binding site (TFBS) features utilized in the DELFI machine learning approach. Each 
row represents a sample, whereas columns show individual genomic features. (continued on following page)
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as the cancers from the TCGA (Supplementary Fig. S13). Over-
all, in this validation cohort, the DELFI model distinguished 
HCC patients with an AUC of 0.97 from those with high-risk 
disease (Fig. 4D). These observations suggest that the underly-
ing characteristics of cfDNA fragmentation were similar in this 
cohort, and that DELFI is a robust method to detect HCC and 
is generalizable across different high-risk populations.

Simulation of DELFI Performance at Population Scale
To evaluate how our approach would perform for surveillance 

and detection in patients at high risk for liver cancer, we evaluated 

the DELFI model in a theoretical population of 100,000 high-risk 
individuals using Monte Carlo simulations. Given the impor-
tance of the detection of early-stage cancers, we focused our 
modeling on the detection of stage 0/A disease. We compared the 
DELFI approach with the current standard of care, concurrent 
ultrasound, and AFP and modeled the uncertainty of sensitivity 
and specificity of these surveillance modalities in this theoretical 
population through probability distributions centered at empiri-
cal estimates from our cohort or previous reports (ref.  11; see 
Methods). Despite surveillance recommendations, the adherence 
to HCC surveillance in the United States is low, with the most 
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Figure 4.  DELFI machine learning models detect liver cancer with high sensitivity and specificity. A, DELFI scores for the US/EU cohort across liver 
disease and cancer stage for the screening and surveillance models. Patients with cirrhosis have DELFI scores higher than individuals without cancer or 
with viral hepatitis on average, but lower than all stages of liver cancer. Patients with liver cancer across all stages have relatively high DELFI scores, with 
stage C individuals uniformly having the highest DELFI scores. B, ROC analyses of the US/EU general population cohort and the high-risk surveillance 
cohort. C, ROC analyses of the US/EU general population and surveillance cohorts separated by BCLC stage, showing high sensitivity and specificity 
across stages. D, ROC analyses for the fixed surveillance model applied to the Hong Kong cohort, which includes 90 individuals with HCC (85 with BCLC 
stage A cancer, and 5 with BCLC stage B cancer), 101 individuals with cirrhosis and viral hepatitis, and 32 individuals without cancer or liver disease.
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generous estimates suggesting 39% adherence (45), resulting in 
an average of 40,042 individuals tested in this theoretical popula-
tion (95% CI, 21,320–61,890). As blood tests offer high accessibil-
ity and compliance, with adherence rates of 80% to 90% reported 
for blood-based biomarkers (46, 47), we conservatively assumed 
an average of 75% (95% CI, 60%–90%) of this population would 
be tested using the DELFI approach. As the prevalence of cirrho-
sis, viral hepatitis, and the co-occurrence of these comorbidities 
with HCC could vary by region, we used a prior probability dis-
tribution to reflect our uncertainty of the composition of these 
diseases and possible regional differences. Monte Carlo simula-
tions from these probability distributions (Methods) revealed 
that ultrasound with AFP detected an average of 2,233 (95% 
CI, 1,088–3,699) individuals with liver cancer. Using DELFI, we 
would detect on average 2,794 additional liver cancer cases, or 
a 2.46-fold increase (95% CI, 1.25–4.57-fold increase), compared 
with ultrasound with AFP alone (Supplementary Fig.  S14A 
and S14B). The DELFI approach would not only substantially 
improve the detection of liver cancer but would be expected to 
decrease the false-negative rate, or fraction of cancers missed at 
testing, from 38% for ultrasound with AFP (95% CI, 25%–51.5%) 
to 24% for DELFI (95% CI, 9%–42.6%). Additionally, the negative 
predictive value of the test (NPV) would be expected to increase 
from 95.7% for ultrasound with AFP (95% CI, 93.8%–97.3%) to 
97.1% for DELFI (95% CI, 94.8%–99.0%; Supplementary Fig. S14C 
and S14D). These analyses suggest a significant population-wide 
benefit for using a high-specificity blood-based early detection 
test as a tool for the detection of liver cancer.

DISCUSSION
Overall, in this study, we demonstrate the use of genome-

wide cfDNA fragmentome features to detect HCC with high 
sensitivity and specificity. Furthermore, we show that the 
fragmentation profiles capture genomic and chromatin char-
acteristics, including alterations known to be important in 
HCC. Our cfDNA fragmentome approach has robust perfor-
mance in detecting HCC, including very early-stage disease, 
independent of disease etiology. To our knowledge, this is 
the first genome-wide fragmentation analysis that has been 
independently validated in a separate high-risk population, 
with stable and robust performance across different racial 
and ethnic groups from the United States and Hong Kong.

Our results also revealed that disease-specific TF signatures 
can be obtained through analysis of genome-wide cfDNA 
fragmentation profiles. Although such analyses have been per-
formed using specific TFs to distinguish small cell from non–
small cell lung cancers (23), this study suggests that analyses 
of disease-specific transcriptional regulation using genome-
wide cfDNA fragmentation may improve the detection and 
identification of the tissue of origin in patients with cancer. 
With sufficient numbers of patients, cfDNA transcriptional 
profiles could further improve machine learning algorithms 
to detect HCC and other cancers.

HCC is unique in comparison with other solid cancers in that 
there is a large, well-defined high-risk population with an aver-
age 3% to 4% annual risk of developing HCC (48) recommended 
to have routine cancer screening every 6 months. Unfortunately, 
currently available tests have limited diagnostic utility, espe-
cially for early-stage disease (13). In our study, AFP had 52% 

sensitivity in detecting HCC, consistent with the known per-
formance of this biomarker (13). Ultrasound-based surveillance 
also has technical limitations with its operator dependency 
and lower sensitivity in patients with cirrhosis and obesity (49). 
Most importantly, ultrasound has low compliance to estab-
lished guidelines, less than 20% worldwide (10, 11), compared 
with much higher adherence to blood tests for other conditions 
(46). Despite these challenges, HCC screening provides overall 
survival benefit in patients with HBV (50) and cirrhosis (10), 
highlighting the major need to improve current screening tests. 
The high performance of cfDNA fragmentome analyses in HCC 
detection, along with its cost-efficient characteristics, would 
allow DELFI to be an accessible screening test for HCC and to 
increase the screening rates beyond the currently dismal levels. 
An interesting aspect of cfDNA analysis specific to HCC is that 
transplantation is the most curative treatment for early to inter-
mediate stage HCC, and HCC surveillance of posttransplanta-
tion patients with a liquid biopsy approach could have a dual 
role in tracking recurrence and rejection, as studies of cfDNA in 
posttransplant patients have shown promise (51).

Although this study represents a potential improvement in 
current screening approaches, there are some limitations. For 
example, this study included a relatively small sample size of 
individuals with HCC. Although the independent validation 
cohort was performed with preanalytical differences in labora-
tory and sequencing methods, the fact that the DELFI approach 
performed well in this population suggests that the method 
will ultimately be able to be utilized in a range of different 
diagnostic laboratories. Larger validation studies will be needed 
before this approach can be useful clinically. Nevertheless, the 
observations that scalable and cost-effective noninvasive cfDNA 
fragmentome analyses can detect patients with liver cancer 
may provide an opportunity to screen high-risk and general 
populations worldwide.

METHODS
Study Population

For the US/EU cohort, samples from 208 patients, including 75 with 
HCC and 133 high-risk patients without HCC, were collected prospec-
tively as part of the HCC biomarker registry and the AIDS Linked to the 
IntraVenous Experience (ALIVE) study at the Johns Hopkins University 
School of Medicine under protocols approved by the Johns Hopkins 
Institutional Review Board. HCC was defined by histologic examina-
tion or the appropriate imaging characteristics as defined by accepted 
guidelines. Tumor staging was determined by the BCLC. Detailed clini-
cal data were extracted from the electronic medical record. High-risk 
patients were defined as individuals with cirrhosis from any etiology 
and/or individuals with chronic HBV or HCV who were recommended 
for routine HCC screening by expert society guidelines (49). In addition, 
we included 38 patients with HBV or cirrhosis retrospectively collected 
by BioIVT. AFP levels were quantified by partnering centers in their 
clinical laboratories using FDA-approved AFP tests.

The US/EU cohort also included samples from 293 individuals 
without cancer that were previously analyzed (23), originally from two 
screening clinical trial cohorts for colorectal cancer in Denmark (Endos-
copy III) and The Netherlands (COCOS, Netherlands Trial Register ID 
NTR182946). The protocol for the Endoscopy III Project was approved 
by the Regional Ethics Committee and the Danish Data Protection 
Agency; for the COCOS trial, ethical approval was obtained from the 
Dutch Health Council. The inclusion criteria for both the Dutch and 
the Danish cohorts were any individuals of age 50 to 75 eligible for 
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colorectal cancer screening. All patients used had either a negative fecal 
immunochemical test result or a negative colonoscopy result.

For the Hong Kong cohort, all recruited subjects gave written 
informed consent, and the study was approved by the Joint Chinese 
University of Hong Kong and New Territories East Cluster Clinical 
Research Ethics Committee (15, 27).

Sample Collection and Preservation
The sample collection was performed as follows: Venous peripheral 

blood was collected in one K2-EDTA tube and two serum gel tubes. 
Within 2 hours from blood collection, tubes were centrifuged at 2330 × g 
at 4°C for 10 minutes, plasma was transferred to new tubes, and the 
samples were spun at 14,000 rpm (18,000 rcf) for 10 minutes at room 
temperature to pellet any remaining cellular debris. After centrifugation, 
EDTA plasma was aliquoted and stored at −80°C for cfDNA analyses.

Sequencing Library Preparation
Circulating cfDNA was isolated from 2 to 4 mL of plasma using 

the Qiagen QIAamp Circulating Nucleic Acids Kit (Qiagen GmbH), 
eluted in 52 mL of RNase-free water containing 0.04% sodium azide 
(Qiagen GmbH), and stored in LoBind tubes (Eppendorf AG) 
at −20°C. Concentration and quality of cfDNA were assessed using 
the Bioanalyzer 2100 (Agilent Technologies).

Next-generation sequencing cfDNA libraries were prepared for 
whole-genome sequencing using 15 ng cfDNA when available or entire 
purified amount when less than 15 ng (Supplementary Table S5). In 
brief, genomic libraries were prepared using the NEBNext DNA 
Library Prep Kit for Illumina (New England Biolab) with four main 
modifications to the manufacturer’s guidelines: (i) the library puri-
fication steps followed the on-bead AMPure XP (Beckman Coulter) 
approach to minimize sample loss during elution and tube transfer 
steps; (ii) NEBNext End Repair, A-tailing, and adapter ligation enzyme 
and buffer volumes were adjusted as appropriate to accommodate on-
bead AMPure XP purification; (iii) Illumina dual index adapters were 
used in the ligation reaction; and (iv) cfDNA libraries were amplified 
with Phusion Hot Start Polymerase. All samples underwent a 4-cycle 
PCR amplification after the DNA ligation step.

Low-Coverage Whole-Genome Sequencing and Alignment
Whole-genome libraries of patients with cancer and cancer-free 

individuals were prepared as in ref. 23 with the modification that 
they were sequenced using 100-bp paired-end runs (200 cycles) on 
the Illumina NovaSeq platform at 1 to 2× coverage per genome. Prior 
to alignment, adapter sequences were filtered from reads using the 
fastp software (52). Sequence reads were aligned against the hg19 
human reference genome using Bowtie2 (53), and duplicate reads 
were removed using Sambamba (54). After alignment, each aligned 
pair was converted to a genomic interval representing the sequenced 
DNA fragment using bedtools (55). Only reads with a MAPQ score of 
at least 30 or greater were retained. Read pairs were further filtered if 
overlapping the Duke Excluded Regions blacklist (https://genome.
ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeMapability). To 
capture large-scale epigenetic differences in fragmentation across the 
genome estimable from low-coverage whole-genome sequencing, we 
tiled the hg19 reference genome into nonoverlapping 5-Mb bins. Bins 
with an average GC base content < 0.3 and an average mappability < 0.9 
were excluded, leaving 473 bins spanning approximately 2.4 Gb of the 
genome. Following Mathios and colleagues (23), GC correction was 
performed independently for short (<150 bp) and long (≥150 bp) 
cfDNA fragments using an external panel of 20 individuals without 
cancer sequenced on a NovaSeq to generate a target distribution.

Fastq files for patients in the Hong Kong cohort were obtained 
from The Chinese University of Hong Kong (CUHK) Circulating 
Nucleic Acids Research Group, as reported (ref. 15; #1645) and pro-
cessed as described above and in Mathios and colleagues, to generate 

the DELFI features. GC correction was performed by normalizing 
to the target distribution provided in https://github.com/cancer-
genomics/PlasmaToolsNovaseq.hg19, the same target distribution 
used for GC correction in the US/EU cohort. The validation set con-
sisted of libraries constructed with 14 cycles of PCR and sequenced 
on the HiSeq 2000. These libraries were normalized to the 4-cycle 
NovaSeq target distribution to facilitate comparisons between stud-
ies. One sample each from the cirrhotic and HBV groups were 
excluded, as they were identified to have an HCC diagnosis.

Chromatin Structure Analysis
A/B compartments for liver cancer tissue and lymphoblastoid 

cells were obtained from https://github.com/Jfortin1/TCGA_AB_ 
Compartments as well as from https://github.com/Jfortin1/HiC_
AB_Compartments as described previously (28). The two reference 
tracks were compared to identify informative 100-kb bins, defined 
as bins where the chromatin domain differed between the two refer-
ence tracks or the magnitude difference in eigenvalues corresponded 
to a z-score greater than 1.96 or less than −1.96 (P = 0.05) across all 
eigenvalue differences.

The median fragmentation profile for 10 liver samples with high 
estimated tumor fraction by ichorCNA (56) and 10 randomly selected 
individuals without cancer was calculated. This information was 
used to extract an estimated median liver component in the plasma 
weighted by the ichor score of the individual plasma samples.

Genome-wide TF Analyses
ChIP-seq peaks from 5,620 experiments were downloaded from the 

ReMap 2020 database (32). This set was filtered for experiments with 
more than 4,000 peaks, resulting in 4,293 experiments. For each peak 
in the autosomes, we defined the center of the peak as position 0.

The mean of the coverages at each position (−3,000 to  +3,000 with 
respect to the center of each peak) was computed across all peaks for 
each sample. For the ROC curves, relative coverage was computed for 
each sample as the mean coverage in a  ±100-bp window surrounding 
the center of the binding sites divided by the mean coverage in a ±250-bp 
window surrounding 2,750 bp upstream and downstream of the binding 
sites. The ROC curve was generated using pROC 1.16.2 (57). The AUC for 
each peak set was ranked. Each TF was matched with its NCBI ID, leaving 
797 unique TFs ranked by AUC. This ranked list was the input for the 
gseDGN function from the DOSE package in R. The output from this 
was ranked by the normalized enrichment score.

Whole-Genome Fragment Features
Fragmentation features were calculated as in Mathios and col-

leagues (23). Briefly, the ratio of short to long fragments was cal-
culated for 473 nonoverlapping 5-Mb bins across the genome, and 
z-scores representing arm gains/losses were calculated for autosomal 
chromosome arms. The principal components of the ratios repre-
senting greater than 90% of variance and the z-scores were used to 
train machine learning models.

Machine Learning and Cross-Validation Analyses
Two machine learning models were developed: one for high-risk 

populations (a Gradient Boosting Machine using the Mathios et al. fea-
tures) and the second for average-risk general populations (a penalized 
logistic regression with the Mathios et al. features as well as coverage 
from TF binding sites). These models were trained on the US/EU cohort 
in Caret with 5-fold cross-validation with 10 repeats, and scores for each 
sample were calculated by the mean across repeats and evaluated using 
AUC-ROC as in Mathios and colleagues (23). The first model used the 
high-risk noncancer and HCC patients, whereas the second model used 
the noncancer individuals without liver pathology. The locked high-risk 
model trained on the US/EU cohort was applied to the Hong Kong 
cohort to generate cancer predictions on an external validation set.

https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeMapability
https://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=wgEncodeMapability
https://github.com/cancer-genomics/PlasmaToolsNovaseq.hg19
https://github.com/cancer-genomics/PlasmaToolsNovaseq.hg19
https://github.com/Jfortin1/TCGA_AB_Compartments
https://github.com/Jfortin1/TCGA_AB_Compartments
https://github.com/Jfortin1/HiC_AB_Compartments
https://github.com/Jfortin1/HiC_AB_Compartments
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TCGA Analysis
Copy-number data from the HCC cancer cohort in TCGA [liver 

hepatocellular carcinoma (LIHC) n  =  372] were retrieved using the 
package RTCGA v1.16.0 and were analyzed to determine the fre-
quency of copy-number gains and losses in the 473 5-mb bins for this 
cohort (23). The somatic copy-number alteration threshold used in 
Mathios and colleagues (23) was used to call gains and losses in the 
HCC cohorts (23, 58).

Association of Clinical Covariates with DELFI Score
Potential associations between clinical covariates (for those 

patients for whom this information was made available) and the 
DELFI score were assessed with Spearman rank correlation coeffi-
cient (continuous variables) and Kruskal–Wallis one-way analysis of 
variance (categorical variables).

Simulation
Monte Carlo simulations were used to compare the DELFI 

approach to ultrasound and AFP in a theoretical surveillance popu-
lation. We used estimated 95% CIs of sensitivity and specificity for 
DELFI and published 95% CIs for ultrasound with AFP (13). The R 
package epiR was used to derive prior predictive probability distribu-
tions (beta distributions) from these CIs (R package version 2.47, 
epiR; RRID:SCR_021673). Zhao and colleagues (45) reported that 
adherence to ultrasound and AFP surveillance was 39% (95% CI, 
21%–65%). As other noninvasive blood-based tests have a reported 
adherence of more than 75% (46, 47), we assumed that adherence to 
DELFI would be 60% or greater with a probability 0.975 or higher. 
Using these confidence estimates, epiR was used to derive beta 
prior predictive distributions for adherence. We simulated multino-
mial probabilities for the prevalence of HBV, cirrhosis, HBV + HCC, 
cirrhosis + HCC, and HBV + cirrhosis + HCC from a Dirichlet with 
parameters 230, 680, 60, 23, and 7, respectively. For a single Monte 
Carlo simulation for ultrasound with AFP testing, we

(i)	 sampled the probability of adherence (η) from the prior 
predictive distribution,

(ii)	 simulated the number of 100,000 individuals (S) who partici-
pated in surveillance (S ~ ( , , )Binomial η 100 000 ),

(iii)	 sampled probabilities of comorbidities [Dirichlet (230, 680, 60, 
23, 7)],

(iv)	 computed the prevalence of HCC (θ),
(v)	 simulated HCC cases ( ~ ( , ))P SBinomial θ  and computed the 

number of individuals without cancer (N S P� � ),
(vi)	 sampled the sensitivity (se) and specificity (sp) from the cor-

responding prior predictive distributions, and
(vii)	 sampled the true positives (TP P se~ ( , ))Binomial  and false 

positives (FP N sp~ ( , )Binomial 1− ).

Given TP and FP, we calculated the NPV as (true negatives)/(true 
negatives + false negatives), where true negatives = N FP−  and false 
negatives  =  P TP− . We repeated the above simulation 1,000 times, 
obtaining a distribution of TP, FP, and NPV. Using parameters 
for sensitivity, specificity, and adherence for the DELFI approach, 
we repeated the same Monte Carlo analysis to allow comparisons 
between these two surveillance methodologies.

Bioinformatic and Statistical Software
All statistical analyses were performed using R version 4.1.2. After 

trimming of adapter sequences using fastp (0.20.0), we used Bowtie2 
(2.3.0) to align paired-end reads to the hg19 reference genome. PCR 
duplicates were removed using Sambamba (0.6.8), and the remaining 
aligned read pairs were converted to a bed format using Bedtools 
(2.29.0). We used the R package data.table (1.12.8) for manipulation 
of tabular data and binning fragments in 5-Mb windows along the 

genome. The R package Caret (6.0.84) was used to implement the 
classification by penalized logistic regression and resampling.

Data and Material Availability Statement
Sequence data and clinical variables used in this study are avail-

able at the European Genome-Phenome Archive (EGA) at accession 
EGAS00001005340, EGAD00001005093, and EGAS00001005340. 
Some data are not publicly available due to limitations in Institu-
tional Review Board approval but are available upon reasonable 
request from the corresponding authors. The publicly available ChIP-
seq data used in this study are available in the ReMap 2020 database 
(https://remap2020.univ-amu.fr/download_page). Segmented copy-
number data, determined by analysis of the Affymetrix genome-wide 
human SNP array 6.0, were retrieved from the Broad Institute TCGA 
Genome Data Analysis Center (2016-01-28 release date, using RTCGA 
package, version 1.16.0). The remaining data are available within the 
article, Supplementary Information, or Source Data file. Computer 
code, software versions, and the computing environment for repro-
ducing results from this study are available in the GitHub repository at  
https://github.com/cancer-genomics/reproduce_liver_final.
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