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Abstract 

The automatic recognition of chemical structure diagrams from the literature is an indispensable component of 
workflows to re-discover information about chemicals and to make it available in open-access databases. Here we 
report preliminary findings in our development of Deep lEarning for Chemical ImagE Recognition (DECIMER), a deep 
learning method based on existing show-and-tell deep neural networks, which makes very few assumptions about 
the structure of the underlying problem. It translates a bitmap image of a molecule, as found in publications, into a 
SMILES. The training state reported here does not yet rival the performance of existing traditional approaches, but 
we present evidence that our method will reach a comparable detection power with sufficient training time. Training 
success of DECIMER depends on the input data representation: DeepSMILES are superior over SMILES and we have 
a preliminary indication that the recently reported SELFIES outperform DeepSMILES. An extrapolation of our results 
towards larger training data sizes suggests that we might be able to achieve near-accurate prediction with 50 to 
100 million training structures. This work is entirely based on open-source software and open data and is available to 
the general public for any purpose.
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Main text
The automatic recognition of chemical structure dia-
grams from the chemical literature (herein termed 
Optical Chemical Entity Recognition, OCER) is an 
indispensable component of workflows to re-discover 
information about chemicals and to make it available in 
open-access databases. While the chemical structure is 
often at the heart of the findings reported in chemical 
articles, further information about the structure is pre-
sent either in textual form or in other types of diagrams 
such as titration curves, spectra, etc. (Fig. 1).

Previous software systems for OCER have been 
described and were both incorporated into commer-
cial and open-source systems. These software systems 

include Kekulé [1, 2], the Contreras system [3], the 
IBM system [4], CLIDE [5] as well as the open-source 
approaches chemOCR [6–8], ChemReader [9], OSRA 
[10] and ChemRobot described in a patent [11].

All of these software packages share a general approach 
to the problem, comprising the steps (a) scanning, (b) 
vectorization, (c) searching for dashed lines and dashed 
wedges, (d) character recognition, (e) graph compilation, 
(f ) post-processing, (g) display and editing.

Each of the steps in such systems needs to be carefully 
hand-tuned both individually as well as for its interplay 
with the other steps. The incorporation of new image fea-
tures to be detected is a laborious process.

We were recently inspired by the stunning success of 
AlphaGo Zero [13], a deep neural network (NN) based 
approach that enabled AlphaGo Zero to reach superhu-
man strength in the Game of Go by playing a potentially 
unlimited number of games against itself, starting with 
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no more knowledge than the basic rules of the game. In 
this example, as well as in other prominent examples of 
successful deep learning, the key to success was the avail-
ability of a potentially unlimited or very large amount of 
training data.

The example of AlphaGo Zero made us realize that we 
are in a similar situation for the visual computing chal-
lenge described above. Instead of working with a neces-
sarily small corpus of human-annotated examples from 
the printed literature, as has been common in the text 
mining and machine learning applications in chemistry 
in the past, we realised that we could generate training 
data from a practically unlimited source of structures 
generated by structure generators or by using the largest 
collections of open chemical data available to mankind.

After we started our work presented here, other 
attempts to use deep learning for OCER were reported. 
Work by the Schrödinger group [14] reports the success-
ful extraction of machine-readable chemical structures 
from bitmaps but no software system available for the 

general public to replicate the reported results. A method 
called Chemgrapher [15] suggests to deal with the prob-
lem in a modular fashion by using a segmentation algo-
rithm to segment the images containing chemical graphs 
to detect atoms locations, bonds and charges separately, 
and employ a graph building algorithm to re-generate the 
chemical graph.

Here we report preliminary findings of our develop-
ment of Deep lEarning for Chemical ImagE Recognition 
(DECIMER), a deep learning method based on exist-
ing show-and-tell deep neural networks, which trans-
lates a pure bitmap image of a molecule, as found in 
publications, into a SMILES (Fig. 2). Unlike for example 
Chemgrapher, it makes no prior assumptions, such as the 
existence of bonds or element symbols in the graphic, 
about the structure of the underlying problem.

The training state reported here does not yet rival the 
performance of existing traditional approaches, but we 
present evidence that, given sufficient training data, our 
method will reach a comparable detection power without 

Fig. 1 Information about a natural product is scattered across the various sections of an individual scientific article. Grouped around a structure and 
a chemical name, further information such as chemical classes, species, and organism parts from which the compound was isolated, spectral and 
other data are listed. Background image © Alina Chan, distributed under https ://creat iveco mmons .org/licen ses/by-sa/4.0/deed.en, figures and text 
from Kwon et al. [12]

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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the need of the sophisticated engineering steps of an 
OCER workflow.

The principal idea reported here is to repurpose a 
show-and-tell deep NN designed for general photo 
annotation earlier and train it to report a series of 
SMILES tokens when presented with the bitmap of a 
chemical structure image. The original NN reported 
sentences like “A giraffe standing in a forest with trees 
in the background” when presented with a correspond-
ing photo.

Instead of abstracting chemical diagrams from 
the chemical literature to generate training data, we 
decided to use structure diagram generators (SDG) 
like the one found in the Chemistry Development 
Kit (CDK) [16] to generate a potentially unlimited 
amount of training data. This type of training data can 
be accommodated to become more realistic and com-
parable to the varying picture quality in the chemical 
literature by using image manipulation such as blur-
ring, adding noise, etc. As a source of input structures 
for the CDK SDG, we turned to PubChem [17], one of 
the largest databases of organic molecules. The follow-
ing rules were used to curate the Pubchem data for our 
work presented here (in future versions of this deep 
NN, these rules might be relaxed):

• Molecules must,
• Have a molecular weight of fewer than 1500 Daltons,
• Not possess counter ions,
• Only contain the elements C, H, O, N, P, S, F, Cl, Br, I, 

Se and B,

• Not contain isotopes of Hydrogens (D, T),
• Have 5–40 bonds,
• Not contain any charged groups,
• Only contain implicit hydrogens, except in functional 

groups,
• Have less than 40 SMILES characters.

The generation of molecular bitmap images from 
chemical graphs was performed using the CDK SDG, 
which generates production quality 2D depictions to 
feed the deep learning algorithm. One random rotation 
for each molecule was used. No further modifications, 
such as the addition of noise, were applied. These types of 
modifications will be explored once a mature model has 
been reached.

The text data used here were SMILES [18] strings, 
which were encoded into different formats, regular 
SMILES, DeepSMILES [19] and SELFIES [20], to test the 
dependency of the learning success on the data repre-
sentation. These datasets were used in different training 
models in order to evaluate their performance for our use 
case. With two dataset sizes, we confirmed the superior-
ity of the DeepSMILES over the SMILES representation 
and continued to use DeepSMILES exclusively.

For our model (Fig.  3), we employed an autoencoder-
based network with TensorFlow 2.0 [21] at the back-
end. This kind of network refers to the model designed 
by Xu et al. [22], in their work on Show, Attend and Tell, 
where they demonstrate a higher accuracy for an Image 
caption generation system with the attention mecha-
nism. The TensorFlow team used these results for their 

Fig. 2 Chemical image to SMILES translation using DECIMER
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implementation of Show, Attend and Tell, published at 
[23], which is used unaltered by us. Their encoder net-
work is a convolutional NN (CNN), which consists of a 
single fully connected layer and a RELU activation func-
tion. Their decoder network is a recurrent NN (RNN), 
consisting of a gated recurrent unit (GRU) and two fully 
connected layers. The soft attention mechanism used in 
[23] was introduced by Bahdanau et al. [24].

We trained the model with DeepSMILES textual data 
and the corresponding bitmap of the chemical diagram. 
The text file is read by the model, the DeepSMILES is 
tokenized by the tokenizer, and the unique tokens are 
stored. The images are converted into feature vectors by 
using the unaltered Inception V3 [25] model and saved as 
NumPy arrays.

The model accuracy is determined by the average of all 
the calculated Tanimoto similarity scores as well as the 
number of Tanimoto 1.0 hits. The Tanimoto coefficient 
is superior to simple structure isomorphism because it 
yields the improvement of the recognition even when 
identity is not (yet) reached, and with a low degeneracy 
fingerprint such as the Pubchem fingerprint used here, 
the Tanimoto 1.0 is almost identical to the more rigorous 
structure isomorphism.

Initially, we trained multiple models with small train-
ing datasets to obtain the best hyper-parameters for our 
network. Exploration of the hyperparameter space led 
to 640 images per batch size, with embedding dimen-
sion size of 600 for the images, which we depicted on a 
299 × 299 canvas size to match the Inception V3 model. 

Fig. 3 Schema of the DECIMER workflow
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We used an Adam optimizer with a learning rate 0.0005 
and Sparse Categorical Cross entropy to calculate the 
loss. We trained all the models for 25 epochs, which typi-
cally led to convergence. Once the models converged, we 
started the evaluation of the test set.

The models were trained on an inhouse server 
equipped with an nVidia Tesla V100 Graphics Card, 
384  GB of RAM and two Intel(R) Xeon(R) Gold 6230 
CPUs. Even though the training entirely happens on the 
GPU, the initial dataset preparation was CPU-based.

Training time obviously scales with data size (Table 1, 
Fig. 4). Model success was evaluated with an independent 
test data set. During the preparation of this manuscript, 
initial experiments with parallel training indicated that 
scaling was not satisfactory beyond 2 or 3 GPUs.

Here we report our results for training data sizes 
between 54,000 and 15,000,000 structures, with the larg-
est training data set taking 27  days to converge on the 
hardware reported above (Table 1, Fig. 4). Figures 5 and 
6 show the growth of the accuracy of predictions with 
increasing train data size.

Training success was determined with a number of 
indicators (Figs. 5 and 6), such as the percentage of Tani-
moto 1.0 predictions, the average Tanimoto similarity 
of all predictions, and the percentage of invalid SMILES 
produced by the model. Figure 5a demonstrates that the 
model’s ability to produce valid SMILES and avoid inva-
lid ones steeply increases with larger training datasets. 
The same can be observed for the two key parameters 
of this application, the average Tanimoto similarity and 
the Tanimoto 1.0 percentage, which indicate the fitness 

of the model to accurately generate a machine-readable 
structure from a bitmap of a chemical diagram. We show 
here that the similarity of predicted chemical graphs to 
the correct chemical graph becomes constantly bet-
ter with more training data. While we regularly operate 
with the chemical paradigm that similar structures have 
similar properties and therefore increasing structure 
similarity would convey increasing similarity of inher-
ent properties, we chose to confirm that this would hold 
in our application case. We therefore further evaluated 
the models’ success with additional descriptors such as 
LogP or ring count between original and the predicted 
SMILES, which indicates that the model consistently 
produces better and better machine representations with 
growing training data size. The improvements do not 
seem to converge prematurely.

In order to assess the promise of these preliminary 
results, we performed an idealistic linear extrapolation of 
our data toward larger training data sizes, which indicate 
that close-to-perfect detection of chemical structures 
would require training data sizes with 50 to 100 million 
structures. Such a training data volume will likely require 
a training time of 4 months with our setup with a single 
GPU. We are currently experimenting with the distrib-
uted learning solution currently available in the Tensor-
flow 2.0 API to reduce this training time significantly, 
also evaluating Google’s Tensor Processing Units (TPU).

Table 1 Dataset sizes used in this work with corresponding computing times

The time for training the model with 15 million structures corresponds to approximately a month on a single Tesla V100 GPU

Dataset index Train data size Test data size Avrg. time/epoch (s) Time for 25 
epochs (s)

1 54,000 6000 94.32 2358

2 90,000 10,000 159.88 3997

3 450,000 50,000 880.6 22,015

4 900,000 100,000 2831.8 70,795

5 1,800,000 200,000 7239.28 180,982

6 2,700,000 300,000 11,964.72 299,118

7 4,050,000 450,000 17,495.12 437,378

8 5,850,000 650,000 25,702 642,550

9 7,200,000 800,000 32,926.8 823,170

10 8,969,751 996,639 41,652.24 1,041,306

11 12,600,000 1,400,000 64,909.28 1,622,732

12 15,102,000 1,678,000 91,880.84 2,297,021
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Conclusions
Here we have presented preliminary results indicat-
ing that a show-and-tell deep neural network setup has 
the potential to successfully extract a machine-reada-
ble structure representation when trained with tens of 
millions of examples. The training setup makes mini-
mal assumptions about the problem. Training success 
depended on the input data representation. DeepSMILES 
were superior over SMILES and we have the prelimi-
nary indication that the recently reported SELFIES 

outperform DeepSMILES. For example, for a training 
data size of 6 Mio images, we obtained an average Tani-
moto similarity of 0.53 with DeepSMILES and 0.78 with 
SELFIES. An extrapolation of our results towards larger 
training data sizes suggests that we might be able to 
achieve near-accurate prediction with 50 to 100  million 
training structures. Such training can be completed in 
uncomfortable but feasible time spans of several months 
on a single GPU.

Fig. 4 Average time spent on training each epoch with increasing dataset size
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Our work is entirely based on open-source software 
and open data and is available to the general public for 
any purpose.

We are currently moving towards larger training sets 
with the use of parallelization and more powerful hard-
ware and hope to report the results in a full paper on 
this work in due time.

Fig. 5 Development of training success indicators with increasing train data size. a Improved learning of the SMILES syntax with growing training 
data size. The percentages of valid and invalid SMILES add up to 100%. The dataset index refers to Table 1. b Average Tanimoto similarity (right, 
orange) and percentage of structures with Tanimoto 1.0 similarity (left, blue) of valid SMILES predictions for the training data. The dataset index 
refers to Table 1. c Linear extrapolation on the predicted results forecasting the achievable accuracy with more data. The linear trend is only used 
to indicate the order of magnitude of training data, which would be necessary for a successful structure prediction near perfection—the sketched 
linear growth will, of course, inevitably crossover into a saturation curve with increasing training set size
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Fig. 6 Distribution of Tanimoto-Similarity between the training structures and the structure recognised by DECIMER. Y-axis: frequency of molecules 
in percentage, x-axis: Tanimoto similarity range in bins
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