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Quality controls of serological assays have to contain defined amounts of human antibodies specific for the
targeted antigen. A prevailing issue for array-based antigen assays is that dozens of antigens are targeted
within the same assay. Commonly different patient sera are combined and optimal pools are empirically
identified. Here, we report a mathematical approach how an optimal sample pool composition can be
systematically calculated and accurately compiled. The approach was used to compose suitable quality
controls for a 71 plex Tuberculosis antigen bead array using a limited number of positive human sera.

against a variety of pathogens including HBV, HCV, Helicobacter pylori, Mycobacterium tuberculosis

(Mtb) and influenza'~. In addition, (whole) proteome arrays enabled the definition of reactive antigens
sets for a variety of pathogens like Mtb®, Plasmodium falciparum (3D7 strain)’, HPV®, Burkholderia pseudomal-
lei®, and Coxiella burnetii'®'>. Arrays containing thousands of recombinant human proteins were used for the
discovery of antibodies directed against self-antigens, which could be potential biomarkers for diagnostic pur-
poses>™*. In current clinical practice, serological assays are well established within the field of autoimmune
diseases'*'®. All of these serological assays require quality controlled sample testing procedures.

Prior to implementation into diagnostics appropriate assay validation has to be achieved. FDA guidelines for
the development of immunoassays state that “sufficient QC samples should be used to ensure control of the
assay”"®. As a consequence, such quality controlled samples should be available for assay validation, as well as
for large scale screening and diagnostic purposes®. Quality control samples are necessary within every assay to
ensure that the assay performs within specifications and should be reviewed before interpretation of the results of
individual serum samples. The purpose of a quality control is to report that all experimental steps were executed
correctly in an assay experiment and to be able to compare data over a longer period of time.

Reference samples for sandwich immunoassays targeting serum proteins can be easily generated by spiking the
target analytes into a plasma or serum matrix. However, any serological assay is based on the presence of human
antibodies specific for the selected antigens. For singleplex assays it is usually sufficient to select a serum with
strong reactivity towards its respective antigen. However, identifying single sera with appropriate reactivity
against a multitude of different antigens, such as required for antigen arrays, has been very difficult if not
impossible in many cases. Moreover, a single serum as a quality control, covering all targeted antigens would
only be available in limited amounts and may thus confine test development, validation and clinical evaluation. A
common, but surprisingly little documented approach is to create pools from multiple sera in order to warrant
reactivity towards all target antigens and to generate a sufficiently large quality control stock®"**.

Here we present a mathematical approach towards a sample pooling strategy where a composition of such a
pool was calculated from an available data set with the aim that this pooled sample shows a positive response for
each analyte. The threshold for a positive signal is defined by a multiple of the negative control population. In our
case we chose four times the negative control population. If a signal in the pool exceeds this threshold the analyte
is covered.

M iniaturized multiplexed serological assays have been applied to characterize the serological response

Results

The serological response of 142 serum samples obtained from patients with active tuberculosis (TB) was analyzed
using a bead array consisting of 71 TB proteins (Supplement A). The serological response of these sera was
heterogeneous, ranging from 2-69 TB-associated proteins per serum sample (Figure 1). Out of our 142 sera we
found no serum reactive to all 71 antigens under investigation (Supplement B). Our mathematical approach
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Figure 1| Distribution of samples that give positive signals. The plot
shows the number of TB-associated proteins reacting with a given number
of serum samples. No single serum revealed a serological reactivity to all
Mtb antigens. Only a small number of samples revealed a serological
reactivity for a broad range of TB antigens.

identified sets of positive sera, which could be pooled to generate a
quality control serum to react with all 71 TB proteins. This strategy
allowed us to create defined reference samples, revealing a simultan-
eous serological response against all TB antigens employed in the
assay.

Appropriate data sets of the serological response pattern against
the targeted antigens for a set of available samples provided the basis
for our calculation. A mathematical model was developed to predict
reactivity characteristics of a given sample pool. We hypothesized
that those values could be estimated from the quantitative serological
response measured for the individual samples. Our first assumption
was that if two samples are combined, assay signals would add up (see

Sample a

Sample b

Sample c

=
bk =

Figure 2). The second assumption was that on average assays show
dilution linearity with a slope of 1.0.

A linear integer program was constructed from the model, screen-
ing data and the threshold vector. The objective function was to
maximize the number of serum reactivities, given a fixed number
of serum samples from which the pool should be generated. The
relative dilution of the sample pool was kept identical to the dilution
of the individual serum. Results of the optimization approach
revealed suggestions for the generation of optimal sample pools,
differing in composition and size (Supplement C).

For the verification of our theoretical results, the following experi-
ments were performed. In a first experiment the assumption of addi-
tivity of the individual signal values of the pooled samples was tested.
A suspension bead array displaying the different tuberculosis anti-
gens were incubated with human serum samples. Bound human IgG
antibodies were detected with an R-PE-labeled anti-human IgG. The
read-out was performed on a fluorescence-based bead array reader
(Luminex FlexMAP3D). Sample pools were created by subsequently
pooling samples in the scheme S;, S; + S5, S; + S2+ S5,... 51,81 + Sy,
S; + S, + Ss, ... up to a pool consisting of six samples. As shown in
Figure 3A-E a strong correlation (R > 0.98) was observed between
the values predicted from single sample screenings and the signal
generated by the sample pool. The slope of the linear regression was
1.04 for the least complex pool, and decreased to 0.7 for the pool
containing up to six samples. This data supports our hypotheses
about signal additivity. The observation that the signals generated
by the pools for a given antigen get stronger when the number of sera
in the pool increased is notable (Figure 3). A larger number of dif-
ferent paratopes for the same antigen originating from different
individual sera could also explain this observation.

In a subsequent experiment our algorithm was applied to find
optimal pools for the total panel of 71 TB antigens. Here a data set
derived from 142 previously tested serum samples was used as input.
The allowed range for dilution of a single sample within the pool was
1:200 to 1:2000. Interestingly, we found that we had to consider that
the signal intensities of each individual serum added to the pool are
“diluted” with the other sera during the pooling process (Figure 3).
The final serum dilution of the pool was set to 1:200, according to
the standard dilution of our serological TB assay. An artificial cutoff

Figure 2 | Schematic representation of a sample pooling. The red lines represent an antigen-specific threshold. Samples (A-C) show individual responses
and none exceed all thresholds. By combination a new pooled sample, with a positive response to all antigens, is created.
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Figure 3 | Correlation between predicted and measured pool data. The graphs show the strong correlation between predicted and measured results,
although the linear slope is 0.7 for the most complex pool (E). (A) Correlation of prediction and measurement for pool S1 + S2 (B) pool S1 + S2 + S3 (C)
pool S1 + S§2 + S3 + S4 (D) pool S1 + S2 + S3 + S4 + S5 (E) pool S1 + S2 + S3 + S4 + S5 + S6.

for each TB antigen was calculated from the quadruple of the values
measured in the negative control sample. The algorithm suggested
ten solutions consisting of up to ten parts of up to four different
samples.

Thus, as expected, it was not possible to cover all analytes by a
single sample or by pooling two individual samples. Our algorithm
suggested pools consisting of at least three samples to reveal a sero-
logical response to all TB antigens. The signals of the pool for all
analytes were higher than the defined threshold. The measured
values correlate with the predicted values with a correlation coef-
ficient of 0.98 (see Figure 4 A). The correlation between the pool and
the three single samples is comparatively low as shown in Figures 4
B-D. This shows that no sample stands out in the pool and that the
signal pattern is the result of the composition of all three samples.

Discussion
We have created a technical quality control for multiplexed antigen
assays to make sure that all antigens used in the assay has not lost its
antigenicity and that all technical steps are executed correctly.
With this mathematical model, we can create quality control sam-
ples for roughly 60000 samples from only 1.5 mL of three pooled
serum samples. We also created a second pool consisting of four
samples (10 parts; 5 parts sample 1, 3 parts sample 2, 1 part sample

3 and 4) with a correlation coefficient of 0.9 between predicted and
observed MFI values (data not shown). Once the first pool is running
out, one can easily create a second pool consisting of different sam-
ples. Our results demonstrate that our mathematical model for sam-
ple pools makes adequate predictions. We demonstrated that quality
controls for multiplex antigen assays can be created by the systematic
selection and pooling of samples. Our systematic approach is scalable
and can be easily adapted to other assays platforms. We believe that
our method provides an important tool for diagnostic assay develop-
ment and test evaluation.

A software tool for the generation of reference samples is available
at http://webservices.nmi.de/samplepooler.

Methods

Coupling of antigens to magnetic carboxylated beads. An automated bead handler
(KingFisher 96, Thermo Scientific, Schwerte, Germany) was used to couple the
antigens to magnetic carboxylated beads (MagPlex Microspheres, Luminex-Corp.,
Austin, TX). The Mtb proteins were covalently coupled to the beads using EDC/sulfo-
NHS chemistry. The bead stock was vortexed and sonicated thoroughly for at least
10 s. Three hundred pL beads from each bead stock (1.25 X 10 E7 beads/mL) were
transferred to respective wells. Beads were washed with 250 pL activation buffer
(100 mM Na,HPO4 + 0.005% (v/v) Triton X-100). The carboxyl groups on the
magnetic beads were activated with 120 pL activation buffer + 15 L EDC (50 mg/
mL) + 15 pL sulfo-NHS (50 mg/mL in water-free DMSO) for 20 min at room
temperature with agitation. Activated beads were washed two times with 250 pL
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Figure 4 | Correlation of the calculated sample pool MFI values and the measured pool MFI values. While (A) the correlation between the sample pool
and the predicted values (a weighted sum of single sample values) are high, the single samples (B—D) show weaker correlation with the pool. This data
shows that the unique coverage characteristic of the serum pool is due to the combination of the three samples.

coupling buffer (50 mM MES + 0.005% (v/v) Triton X-100). Antigens diluted to a
concentration of 100 pug/mL in coupling buffer were incubated with the activated
beads and agitated for 2 h at RT. Coupled beads were washed with 250 pL wash buffer
and resuspended in 200 pL block store buffer (PBS + 1% (w/v) BSA) containing
0.05% NaNj and stored at 4°C until further use.

Coupling control. The coupling efficiency of the His-tagged antigens was controlled
using an anti-His antibody. Bound anti-His antibody was visualized using a
secondary R-PE conjugated anti-species antibody.

The mouse-anti-His antibody (Qiagen, Hilden, Germany) was diluted in
block store buffer (10 pg/mL, 1 pg/mL, 0.1 pg/mL, 0.01 pg/mL). For each
antibody concentration 30 pL of the prepared bead suspension was distributed
on a 96 half-well plate (1 pL of each individual bead type). A plate magnet was
placed under the plate and the supernatant was removed by quickly inverting
the plate. Beads were resuspended in 50 pL of diluted antibody and incubated
on a shaker for 45 min at RT in the dark. Beads were washed twice with 100 pL
wash buffer with the plate magnet as described before. 50 pL of a PE-conju-
gated goat-anti-mouse antibody (5 pg/mL in block store buffer) was added and
incubated on a shaker for 30 min at RT in the dark. Beads were washed twice
with 100 pL wash buffer and were resuspended in 100 pL block store buffer.
Measurements were performed using a Luminex FlexMAP3D instrument with
Luminex xPONENT software (settings: sample size: 80 pL, time out: 60, bead
count: 100 per bead sort). Binding events were displayed as median fluorescence
intensities.

After a successful coupling control the antigen-coupled beads were pooled to
generate a master mix.

Bead-based serological assay. A serological bead-based assay was performed to
detect human IgG antibodies directed against individual Mycobacterium tuberculosis
proteins.

Serum samples were stored on ice. Serum dilution and incubation were performed
at room temperature.

Samples were diluted in assay buffer (PBS + Low Cross Buffer (Candor, Wangen,
Germany) + 0.5% BSA (w/v)) supplemented with 10% E. coli lysate. After dilution,
samples were incubated for 20 min on a shaker.

Incubation protocol. The assay was performed in a semi-automated fashion using a
bead handling system (KingFisher 96, Thermo Scientific, Schwerte, Germany).

A master bead mix containing antigen-coated beads was prepared in assay buffer
without E. coli lysate and distributed on a 96 well PCR plate. The beads were trans-
ferred from the bead source plate to 50 pL of the diluted human serum samples and
were incubated for 2 h at room temperature. Unbound antibodies were removed by
washing the beads twice with 100 pL PBS + 0.05% Tween20. To visualize bound
human antibodies 50 pL of an R-PE labeled goat-anti-human IgG antibody (5 pg/
mL) beads were incubated for 1 h at room temperature. After washing twice with
100 pL PBS + 0.05% Tween20 the beads were resuspended in 100 pL assay buffer
without E. coli lysate. Measurements were performed using a Luminex FlexMAP3D
instrument with Luminex XPONENT software (settings: sample size: 80 uL, time out:
60, bead count: 100 per bead sort). Binding events were displayed as median fluor-
escence intensities.

Algorithm. The screening of a set of samples S, S, ..., S, generated a dataset M and
m;(S;) designates the MFI-signal for target j in sample ;.

An important premise is that the assays have a predominately linear characteristic
in the range of interest. If a pooled sample P was created from the sample Sy and S; the
MFI would approximately add up

m;(P)=m;(Sk) +m;(Sr). (1)
If a sample is diluted using factor « = 1 the MFI will exhibit a linear change:
am;(P)~m;(o.— diluted P). (2)

We have created pools by subsequently adding samples (S;, S; + S5, S; + S, + S5, ...).

The threshold for a positive signal is usually defined by a multiple of the mean
intensities measured in a negative control population. The threshold for target j is
designated ¢;. Furthermore the decision variable x; describes whether the sample S, is
included in the pool or not.

In our approach the number of samples is fixed to a maximum, and the number of
antigens quality controlled by the resulting pool is the target to be optimized. By
allowing integer values for x;, the constraint

2% = Ximax (3)
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fixes the number of parts, a pool consist of, t0 X,;,4x. E.g. a pool with X,,,,, = 5 could
consist of 3 parts S; and 2 parts S;.

The set 71 of decision variables a;, 4, ..., a,,, indicate whether an analyte should be
covered by the pool or not. By defining the coverage as

X ximi(Si) = aiti| 1<j<m (4)

it is ensured, that only if a; = 1, the sum of MFIs has to exceed the threshold ¢;. The
term to maximize is the number of analytes which can be quality controlled using the
pooled sample

maxX" a; (5)

Another constraint is that the resulting pool should have the same matrix dilution as
used in the normal sample preparation. If the input samples have been measured
in a 1:n dilution resulting in values m,(S;), the values need to be scaled accordingly to
1:n X,,,,x. The upper bound for X,,,,, is defined by the limit of dilutional linearity. E.g,
if the limit is 1:2000 and the original dilution was 1:200 the maximum for X,,,,x
would be 10.

Pseudocode.
INPUT: M, Xynaxupperbound

WHILE Xmax = Xmaxuppzrhaund

BEGIN

R m;(S1)
(S — —L
]( I) Xmax

solve ILP:

maxX” a;

subject to

T xii(Si) = aiti| 1 <j<m

2 0% = Xmax
a;e{0,1}Vj{1,...,m}
xeNg

Xmax  Xmax + 1

END

Generation of sample pool. For pooling the samples indicated by the algorithm 5 pL
of each of the three samples were diluted 1:200 in assay buffer + 10% E. coli lysate,
aliquotted at 60 L and stored at —80°C.
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