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ABSTRACT The RNA genome of influenza A viruses is transcribed and replicated by
the viral RNA-dependent RNA polymerase, composed of the subunits PA, PB1, and
PB2. High-resolution structural data revealed that the polymerase assembles into a
central polymerase core and several auxiliary highly flexible, protruding domains.
The auxiliary PB2 cap-binding and the PA endonuclease domains are both involved
in cap snatching, but the role of the auxiliary PB2 627 domain, implicated in host
range restriction of influenza A viruses, is still poorly understood. In this study, we
used structure-guided truncations of the PB2 subunit to show that a PB2 subunit
lacking the 627 domain accumulates in the cell nucleus and assembles into a het-
erotrimeric polymerase with PB1 and PA. Furthermore, we showed that a recombi-
nant viral polymerase lacking the PB2 627 domain is able to carry out cap snatching,
cap-dependent transcription initiation, and cap-independent ApG dinucleotide ex-
tension in vitro, indicating that the PB2 627 domain of the influenza virus RNA poly-
merase is not involved in core catalytic functions of the polymerase. However, in a
cellular context, the 627 domain is essential for both transcription and replication. In
particular, we showed that the PB2 627 domain is essential for the accumulation of
the cRNA replicative intermediate in infected cells. Together, these results further
our understanding of the role of the PB2 627 domain in transcription and replication
of the influenza virus RNA genome.

IMPORTANCE Influenza A viruses are a major global health threat, not only causing
disease in both humans and birds but also placing significant strains on economies
worldwide. Avian influenza A virus polymerases typically do not function efficiently
in mammalian hosts and require adaptive mutations to restore polymerase activity.
These adaptations include mutations in the 627 domain of the PB2 subunit of the
viral polymerase, but it still remains to be established how these mutations enable
host adaptation on a molecular level. In this report, we characterize the role of the
627 domain in polymerase function and offer insights into the replication mecha-
nism of influenza A viruses.
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The influenza virus genome consists of eight single-stranded negative-sense RNA
segments. These viral RNA (vRNA) segments are coated by nucleoprotein (NP) and

bound at their conserved 5= and 3= ends by the viral RNA-dependent RNA polymerase,
forming viral ribonucleoprotein (vRNP) complexes. The conserved 5= and 3= vRNA ends
are also referred to as the vRNA promoter. The viral polymerase consists of the three
subunits polymerase acidic (PA), polymerase basic 1 (PB1) and polymerase basic 2 (PB2)
proteins. During infection, the viral polymerase transcribes vRNA into mRNA and
replicates it through a cRNA replicative intermediate (1). Transcription involves “cap
snatching,” in which cellular capped RNA is bound by the PB2 cap-binding domain and
cleaved by the PA endonuclease domain of the viral polymerase 8 to 14 nucleotides (nt)
downstream of the 5= m7G cap (2–4). These short capped RNA fragments serve as
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primers for viral mRNA synthesis by the resident (cis-acting) polymerase in the vRNP.
Replication of viral RNA is initiated de novo in a primer-independent manner. During
the first step of replication, cRNA is synthesized and nascent cRNA molecules assemble
into vRNP-like complementary ribonucleoprotein (cRNP) complexes with newly synthe-
sized polymerase and NP (5). During the second step of replication, cRNA serves as the
template for vRNA synthesis. Replication involves terminal initiation at residues 1 and
2 on the vRNA template but internal initiation at residues 4 and 5 on the cRNA template
(6, 7). Internal initiation leads to the generation of an ApG dinucleotide that is used to
prime full-length vRNA synthesis at residues 1 and 2 of the cRNA (6, 7). Replication
requires a trans-acting or trans-activating polymerase in addition to the resident
polymerase (5, 8).

Crystal structures of the influenza virus RNA polymerase have shown that the
enzyme consists of a central RNA polymerase domain, made up of PB1, the C-terminal
domain of PA, the N-terminal one-third of PB2 (which includes the PB2 N terminus, the
lid domain, and the N1 and N2 linker domains [Fig. 1A]), and several flexible peripheral
appendices that are formed by the N-terminal PA endonuclease domain (2, 4) and the
C-terminal two-thirds of PB2, including the cap-binding, mid-link, 627, and nuclear
localization signal (NLS) domains (3, 9, 10). Two of the three major protruding periph-
eral domains, the cap-binding and endonuclease domains, are involved in the cap
snatching process by binding to and cleaving host capped RNA, respectively, while the
role of the so-called 627 domain in polymerase function remains unclear. Recently
published crystal structures of influenza virus RNA polymerases have revealed that

FIG 1 Design of PB2 deletion mutants and their expression. (A) Crystal structure of the (apo) influenza C/Johannesburg/1/66 virus polymerase (PDB code 5D98)
and the (vRNA promoter bound) influenza A/little yellow-shouldered bat/Guatemala/060/10 (H17N10) virus polymerase (PDB code 4WSB) with the PB2 subunit
domains shown in different colors. (B) Schematic of full-length, K627E, and truncated PB2 subunits with domains colored as in panel A. (C) Complex formation
of K627E and PB2 truncation mutants with PB1 and PA. Polymerase subunits PB1 and PA were coexpressed with K627E or PB2 truncation mutants in HEK-293T
cells and purified by IgG Sepharose chromatography. Purified recombinant polymerase was analyzed by SDS-PAGE. PA, PB1, and full-length PB2 were detected
by silver staining. Copurification of the K627E mutant and truncated PB2 subunits with PB1 and PA was detected by Western blotting with a primary antibody
targeting the N-terminal (positions 1 to 180) region of PB2 (36). Molecular masses, indicated on the left, are in kilodaltons. (D) Polymerase subunits PA, PB1,
and PB2 lacking the 627 domain were coexpressed in HEK-293T cells, and PB2 was detected by immunofluorescence using a primary antibody targeting the
N-terminal (positions 1 to 180) region of PB2 (36).
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binding of the conserved vRNA or cRNA terminal ends can trigger significant confor-
mational rearrangements in the peripheral domains (11–14) (Fig. 1A). The conformation
that the polymerase adopts following vRNA binding, the open form, is compatible with
transcription, while the more closed form is not. However, the closed form could be
consistent with replication.

Avian influenza virus polymerases are severely restricted in their activity in mam-
malian hosts, resulting in impaired viral genome replication and mRNA synthesis and a
reduced potential for acquiring beneficial mutations (15). For instance, avian influenza
A virus polymerases almost universally contain a glutamic acid (E) residue at position
627 of PB2, whereas this residue is frequently mutated to lysine (K) in mammal-adapted
polymerases (16). It has been shown that changing the glutamic acid residue at
position 627 of PB2 to lysine (E627K) restores activity of avian polymerases in mam-
malian cells (17–19). PB2 residue 627 is located on the 627 domain, which folds into a
structurally distinct domain protruding from the polymerase core. In the conformation
that the RNA polymerase adopts following the binding of vRNA, PB2 residue 627 is
surface exposed and located near the presumed nascent RNA exit channel (9, 10, 12).

In addition to E627K, several other adaptive mutations have been found to cluster
on the surface of the 627 domain or in the close vicinity of the 627 domain and the
nascent RNA exit channel (20, 21). On the mammal-adapted PB2 surface, these residues
form a basic groove, whereas in avian polymerases, acidic residues disrupt this basic
patch (9, 10). The basic surface on the 627 domain of mammal-adapted influenza virus
polymerases appears to be important for efficient viral polymerase activity and RNA
binding in mammalian cells (22–24). Adaptive mutations are not needed in all of these
host-specific sites, as some of them can compensate for the lack of others by individ-
ually enhancing avian polymerase activity in mammalian cells, which suggests a degree
of redundancy among the adaptive mutations (25).

Although adaptive mutations have been demonstrated to enhance the activity of
avian influenza virus polymerases in mammalian cells, there is disparity in the literature
regarding the mechanism through which these mutations enhance polymerase activity.
For instance, it has been proposed that 627E could impair vRNP assembly in mamma-
lian cells by destabilizing polymerase and NP interactions (26–28), but this view has
been challenged in recent studies (17, 19). The PB2 627 residue has also been proposed
to regulate viral promoter binding (19, 29), interactions between the viral polymerase
and importin-� (30, 31), the interaction between the virus polymerase and a cellular
inhibitor of the virus infections in human cells (18), or the interaction between the
polymerase and an activating host factor (32). In support of the last item, the cellular
protein ANP32A was recently identified as an underlying factor in influenza A virus
polymerase host restriction mediated by residue 627 of PB2 (33). However, no molec-
ular mechanism has yet been presented that can explain how PB2 residue 627
determines host range.

In this study, using a combination of in vitro polymerase activity assays and
cell-based vRNP reconstitution assays, we characterized the role of the flexible
C-terminal two-thirds of PB2 in influenza virus polymerase activity. We report that the
influenza virus polymerase has different requirements for PB2 domains, depending on
whether it uses vRNA or cRNA as the template. We also show that the 627 domain of
PB2 is not required for basic polymerase activities such as binding of viral RNA and
transcription of viral RNA in vitro but that the domain is essential for viral RNA
replication and transcription in a cellular context. Furthermore, we show that a repli-
cating RNA polymerase that uses a vRNA as the template requires a second polymerase
with a 627 domain to stabilize the nascent cRNA in a cellular context.

RESULTS
PB2 mutants with C-terminal truncations form stable complexes with the PB1

and PA dimer. In order to address the function of the flexible C-terminal two-thirds of
PB2 (Fig. 1A) and to identify the minimal PB2 region required for core polymerase
functions, we generated pcDNA-PB2 constructs expressing PB2 of influenza A/WSN/33
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(H1N1) virus with systematic internal truncations but a preserved C-terminal NLS (Fig.
1B). We first sought to determine whether these PB2 mutants could form a heterotri-
meric complex with PB1 and PA and coexpressed them with PB1 and PA fused to a
tandem affinity purification tag (PA-TAP) in human HEK-293T cells. A polymerase with
a lysine-to-glutamic acid change at position 627 of PB2 (K627E), characteristic of avian
influenza virus polymerases, was also included. Purification of the recombinant poly-
merases from cell lysates using the protein A tag on PA and analysis of the purified
complexes by SDS-PAGE and silver staining showed that PB1 and PA formed a stable
dimer in the absence of PB2, in agreement with previous findings (34, 35). Western
blotting with an antibody raised against the N-terminal 180 amino acids of PB2 (36)
revealed that all PB2 truncation mutants as well as the K627E mutant formed hetero-
trimer complexes with PB1 and PA (Fig. 1C).

It is believed that polymerase complex formation takes place in the nucleus after
separate nuclear import of the PB1-PA dimer and the PB2 monomer (34, 37–39). To
confirm that complex assembly had indeed occurred in the nucleus and that the
deletion of the 627 domain had no impact on the subcellular localization of the
influenza virus polymerase, we coexpressed polymerase subunits PA, PB1, and PB2 in
HEK-293T cells and determined the localization of the PB2 subunit with or without the
627 domain using immunofluorescence. Confocal microscopy revealed a predomi-
nantly nuclear localization for both the wild-type PB2 polymerase subunit and the PB2
subunit lacking the 627 domain (Fig. 1D). Together, these results show that the PB2 lid,
cap-binding, mid-link, and 627 domains are not required for stable complex formation
with PA and PB1 and that the lack of a 627 domain does not affect the nuclear
accumulation of PB2.

Polymerase lacking the 627 domain of PB2 is active in vitro. In order to address
the question of whether the PB2 lid, cap-binding, mid-link, and 627 domains are
needed for the initiation of RNA synthesis, we performed in vitro activity assays using
purified recombinant polymerase. First, we evaluated the ability of the polymerases
with PB2 mutations to carry out the cap snatching and capped RNA primer extension
steps that are required of viral transcription. Purified polymerase was bound to vRNA
promoter, comprising a 15-nt-long RNA corresponding to the 5= end of vRNA and a
14-nt-long RNA corresponding to the 3= end of vRNA, and incubated with a 20-nt-long
radiolabeled capped RNA in the absence (to assess cap snatching) or presence (to
assess capped RNA priming) of nucleotides. In the absence of nucleotides, the wild-type
and K627E mutant polymerases produced two major cleavage products (Fig. 2A, left).
These major cleavage products were extended into two major transcription products in
the presence of nucleotides (Fig. 2A, right). The polymerase lacking the 627 domain
(Δ535-667) was also active in cap snatching but produced only a single cleavage
product and two extension products that were produced in unequal amounts. More-
over, the major extension product was shorter than the products of the wild-type and
K627E polymerases. This suggests that the 627 domain might affect the relative
positions of the cap-binding and endonuclease domains of the polymerase and that a
deletion of the 627 domain results in cleavage and initiation taking place at alternative
nucleotides of the capped RNA primer and vRNA template, respectively. Deletions of
additional domains of PB2 resulted in polymerases inactive in cap snatching, which is
in line with the fact that these all lack the cap-binding domain.

Next, we analyzed the ability of the polymerases to initiate viral replication, using
the extension of an ApG dinucleotide primer on vRNA or cRNA templates as a readout
(Fig. 2B). Polymerase was bound to vRNA promoter (see above) or cRNA promoter,
which comprises a 14-nt-long RNA corresponding to the 5= end of cRNA and a
15-nt-long RNA corresponding to the 3= end of cRNA, and incubated in the presence of
ApG and nucleotides. The wild-type polymerase, K627E polymerase, and the polymer-
ase lacking the 627 domain (Δ535-667) were all able to elongate an ApG primer,
producing 14- and 15-nt-long products on the vRNA and cRNA templates, respectively.
The polymerase lacking the 627, cap-binding, and mid-link domains (Δ248-676) was
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also able to elongate ApG on the vRNA template but was unable to elongate ApG on
the cRNA template. Further deletions into the nonflexible N-terminal third of PB2
resulted in polymerases incapable of ApG elongation on either template. Interestingly,
the polymerase lacking the 627 domain exhibited an increased ApG extension on both
templates (Fig. 2B).

Taken together, these results show that a polymerase lacking the 627 domain is
active in cap snatching, cap-dependent transcription initiation, and ApG extension in
vitro, indicating that the 627 domain is not required for core polymerase functions.
Furthermore, our data show that a polymerase lacking not only the 627 domain but
also the cap-binding and mid-link domains (Δ248-676) is active on the vRNA but not
the cRNA template, revealing differential requirements of the PB2 structure for viral
transcription and replication initiation on the vRNA and cRNA promoters.

The 627 domain is required for polymerase activity in cells. Having shown that
a polymerase lacking the 627 domain is active in transcription and ApG extension in
vitro, we next evaluated the role of the 627 domain in polymerase activity in a cellular
context using a mini-replicon assay. RNPs were reconstituted by coexpression of the
three polymerase subunits, NP, and segment 6 vRNA in human HEK-293T cells, and the
accumulation of positive- and negative-sense viral RNAs was analyzed by primer
extension. In contrast to results obtained in vitro (Fig. 2), but in agreement with
previous findings (18, 19), the “avian-like” K627E polymerase was significantly restricted
in its ability to transcribe and replicate vRNA compared to the “mammalian-like”
wild-type polymerase (627K) (Fig. 3A). Furthermore, the polymerase lacking the 627
domain (Δ535-667) was unable to generate viral RNAs. To address the question of

FIG 2 Polymerase lacking the PB2 627 domain is active in vitro. Purified recombinant polymerases were incubated in reaction mixtures
containing radiolabeled capped RNA and vRNA template in the absence (left) or presence (right) of nucleotides (A) or ATP, UTP, CTP,
[�-32P]GTP, ApG primer, and either vRNA or cRNA as the template (B). Reaction products were analyzed by 20% PAGE and
autoradiography. The graphs show the mean intensity signal relative to that of wild-type polymerase with K627 PB2 from three
independent biological replicates (n � 3), with error bars representing the standard errors of the means and the asterisks indicating
a significant difference from 627K (two-tailed one-sample t test) as follows: *, P � 0.05; **, P � 0.01; and ***, P � 0.001.
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whether the PB2 627 domain is also required for activity in avian cells, RNPs were
reconstituted in avian DF-1 cells. The wild-type mammalian-like polymerase and the
K627E avian-like polymerase showed similar levels of RNA accumulation, whereas the
mutant lacking the 627 domain was not able to replicate or transcribe vRNA (Fig. 3B).

Position 627 of PB2 has been implicated in RNP assembly, putatively by recruiting or
interacting with NP (26–28). To investigate whether the inability to synthesize vRNA in
cells of the polymerase lacking the 627 domain is associated with a disruption of
polymerase-NP interaction, we replaced the segment 6 vRNA with a 47-nt-long vRNA
that can be transcribed and replicated in an NP-independent manner (40). Primer
extension analysis showed significant levels of RNA accumulation by the avian-like 627E
polymerase (Fig. 3C), in agreement with previous findings that the 627E-mediated
restriction is diminished on short vRNA templates in mammalian cells (19). Deletion of
the 627 domain was also detrimental to polymerase activity on the short template. This
suggests that a disruption of polymerase-NP interactions is not the primary cause for
the lack of RNA synthesis by the 627 domain deletion mutant. However, we cannot
exclude the possibility that the 627 domain is also required for RNP assembly on longer
templates by being involved in polymerase-NP interactions.

Next we tested the ability of the polymerase lacking the 627 domain to bind vRNA
and cRNA in the cell. Recombinant polymerase with an active-site mutation in PB1
(D445A/D446A), which allows RNA binding but no transcription or replication (41), was
coexpressed with a 47-nt-long vRNA or cRNA and purified via a protein A tag on PA.
RNA that was bound by these purified polymerases was subsequently extracted and
analyzed by primer extension. While only low levels of copurifying vRNA and cRNA

FIG 3 The PB2 627 domain is required for polymerase activity in the cell. Human HEK-293T (A) or chicken DF-1 (B) cells were cotransfected with plasmids
expressing PA, PB1, wild-type or mutant PB2, NP, and segment 6 vRNA. Human HEK-293T cells (C) were cotransfected with plasmids expressing PA, PB1,
wild-type or mutant PB2, and a 47-nt-long segment 6-derived vRNA. Accumulation of mRNA, cRNA, and vRNA was assessed by primer extension. The graphs
show the mean intensity signal (with the mean intensity signal with no PB2 expressed subtracted) relative to that of wild-type PB2 627K polymerase from three
independent biological replicates (n � 3), with error bars representing the standard errors of the means and the asterisks indicating a significant difference from
the wild type (two-tailed one-sample t test) as follows: *, P � 0.05; **, P � 0.01; and ***, P � 0.001. (D) Polymerase subunits PA-TAP, PB1 with an active-site
mutation (PB1a), wild-type and mutant PB2, and segment 6-derived 47-nt-long vRNA or cRNA were coexpressed in HEK-293T cells and purified by IgG Sepharose
chromatography. Levels of vRNA or cRNA that copurified with polymerase were assessed by primer extension. The graphs show the mean intensity signal (with
the mean intensity signal with no RNA expressed subtracted) relative to that of wild-type 627K polymerase from three independent biological replicates (n �
3), with error bars representing the standard errors of the means and the asterisks indicating a significant difference from 627K (two-tailed one-sample t test)
as follows: *, P � 0.05; **, P � 0.01; and ***, P � 0.001.
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could be detected for a PA-PB1 dimer control, in line with previous observations that
the PB2 submit is required for efficient promoter binding (35), the copurifying vRNA
and cRNA levels were similar with the wild-type, K627E, and 627 domain deletion
mutant polymerases (Fig. 3D). This, together with the previous in vitro activity data,
shows that a polymerase lacking the 627 domain is able to bind to viral RNA.

Overall, our data show that the 627 domain is essential for the transcription and
replication of vRNA in a cellular context, independent of the host species and the
requirement for NP. However, the mutant lacking the 627 domain is able to bind vRNA
and cRNA. Furthermore, these data confirm previous findings that the amino acid at
position 627 of PB2 plays a central role in determining the ability of the polymerase to
transcribe and replicate vRNA in a mammalian host.

The PB2 627 domain is required for the accumulation of cRNA in infected cells.
The findings described above show that the PB2 627 domain is not required for core
polymerase functions in vitro but that it is essential for the accumulation of viral RNAs
in the cell. In a cellular context, free polymerase needs to be recruited to replicating
vRNPs to stabilize newly synthesized nascent cRNA and protect it from host nucleases
(41). In order to investigate whether a polymerase lacking the 627 domain can stabilize
cRNA in the cell, the PB1 active-site mutant, which binds but does not replicate or
transcribe vRNA, was preexpressed in combination with PA and wild-type or mutant
PB2 in human HEK-293T cells prior to an infection of the transfected cells with influenza
A/WSN/33 (H1N1) virus in the presence of actinomycin D, an inhibitor of cellular
transcription. Total RNA was isolated and viral RNAs were analyzed by primer extension.
As shown in Fig. 4, mammalian-like wild-type (627K) and avian-like 627E polymerases
stabilized cRNA equally well, whereas a PA-PB1 dimer and polymerase lacking the 627
domain were unable to stabilize cRNA.

Taken together, these results show that the PB2 627 domain is required for the
stabilization of cRNA in infected cells. However, the nature of amino acid at position 627
of PB2 does not affect the ability of the polymerase to stabilize cRNA.

DISCUSSION

In this study, we aimed to gain insight into the function of the C-terminal domains
of PB2 and in particular the 627 domain of the influenza A virus RNA polymerase. We
found that the PB2 627 domain is not required for the nuclear accumulation of PB2 and
polymerase heterotrimer assembly. A recombinant polymerase lacking the 627 domain
is able to carry out core polymerase functions such as capped RNA primer-dependent
transcription initiation and RNA synthesis in vitro. However, in a cellular context, it is
unable to replicate viral RNA, although it can still bind vRNA and cRNA templates.

FIG 4 The PB2 627 domain is required for cRNA accumulation in infected cells. PA, PB1, and wild-type or mutant PB2 were coexpressed
in HEK-293T cells in the presence (left) or absence (right) of NP. Twenty-four hours posttransfection, cells were infected with influenza
A/WSN/33 virus at an MOI of 10 in the presence of actinomycin D. Six hours postinfection, total RNA was extracted and analyzed by primer
extension. The graphs show the mean intensity signal relative to that of wild-type 627K polymerase from three independent biological
replicates (n � 3), with error bars representing the standard errors of the means and the asterisks indicating a significant difference from
627K (two-tailed one-sample t test) as follows: *, P � 0.05, and **, P � 0.01.
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Furthermore, vRNPs do not produce cRNA in infected cells if polymerase lacking the
PB2 627 domain is provided in trans, suggesting that the 627 domain may play a role
in viral RNA genome replication through mediating polymerase association.

The finding that PB2 627 domain is not required for nuclear accumulation and
polymerase assembly is consistent with previous data. PB2 is imported into the nucleus
through its C-terminal NLS using the classical importin-�/� nuclear import pathway
(42). Our data suggest that deletion of the 627 domain does not affect the interaction
of the C-terminal NLS with importin-�. Furthermore, the finding that the 627 domain is
not required for polymerase heterotrimer assembly is in agreement with previous
findings that N-terminal PB2 fragments can form stable complexes with the PB1-PA
dimer (35, 43).

Our data show that a polymerase lacking the 627 domain is capable of RNA
synthesis in vitro, which indicates that the 627 domain does not contribute to the core
polymerase functions. This is consistent with the location of the 627 domain on the
outside of the polymerase core, which is made up of PB1, the C-terminal domain of PA,
and an N-terminal third of PB2 (11–13). The 627 domain is also not required for RNA
template binding, as the RNA-binding functions reside in the polymerase core (12, 13).
The 627 domain-deficient polymerase was found to be able to cleave capped RNA and
extend the resulting capped RNA primer. However, interestingly, it produced a shorter
major capped RNA product in the extension reaction than the wild-type polymerase.
This suggests that the lack of the 627 domain affects the positioning of the cap-binding
domain and the polymerase active site and that the 627 domain plays a minor
structural role in influenza virus transcription.

Our study also revealed a differential requirement for the PB2 domains N terminal
of the 627 domain in ApG-primed RNA synthesis on vRNA and cRNA templates. While
a 627 domain-deficient polymerase could extend ApG on both vRNA and cRNA
templates, deletion of the 627, cap-binding, and mid-link domains resulted in a
polymerase that was able to extend ApG on a vRNA but not on a cRNA template. The
differential requirement of PB2 domains for these polymerase activities could be linked
to the different modes of initiation of the polymerase. While the initiation of replication
on the vRNA template occurs at positions 1 and 2, initiation on the cRNA template takes
place at positions 4 and 5, resulting in a pppApG dinucleotide that is used as a primer
for full-length vRNA synthesis after backtracking of the cRNA template in the polymer-
ase active site (6). Furthermore, initiation on the vRNA template requires a priming loop,
a �-hairpin protruding into the polymerase active site, but for initiation on the cRNA
template, the priming loop needs to retract (7). We thus speculate that deletion of the
mid-link and cap-binding domains might affect the ability of the template to backtrack
or the priming loop to retract, leading to the inhibition on the cRNA but not on the
vRNA template. Further deletions of PB2 resulted in polymerases with no detectable
activity in RNA synthesis, demonstrating that the N-terminal third of PB2 (amino acids
1 to 247) is not only structurally but also functionally a part of the polymerase core.

Although the 627 domain is not important for RNA polymerase activity in vitro, it is
absolutely essential for viral RNA accumulation in RNP reconstitution assays in a cellular
context. Previous studies suggested that the nature of the amino acid at position 627
affects the assembly of viral RNPs (26–28). However, we found that deletion of the 627
domain also prevents replication of short vRNA templates that can be replicated in the
absence of NP (40). This suggests that the inhibition of polymerase function by the
deletion of the 627 domain is not simply due to a disruption of an interaction between
the polymerase and NP.

How does, then, the PB2 627 domain contribute to viral RNA replication in a cellular
context? We found that vRNPs do not produce cRNA in infected cells if the polymerase
lacking the PB2 627 domain is provided in trans. Previous studies suggested that vRNPs
produce cRNA early in infection but it gets degraded unless polymerase and NP reach
sufficient levels to bind and stabilize it (41). However, these studies did not exclude the
possibility that, in a cellular context, the stabilizing polymerase also needs to associate
with the replicating polymerase and possibly trans-activate it before cRNA is produced.
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We found that vRNA and cRNA expressed through plasmid transfection could be
copurified with the polymerase lacking the 627 domain, suggesting that RNA binding
is not affected, in agreement with the in vitro data described above. If the 627
domain-deficient polymerase can bind cRNA, it follows that it must be deficient in
binding and/or trans-activating the vRNP-resident polymerase. Indeed, oligomerization
of the polymerase heterotrimer has been proposed (35, 43, 44), and a trans-activating
or a trans-acting polymerase has been implicated in replication (5, 8). It is tempting to
speculate that the PB2 627 domain might be involved in the interaction between the
RNP-resident and the trans-acting or trans-activating polymerase; alternatively, the 627
domain might be involved in the interaction with a cellular factor that could be
important for the recruitment of the trans-acting or trans-activating polymerase to
RNPs. Recently, cellular ANP32A has been identified as a host factor underlying the host
restriction mediated by PB2 amino acid residue 627 (33). Avian-like (PB2-627E) and
mammalian-like (PB2-627K) polymerases are equally able to stabilize cRNA, suggesting
that while the 627 domain as a whole might be important for polymerase recruitment,
the nature of position 627 itself does not affect this process.

In summary, we demonstrate here that the PB2 627 domain of the influenza virus
RNA polymerase is not involved in core catalytic functions of the polymerase but that
it is essential for the replication of RNPs in a cellular context. We propose that the 627
domain in RNA-free polymerases is necessary for recruitment of the polymerase to
replicating vRNPs. These findings further our understanding the role of the PB2 627
domain in transcription and replication of the influenza virus RNA genome by the viral
polymerase.

MATERIALS AND METHODS
Cells, viruses, and plasmids. Human embryonic kidney 293T cells (HEK-293T) and chicken embry-

onic fibroblasts (DF-1) were cultured in Dulbecco modified Eagle medium (DMEM) supplemented with
10% fetal calf serum (FCS). Madin-Darby bovine kidney (MDBK) epithelial cells were cultured in minimal
essential medium (MEM) supplemented with 10% FCS and 2 mM L-glutamine. All cells were maintained
at 37°C and 5% CO2. Recombinant wild-type influenza A/WSN/33 (H1N1) virus was generated using the
pHW2000 eight-plasmid system (45). Plasmids pcDNA-NP, pcDNA-PA, pcDNA-PB1, pcDNA-PB2 (46),
pcDNA-PA-TAP (38), pcDNA-PB1a (41), and pcDNA-PB2-627E (27), expressing influenza A/WSN/33 virus
proteins, as well as the vRNA-expressing plasmids pPOLI-NA-RT (47) and pPOLI-NA47 and pPRC425-NA
(19) have been described previously. Plasmid pcDNA3A has also been described previously (46).
pcDNA-PB2 plasmids expressing PB2 with internal deletions were made by site-directed PCR mutagen-
esis. pPOLI-cNA47 was generated from pPOLI-cNA-RT (48) as described for pPOLI-NA47.

Immunofluorescence microscopy. HEK-293T cells grown on sterilized glass coverslips in 24-well
plates were transiently transfected with 0.25 �g each of pcDNA-PA, pcDNA-PB1, and pcDNA-PB2/pcDNA-
PB2Δ535-667/pcDNA3A using Lipofectamine 2000 reagent (Invitrogen) and OPTIMEM (Invitrogen) ac-
cording to the manufacturer’s instructions. Forty-eight hours posttransfection, cells were fixed for 15 min
in 4% formaldehyde in 250 mM HEPES (pH 7.9) and permeabilized for 15 min in 0.25% Triton X-100 in
phosphate-buffered saline (PBS). Cells were blocked in PBS containing 10% normal goat serum, 0.5%
Triton X-100, and 3% bovine serum albumin overnight at 4°C. Cells were stained with a polyclonal rabbit
antibody raised against the N-terminal 180 amino acids of PB2 (36) and an Alexa Fluor 532-conjugated
anti-rabbit secondary antibody (Thermo Fisher). Coverslips were mounted in Mowiol containing 4=,6-
diamidino-2-phenylindole (DAPI), and images were obtained with an Olympus FV1000 confocal laser
scanning microscope. Image analysis was carried out using ImageJ software (49).

Tandem affinity purification of recombinant influenza virus polymerase. HEK-293T cells were
transiently transfected in 10-cm dishes using 5 �g each of pcDNA-PA-TAP, pcDNA-PB1, and pcDNA-PB2
(or PB2 mutant as indicated) using Lipofectamine 2000 reagent (Invitrogen) and OPTIMEM (Invitrogen)
according to the manufacturer’s instructions. Cells were harvested 48 h posttransfection, lysed in 500 �l
of Tris lysis buffer (50 mM Tris-HCl [pH 8.0], 200 mM NaCl, 25% glycerol, 0.5% Igepal CA-630, 1 mM
dithiothreitol [DTT], 1 mM phenylmethylsulfonyl fluoride [PMSF], 1� complete EDTA-free protease
inhibitor cocktail tablet [Roche]) at 4°C for 1 h and centrifuged at 17,000 � g for 5 min. The cleared cell
lysate was diluted 1:5 in binding buffer (20 mM Tris-HCl [pH 8.0], 150 mM NaCl) and incubated with
washed IgG Sepharose (GE Healthcare) (50 �l per sample) at 4°C for 3 h. After binding, the IgG Sepharose
beads were washed three times in wash buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 10% glycerol,
0.1% Igepal CA-630, 1 mM PMSF). Recombinant polymerase was released using tobacco etch virus
(AcTEV) protease in elution buffer (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 10% glycerol, 0.1% Igepal
CA-630, 1 mM dithiothreitol, 1 mM PMSF, 1� complete EDTA-free protease inhibitor cocktail tablet) at
4°C overnight and cleared from the beads at 17,000 � g for 5 min. Purified polymerase was analyzed by
SDS-PAGE and silver staining (SilverXpress; Invitrogen) as well as Western blotting using a polyclonal
rabbit antibody raised against the N-terminal 180 amino acids of PB2 (36) as the primary antibody and
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a horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG as the secondary antibody (Sigma-
Aldrich) and the Immobilon Western chemiluminescence HRP substrate kit (Millipore) for detection.

In vitro capped-RNA cleavage and extension assays. To analyze the capped-RNA cleavage and
extension activity of the viral polymerase, first a synthetic 20-nucleotide RNA with 5= diphosphate
(5=-ppAAUCUAUAAUAGCAUUAUCC-3=) (Chemgenes) was capped with a radiolabeled cap 1 structure in
20-�l reaction mixtures containing 1 �M RNA, 0.25 �M [�-32P]GTP (3,000 Ci/mmol; Perkin-Elmer), 0.8 mM
S-adenosylmethionine, 0.5 U/�l of vaccinia virus capping enzyme (New England BioLabs [NEB]), and 2.5
U/�l of 2=-O-methyltransferase (NEB) at 37°C for 1 h. The product was analyzed by 16% denaturing PAGE,
excised, eluted overnight in deionized water, and desalted using NAP-10 columns (GE Healthcare).
Capped-RNA cleavage assays were performed in a reaction mixture containing 5 mM MgCl2, 1 mM DTT,
2 U/�l of RNasin, 0.5 �M 5= vRNA promoter, 0.5 �M 3= vRNA promoter, �1,500 cpm of capped RNA, and
5 ng/�l of polymerase in 0.5� polymerase elution buffer. Extension assays were performed in a reaction
mixture containing 5 mM MgCl2, 1 mM DTT, 2 U/�l of RNasin, 0.5 �M 5= vRNA promoter, 0.5 �M 3= vRNA
promoter, 1 mM ATP, 0.5 mM UTP, 0.5 mM CTP, 0.5 mM GTP, �1,500 cpm of capped RNA primer, and
5 ng/�l of polymerase in 0.5� polymerase elution buffer. Reaction mixtures were incubated at 30°C for
4 h and stopped by addition of an equal volume of 80% formamide, 1 mM EDTA, and bromophenol blue
and xylene cyan dyes and incubation at 95°C for 3 min. Reaction products were resolved by 20%
denaturing PAGE containing 7 M urea in Tris-borate-EDTA (TBE) buffer and visualized by autoradiogra-
phy. ImageJ was used to analyze the 32P-derived signal (49).

In vitro ApG extension assay. The ability of purified polymerase to extend an ApG dinucleotide was
tested as described previously (6). Reaction mixtures containing 1 mM ATP, 0.5 mM CTP, 0.5 mM UTP, 0.25 mM
ApG, 5 mM MgCl2, 1 mM DTT, 2U/�l of RNasin, 0.05 �M [�-32P]GTP (3,000 Ci/mmol; Perkin-Elmer), 0.5 �M 5=
vRNA (or cRNA), 0.5 �M 3= vRNA (or cRNA), and 5 ng/�l of polymerase in 0.5� polymerase elution buffer were
incubated at 30°C for 1 to 4 h. Reactions were stopped by adding an equal volume of 80% formamide, 1 mM
EDTA, and bromophenol blue and xylene cyan dyes and incubation at 95°C for 3 min. Reaction products were
resolved by 20% denaturing PAGE containing 7 M urea in TBE buffer and visualized by autoradiography.
ImageJ was used to analyze the 32P-derived signal (49).

RNP reconstitution and primer extension analysis. HEK-293T or DF-1 cells in DMEM supplemented
with 10% FCS were transiently transfected in 35-mm dishes using Lipofectamine 2000 (Invitrogen) and
OPTIMEM (Invitrogen) according to the manufacturer’s instructions. One microgram each of pcDNA-PA,
pcDNA-PB1, pcDNA-PB2, and pcDNA-NP as well as a vRNA-expressing plasmid (pPOLI-NA-RT or
pPRC425-NA for full-length neuraminidase [NA] segment vRNA template or pPOLI-NA47 for a short
[47-nt] vRNA template) was transfected. Cells were harvested 48 h posttransfection. Total RNA was
extracted using TRI Reagent (Sigma-Aldrich) and dissolved in 10 �l of double-distilled water (ddH2O). The
accumulation of viral mRNA, vRNA, and cRNA was analyzed by primer extension using 32P-labeled
primers specific for negative- or positive-sense NA RNA (50) and negative- or positive-sense NA47 RNA
(19). Primer extension products were analyzed by 6 to 14% denaturing PAGE with 7 M urea in TBE buffer
and detected by autoradiography. ImageJ was used to analyze the 32P-derived signal (49). Signal levels
were adjusted to 5S rRNA, which was used as an internal control.

RNA binding assay. HEK-293T cells in DMEM supplemented with 10% FCS were transiently trans-
fected in 10-cm dishes with 5 �g of pcDNA-PA-TAP, pcDNA-PB1a, pcDNA-PB2, and pPOLI-NA47 or
pPOLI-cNA47 using Lipofectamine 2000 (Invitrogen) and OPTIMEM (Invitrogen) according to the man-
ufacturer’s instructions. Recombinant polymerase was purified after 48 h as described above. RNA was
extracted from purified polymerase using TRI Reagent (Sigma-Aldrich) and dissolved in 10 �l of ddH2O.
The presence of RNA bound to polymerase was analyzed by primer extension using32P-labeled primers
specific for negative- or positive-sense NA47 RNA (19). Primer extension products were analyzed by 14%
denaturing PAGE with 7 M urea in TBE buffer and detected by autoradiography. ImageJ was used to
analyze the 32P-derived signal (49).

cRNA stabilization assay. 293T cells were transiently transfected in 35-mm dishes as described
above with 1 �g each of pcDNA-PA, pcDNA-PB1a, and pcDNA-PB2 with or without 2 �g of pcDNA-NP.
Twenty-four hours posttransfection, cells were infected with influenza A/WSN/33 virus at a multiplicity of
infection (MOI) of 10 in the presence of 10 �g/ml of actinomycin D. Total RNA was extracted 6 h
postinfection and analyzed by primer extension as described above.
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