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Abstract: Recycling plant matter is one of the challenges facing humanity today and depends on
efficient lignocellulose degradation. Although many bacterial strains from natural substrates demon-
strate cellulolytic activities, the CAZymes (Carbohydrate-Active enZYmes) responsible for these
activities are very diverse and usually distributed among different bacteria in one habitat. Thus, using
microbial consortia can be a solution to rapid and effective decomposition of plant biomass. Four
cellulolytic consortia were isolated from enrichment cultures from composting natural lignocellulosic
substrates—oat straw, pine sawdust, and birch leaf litter. Enrichment cultures facilitated growth of
similar, but not identical cellulose-decomposing bacteria from different substrates. Major components
in all consortia were from Proteobacteria, Actinobacteriota and Bacteroidota, but some were specific
for different substrates—Verrucomicrobiota and Myxococcota from straw, Planctomycetota from
sawdust and Firmicutes from leaf litter. While most members of the consortia were involved in the lig-
nocellulose degradation, some demonstrated additional metabolic activities. Consortia did not differ
in the composition of CAZymes genes, but rather in axillary functions, such as ABC-transporters and
two-component systems, usually taxon-specific and associated with CAZymes. Our findings show
that enrichment cultures can provide reproducible cellulolytic consortia from various lignocellulosic
substrates, the stability of which is ensured by tight microbial relations between its components.

Keywords: lignocellulose decomposition; microbial consortium; CAZymes; glycoside hydrolases;
metagenome sequencing; amplicon sequencing

1. Introduction

Plant biomass is one of the most abundant sources of organic carbon on the planet
Earth, specifically due to the functioning of the modern industrial sectors [1]. Huge
amounts of woody and herbaceous residues are generated as a byproduct of agriculture
and forestry [2,3]. Most often these residues are considered waste; however, they can be
reintegrated into the carbon cycle as a basis for the production of valuable products, such
as biofuels, fertilizers, enzymes, organic acids, etc. [4].

The technical challenge of plant biomass handling lies in its chemical composition,
the main component of which is lignocellulose [5], which, in turn, consists of three main
compounds—cellulose, hemicellulose, and lignin, all highly recalcitrant to decomposi-
tion [6,7]. Other, less abundant compounds include proteins, pectin, soluble sugars, min-
erals, and lipids [8]. Their ratio differs between different lignocellulose-containing plant
materials: cellulose makes up 9–80%, hemicellulose 10–50%, and lignin 5–35% [9]. The
core of lignocellulose are cellulose microfibrils, surrounded by covalently linked molecules
of hemicellulose and lignin. Cellulose is an unbranched homopolymer of glucose, while
hemicellulose is a branched heteropolymer of different sugar residues, and lignin is an
organic polymer derived from phenylpropane precursors [6,10].
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Decomposition of lignocellulose is achieved by microorganisms using various mul-
tienzyme complexes. Cellulose processing is performed by three classes of enzymes:
(1) endo-β-glucanases, which make cleavages in the internal bonds of the cellulose chain;
(2) exo-β-glucanases, which cleave two (producing cellobiases) to four glucose residues
from the cut in the chain; and (3) β-glucosidases (cellobiases), which convert cellobiose
to glucose [11]. Hemicellulose decomposition requires additional specific enzymes,
aimed at branching, acetylated sites, and different saccharide moieties, e.g., xylanases
and mannases [12]. These enzymes belong to the group of glycoside hydrolases (GHs)
which catalyze the hydrolysis of glycosidic bonds [13]. GHs work in conjunction with
Carbohydrate-binding modules (CBMs), which are covalently attached to the catalytic
domains of the enzymes and promote interaction of the enzyme with the substrate [14].
Variability of GHs and CBMs ensures affinity to different sources of lignocellulose [15,16].
Other enzymes, which take part in a cellulolytic complex, are glycoside transferases
(GT), which catalyze the transfer of saccharide moieties [17]. They work with a variety
of donors and both saccharide and non-saccharide acceptors; thus, their diversity is also
very high [18]. Lignin is degraded by a spectre of oxidoreductases, including laccases,
high redox potential ligninolytic peroxidases, and oxidases [19]. All these enzyme cate-
gories are cataloged as modules in the Carbohydrate-Active enZYmes (CAZy) Database,
where they are classified into families [20]. These categories are highly diverse, e.g.,
GHs module consists of more than 100 families, defined more by sequence than by
function [21]. Thus, enzymes specific for cellulose and hemicellulose decomposition are
spread across many families of GHs. Enzymes for lignin decomposition are also present
in CAZy’s Auxiliary Activities (AAs) module [22].

Both bacteria and fungi participate in the process of lignocellulose decomposition,
using GHs of the same families [23,24]. Fungal enzyme systems are well studied, but unlike
bacteria, they are harder to cultivate, and they do not tolerate extreme environmental
conditions; thus, they are costlier to use industrially [25]. Bacteria, on the other hand, are
widely distributed in aerobic, anaerobic, saline, and extreme temperature habitats, and
therefore can serve as a source of universal biodegraders. The most active members of
cellulolytic community are found in Actinobacteria, Proteobacteria, Firmicutes, Chloroflexi,
and Bacteroidetes phyla [26].

There are works focused on isolating cellulolytic bacterial strains from various biomass-
containing environments, such as soils or plant and manure compost [27–29]. All these
studies propose isolated strains as candidates for industrial lignocellulose conversion.
However, in natural ecosystems’ degradation of lignocellulose, biomass is carried out by
multiple microorganisms with highly diverse spectres of enzymes, adaptive to different
environmental conditions [30,31]. Thus, using bacterial consortia for biomass decompo-
sition can overcome such difficulties in handling one-strain systems, such as negative
feedback regulation and metabolite repression [32,33]. A way to isolate microbial consor-
tium is by making enrichment cultures from natural communities using a specific carbon
source [26,34,35]. This way the complex community of a natural ecosystem is funneled
into simplified (with less variety) functional consortium specialized in this source [36].
Cortes-Tolalpa showed that microbial consortia derived from three different natural forest
sources and enriched by wheat straw develop similar lignocellulolytic functional patterns
while retaining unique taxonomic imprints [30]. However, not a lot of studies are focused
on selecting reproducing minimal stable microbial consortia, which could be effectively
saved and stored without altering their features.

In our study we aimed to isolate and explore stable cellulolytic consortia from enrich-
ment cultures from composting plant biomass, common for northern regions of Europe-oat
(Avena) straw, pine (Pinus) sawdust, and birch (Betula) leaf litter. These substrates represent
different types of lignocellulose biomass—waste biomass (byproducts of agriculture and
forestry) and virgin biomass (parts of naturally occurring plants), so our experiment aimed
at incorporating different sources of common plant residues and testing their lignocel-
lulolytic potential. We assessed the taxonomic structure and functional profiles of the
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consortia derived from these substrates using methods of high-throughput sequencing of
16S rRNA gene amplicons and full metagenome analysis.

2. Results

As a result of the experiment on enrichment cultures from three different composting
plant biomass sources, we acquired four reproducible microbial consortia with different
phenotypic features, such as coloration of the filter paper and gas emissions (Figure S1).
All consortia visually macerated filter paper (Figure 1). The specifications of the consortia
are presented in Table 1. They covered all cellulose-containing substrates used in the
experiment and represented some of the composting periods: consortia OS2 and OS4 from
oat straw (2 and 4 months), consortium PS4 from pine sawdust (4 months), and consortium
BL6 from birch leaf litter (6 months). Other combinations of substrates and composting
periods did not result in reproducible consortia. Different composting substrates required
different dilutions for the acquisition of minimal cellulolytic microbial cultures.
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Figure 1. Maceration of the filter paper by each microbial consortium. OS2—oat straw, 2-month
composting period; OS4—oat straw, 4 month; PS4—pine sawdust, 4 month; BL6—birch leaf litter,
6 month. The red scale bar is 2 mm.

Table 1. Characteristics of isolated microbial consortia.

Consortia ID Substrate Composting Time,
Months

Substrate
Dilution

Color of
Consortia Gas Formation

OS2 oat straw 2 106 yellow no
OS4 oat straw 4 106 brown yes
PS4 pine sawdust 4 103 yellow no
BL6 birch leaf litter 6 104 transparent yes

We aimed to address the microbial composition of isolated consortia by sequencing
16S rRNA gene and ITS amplicon libraries. Eukaryotes in all consortia were identified
(both from amplicon and metagenome sequencing data) only as a minor component. The
relative abundance of eukaryotes in the consortia according to metagenomic data was only
0.2%. For consortia OS2 and BL6, the presence of ciliates was shown (Figure S2). Consortia
OS4 and BL6 had some proportion of unidentified fungi. Based on the obtained data, we
can state that the isolated consortia are predominantly bacterial.

2.1. Taxonomic Analysis of Cellulolytic Consortia by Amplicon Sequencing
2.1.1. Alpha and Beta-Diversity of Consortia

As a result of amplicon sequencing, we acquired 24 libraries (six replicates for each of
the four consortia) of 16S rRNA gene amplicons totaling 903,148 reads, which were divided
into 535 phylotypes. All consortia demonstrated significant differences across the three
indices of alpha-diversity (Figure 2). The highest values of all alpha-diversity indices were
detected for the OS2 consortium, which was isolated from the substrate with the shortest
composting period. Consortia OS4 and PS4, which were isolated from the substrates with
4-month composting periods, did not show significant differences in Simpson and Inverted
Simpson indexes. Consortia BL6 had higher values of these indices than OS4 and PS4, but
lower than OS2.
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Figure 2. Alpha-diversity of four consortia (OS2, OS4, SD4, BL6) accessed by 3 indices—Observed,
Shannon, InvSimpson, based on 16S rRNA gene libraries. Significant differences assessed by the
Mann–Whitney test: (*) p-value ≤ 0.05; (**) p-value ≤ 0.01; (***) p-value ≤ 0.001; (****) p-value ≤ 0.0001.

According to the beta-diversity metrics of 16s rRNA sequencing data, all four consortia
were significantly separated from each other (R2 = 0.7, p-value < 0.001) (Figure 3), even OS2
and OS4 from the same substrate (R2 = 0.85, p-value = 0.0018). However, distances between
consortia from oat straw were shorter than between others from different substrates. Bray–
Curtis, UniFrac, and Weighted UniFrac metric systems showed the same trend but revealed
differences in varying degrees (Figure S3).
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2.1.2. Taxonomic Composition of Consortia

According to amplicon sequencing, the main components of all consortia belonged
to Proteobacteria and Bacteroidota phyla (Figure S4). To select the minimal cellulolytic
community, consortia cultivated from the maximum dilution of the substrate, which re-
tained the ability to decompose the paper filter, were taken into the study. Despite this,
it turned out that each consortium consists of around a hundred phylotypes. Almost all
of them were unique to different substrates, and only three minor phylotypes belonging
to Xanthobacter, Pseudoxanthomonas and Dokdonella) were common for all four consortia
(Figure S5). However, phylotypes pooled on the genus level revealed overlapping represen-
tatives. Major genera can be seen on the heatmap with relative abundance data (Figure 4).
Pseudoxanhtomonas and Devosia genera from Proteobacteria were a major part in all consor-
tia. Other phylotypes were distributed more differentially: Sporocytophaga (Bacteroidota)
in OS2 and PS4; Asticcacaulis (Proteobacteria) in OS2, OS4, and PS4; Cellulomonas (Acti-
nobacteroidota) in OS2, OS4, and BL6; Caenimonas and Cellvibrionaceae (Proteobacteria) in
OS4; Flavobacterium (Bacteroidota) and Blrii41 (Myxococcota) in OS2 and OS4; Paenibacillus
(Firmicutes) and Methyloversatillis (Proteobacteria) in BL6; Cohnella (Firmicutes) in PS4 and
BL6; Pirellula (Planctomycetota) in PS4.
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To overcome the limitations of relative abundance analysis, we compared phylotype
composition between consortia by compositional PhILR-transformation analysis, which
reveals associated shifts in taxon composition between each pair.

Consortia OS2 and OS4 from an oat straw substrate shared the most phylotypes,
despite having different phenotypes: the number of the common phylotypes was 65, 68.4%
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of the total read count from these consortia (Figure S6). Only 4% of the total reads were
unique for OS4 in comparison with OS2, which had 26.8% of unique reads. The most
abundant phylotypes from both consortia were similar, and consisted of representatives of
Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, Myxococcota, Actinobacteria,
and Verrucomicrobia. The main differences were at the low taxonomic level in members of
Bacteroidota (Sphingobacteriaceae, between representatives of the genus Parapedobacter)
and Proteobacteriota phyla (between phylotype groups within Comamonadaceae, Devosi-
aceae, Xanthomonadaceae, and Bosea). Combined data demonstrate that OS4 consortium
differs from OS2 in reduced phylotype diversity and probably represents a microbial com-
munity with an increased specialization in cellulose degradation. Based on this conclusion,
other comparisons were made only between consortia OS4, PS4, and BL6.

The comparison of the consortia from sawdust and leaf litter (PS4 and BL6) with those
from straw (OS2 and OS4), revealed differences at higher taxonomic levels. Consortia OS4
and PS4 shared 29.6% of the total read count (Figure S7), OS4 and BL6—33.3% (Figure
S8), PS4 and BL6—16.4% (Figure S9). In the PS4 consortium, the main changes occured
within Alphaproteobacteria. The representation of Rhizobiales was increased, but at the
same time, the representation of the Devosia genus decreased. The presence of Burkholderi-
ales decreased, but Alcaligenaceae (Achromobacter, Pigmentiphaga) increased. In the order
Caulobacterales, the composition of phylotypes within the genus Asticcacaulis changed.
Among other phyla, a decrease in the diversity of Verrucomicrobiota with an increase in
phylotypes of the genus Opitutus was noted.

The BL6 consortium from leaf litter differed most from the others in the presence of a
large number of representatives of the Firmicutes phylum, which were underrepresented
in other consortia. The Alphaproteobacteria group was characterized by the increase in
Magnetospirillum and the decrease in Roseomonas phylotypes, changes in the composition of
Caulobacteraceae (phylotypes of Caulobacter, Brevundimonas, Phenylobacterium), decrease
in Bosea phylotypes, and increase in Afipia. Gammaproteobacteria were characterized
by a decrease in Comamonadaceae (only the genus Ramlibacter is represented in the leaf
litter) with the presence of genera Methyloversatilis and Achromobacter. Within the phylum
Bacteroidota, the representation of the genus Mucilaginibacter increased, which replaces
other genera from Sphingobacteriales (Parapedobacter, Olivibacter).

For taxonomical comparisons of consortia, we used two approaches - relative abun-
dance data and compositional analysis of balances, which allowed us to detect differences
at and below genus level. Our data shows that consortia isolated from enrichment cultures
of different substrates are mostly bacterial and differ in the composition of major phylo-
types. Each substrate left an imprint on the overall taxonomic composition; however, the
composting facilitated growth of specific microbiota, which were classified into different
phylotypes, but attributed to common taxonomic groups.

2.2. Functional Analysis of Cellulolytic Consortia

Cellulolytic capacities of obtained consortia were accessed by full metagenome se-
quencing on the ONT platform. Four metagenomes were assembled with comparable
metrics (Table 2). The number of contigs varied between 1466–1789 with the total length
ranging between 86–108 Gb. Consortium BL6 had the highest total length of contigs and
N50 value. Consortium OS2 had the highest number of contigs with the lowest total length.

Table 2. Characteristics of assembled metagenomes of isolated microbial consortia.

Consortium ID Contigs Longest Contig, bp Total Contigs Length N50

OS2 1879 1,582,432 86,161,676 72,582
OS4 1612 5,307,558 96,558,959 131,290
PS4 1466 2,705,151 87,318,114 112,897
BL6 1748 3,656,276 108,520,437 186,463
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2.2.1. Metagenome Taxonomy

The taxonomy obtained by Kraken2 coincided with the results of the 16S rRNA gene
libraries. Relative abundance could not be compared because Kraken normalizes by the
number of contigs, which is very variable in the assembled genomes. Nonetheless, top
taxa from consortia were detected both by amplicon libraries and metagenomes (Sup-
plement File), including representatives of Proteobacteria, Actinobacteriota, Firmicutes,
Bacteroidota, Verrucomicrobiota, Myxococcota and Planctomycetota. Some of the major
representatives were annotated on the species levels: Aquamicrobium sediminum, Shinella
granuli, Devosia elaelis, Asticcacaulis tiandongensis, Opitutus terrae, Cellulomonas gelida in OS2
and OS4, Sporocytophaga myxococcoides in OS2 and PS4, Pseudoxanthomonas japonensis in
OS4 and BL6, Achromobacter denitrificans, Ruminiclostridium hungatei and Methyloversatilis
discipulorum in BL6, Youhaiella tibetensis in PS4.

2.2.2. MAGs

Based on the metagenomic assemblies, 19 (2 from OS2, 5 from OS4, 5 from PS4-5, 6 from
BL6) metagenome-assembled genomes (MAGs) were described that meet the following
requirements: completeness of more than 90%, contamination of less than 5%. (Table S1).
Around half of the MAGs attributed to the most abundant microorganisms, revealed by
amplicon sequencing, such as Cellulomonas, Sporocytophaga, Pseudoxanthomonas, Devosia,
Asticaccalulis, Opitutus, which had a great variety of pathways for lignocellulose degrada-
tion (Figure 5). There were also MAGS attributed to genera, which presented a smaller
component of the consortia: Dokdonella, Luteimonas, Afipia, Terricaulis, Methyloversatilis and
Magnetospirillum, which did not have as many genes with CAZy domains. Additionally,
these MAGs had genes responsible for microbial interactions: quorum sensing, antimi-
crobial resistance, and CRISPR-Cas systems. All MAGs show genes associated with the
nitrogen, sulfur, and methane metabolic activities, especially those from BL6 consortium.
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Ligninases (eLignin Database pathways, Metacyc, EC); DN—Denitrification (DRAM); MT—C1-
methane (DRAM); SU—Sulfur metabolism-sulfite reductase, thiosulfate reductase, thiosulfate oxi-
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GT—GlycosylTransferases (DRAM); GS—Genome Size in Mb.
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2.2.3. CAZy Composition

All CAZy categories were distributed similarly across all consortia (Table 3). At
the first place were GHs (41.9–47%), then GTs (26.1–30.6%), CBMs (10.2–12%), CEs
(9.5–11.1%), AAs (2.6–4.1%), and PLs (1.4–2.6%). Most CAZymes are modular with
genes encoding several domains from one or more of the CAZy categories [37]. Thus,
we tried to address the composition of CAZy modules in the metagenomes. In our
consortia, the most frequently occurring pairs of modules in CAZyme genes belonged
to combinations of GH, CBM and GT modules: GH13 + CBM48 (43), GH5 + GH9 (48),
GH43 + GH51 (13), GT2 + GT4 (12) (Figure S10).

Table 3. CAZy module composition in metagenomes of isolated microbial consortia, % of CAZy
count. AAs—Auxiliary Activities, CBMs—Carbohydrate-Binding Modules, CEs—Carbohydrate
Esterases, GHs—Glycoside Hydrolases, GTs—Glycosyl Transferases, PLs—Polysaccharide Lyases.

Consortium
ID AAs CBMs CEs GHs GTs PLs

OS2 4.1 10.8 10.7 43.1 29.2 2.2
OS4 3.7 11.3 11.1 41.9 30.6 1.4
PS4 2.6 10.2 11.1 44.3 30.0 1.8
BL6 2.7 12.0 9.5 47.0 26.1 2.6

It has been reported that CAZyme genes, along with transcription factors and trans-
porters, are associated in clusters of several closely spaced genes, the so-called CAZyme
gene clusters—CGCs [38]. CGC-finder demonstrated that, in all four consortia, around
32.5% of CAZyme genes were grouped into CGCs, which contained from 2 to 35 genes,
with a median of 5 genes. BL6 consortium had the biggest cluster size and proportion of
CAZyme genes in it. Most frequently CGCs were found in Rhizobieceae (Devosia, Bosea,
Shinella, Bradyrhizobium, Agrobacterium, Aquamicrobium), Xanthomonadaceae (Pseudoxan-
thomonas and Luteimonas), and Paenibacillaceae (Cohnella) (Table S3).

In total, we detected 2854 GH genes, which were attributed to approximately
120 different bacterial genera (Table S2). The highest number of GH genes were found
in Devosia (Alphaproteobacteria), Cohnella (Firmicutes), Cellulomonas (Actinobacteriota),
Asticcacaulis (Alphaproteobacteria), Pseudoxanthomonas (Gammaproteobacteria), and
Sporocytophaga (Bacteroidota), which were detected as major genera by the amplicon
sequencing. Most of the other major phylotypes identified at the amplicon sequencing
stage were confirmed to have GHs, apart from Caenimonas and Chryseobacterium, which
did not have GHs at all, and Flavobacterium, Pirellula, Terrimonas, Dyadobacter, and
Protochlamydia, which had singular representatives of GH.

The most widely represented groups of GH families are shown in Figure 6. The
functional pattern is similar for all consortia, with the prevailing presence of GH13, GH43,
GH23, and GH3 families. However, the opposite situation could be described for CBM-their
pattern differs between consortia (Figure S11). Families CBM6, CBM 35, and CBM44 were
more characteristic of the consortium PS4, families CBM2 and CBM13, of OS2 and OS4,
and families CBM16, CBM32, CBM61, and CBM66-of BL6. The highest proportion value of
CBMs in the metagenomes was in BL6 consortium (3.2%), and the lowest in OS2 (1.7%).
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Combined 16S and metagenomic data show that most of the major phylotypes are
attributed to the potential active cellulolytic bacteria in the isolated microbial consortia.

2.2.4. Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) is modeled to be used with a differential
expression analysis tool in order to determine whether a predefined set of genes (such as GO
term or KEGG pathway) shows statistically significant differences between two biological
states. Due to the specifics of our data, we applied GSEA to determine which KEGG
categories, not limited to CAZy, are over-represented in metagenomes of our cellulolytic
consortia. It was performed pairwise between OS4, PS4, and BL6. After the comparisons,
the most characteristic KEGGs of each consortium were selected (Table S4).

The OS4 consortium was very similar to OS2 and was characterized by the over-
representation of ion transport genes (TonB receptor K02014, siderophore transport K02014,
K02031), ABC transporters associated with oligosaccharide transport (K02035, K02031),
peptidase activity (K00281, K01256, K01354, K00681, K01941), 4-hydroxyphenylpyruvate
dioxygenase (K0047), transposase (K07497), exporters (K06147, K18138, K03296), aldehyde
dehydrogenase (K00128). The adhesin transporter genes (K21449, K02031) should also
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be noted, which can be associated with quorum sensing and the high representation of
Myxococcota in this consortium.

In the PS4 consortium we detected a higher representation of ABC transporters and per-
meases, often associated with oligosaccharide transport (K01990, K01992, K02004, K02025,
K01998, K01998), ABC exporters (K03296, K03296), ion transport genes (TonB receptor
K02014, siderophore transport K02014, heavy metals-K15726, K03455). At the same time,
there was an over-representation of genes of energy metabolism for the final stages of
fermentation (alcohol dehydrogenase K00001) and respiration (K02274, K01681), genes as-
sociated with translation (K01872, K01426, K01876, K01870, K03977), genes associated with
cell division (K03654, K02621, K03168, K03654), histidine kinase associated with chemotaxis
and cell–cell signaling (K06596, K05874, K07716), serine-threonine protein kinases (K08884,
K12132). From the CAZyme genes, GH5, GH9, and GH3 were overrepresented. It is worth
noting the presence of genes of a heavy metal export system. To conclude, this consortium
is characterized by an over-representation of translation and cell division genes.

Consortium BL6 was enriched by the following categories: oligosaccharide trans-
porters (K02026, K17318, K10548, K08483, K02027, K10119), including permease (K10118,
K17319, K02004), ABC exporters (K01990, K06147, K18138), ion transport genes (TonB
receptor K02014, siderophore transport-K02015, K02016, K07165), repair polymerases
and endonucleases (K02337, K16898, K02337), genes responsible for chemotaxis (K03406,
K03406), serine histidine kinase (K03407), arabinose operon regulator (K07720), sporulation
regulator (K06297). All in all, in BL6 consortium, the genes for signal transduction proteins,
and specific oligosaccharide transporters were overrepresented. There appears to be a
definite response to nutrient deficiencies.

According to the GSEA, the main differences in cellulolytic consortia did not show in
the CAZyme genes, but mostly in genes of transport and energy systems, and cell division.

2.2.5. Taxonomy Evenness in KEGGs

Classification of the four consortia on the phylum level based on ORFs, GH, CBM,
GT, and CGCs revealed taxonomic unevenness between these categories (Figure 7). Pro-
teobacteria phylum was dominant in all four consortia by ORFs, but other phyla have a
proportionally higher impact of GHs and CBMs in the metagenomes in comparison to ORFs.
In OS2 consortium, they were Actinobacteroidota, Bacteroidota, and Verrucomicrobiota. In
OS4—Myxococcota, in PS4—Actinobacteroidota and Bacteroidota, in BL6—Firmicutes.
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To look into functional unevenness between consortia on the deeper taxonomic level,
we used the inverted Simpson index for KEGG categories on the genus level. KEGGs were
filtered by the number of occurrences (>50 in all metagenomes), and only whose values of
the inverted Simpson index fell into the 5th percentile were left, 47 KEGGs in total (Table S5).
This cut-off ensured that we were left only with large groups of KEGG categories, which
were dispersed unevenly between genera (Figure S12). There was a statistically significant
association (generalized linear model with quasi-Poisson family distribution) between the
inverted Simpson index and the coefficient of variance of these KEGGs between consortia
(Figure S13). Thus, using this approach, we elected KEGGs from different genera from
different consortia. Selected KEGGs were the most often associated with the genera Devosia,
Cohnella, Shinella, and Bosea. Functionally, the genes from these KEGGs are highly specific,
and often overlap with those found by GSEA. The smallest evenness is characteristic of
ABC transporters and membrane receptors of two-component systems. Of the enzymes
associated with the metabolism of carbohydrates, it is worth highlighting the aldouronate-
utilization operon components characteristic of the Paenibacillaceae family, including the
regulators of oligosaccharide metabolism YesN/YesM (K07718, K07720, K03534), permeases
of the aldouronate transport system (K17319, K17318, K17320). In addition, coinciding with
GSEA, inverted Simpson index selected groups of oligosaccharide transporters (K10111,
K10440, K01473, K15771) and exporters, most often characterized as transporters of metal
ions and peptides (K09969, K10823, K09969). Among these enzymes, some groups were
associated not with the metabolism of carbohydrates, but rather with the formation of a
microbial community, such as quorum sensing genes (K02031, K02033). It should also be
noted that CAZymes were not selected by this approach, which, together with the results of
the analysis of MAGs and GSEA, allows us to say that these enzymes are not taxon-specific
for the cellulolytic consortia that we obtained. Characteristically, these functional groups
(ABC transporters and two-component systems), revealed by invSimpson analysis and
GSEA, overlap with the functional groups associated with CAZy in the CGCs.

3. Discussion
3.1. Diversity of Members of the Cellulolytic Consortia

There is evidence that only a few microorganisms are sufficient for the destruction
of lignocellulose [39]. However, the diversity of microorganisms in selected consortia
from our experiment was, according to the results of the amplicon sequencing, about a
hundred phylotypes. This can be explained by both methodological and biological factors.
In our experiment we aimed to dilute composting lignocellulose substrate to the extent
that only active cellulolytic organisms would be able to survive on a medium with filter
paper as a sole carbon source. Indeed, major phylotypes from all consortia we selected
attributed to genera, most commonly characterized as mesophilic aerobic and facultative
anaerobic cellulose degraders from soil and sediments: Sporocytophaga myxococcoides [40,41],
Cellulomonas [42–45]. Flavobacterium [46,47], Pseudoxanthomonas [48,49], Asticcacaulis [50,51],
Paenibacillus [52,53], and Devosia [54]. However, each consortium contained specific microor-
ganisms, most likely not associated with the direct decomposition of the lignocellulosic
complex. Caenimonas, a soil mesophile aerobe [55,56], was one of the components of OS4
consortia, but it did not have GHs according to metagenome data. Another striking exam-
ple of such a component was Bdellovibrionota-predatory microorganism [57], found as a
minor component in all consortia. Interestingly, Myxococcota, which was represented in the
OS4 consortium, had a lot of GHs, but they are also characterized as predatory [58]. This
could explain their prevalence in the consortium selected from the oat straw, composted
for a longer period. The high diversity of the bacterial component can also be associated
with the almost complete absence of eukaryotes in the dataset [59]. Despite some repre-
sentation of the fungal community in amplicon ITS sequencing, most of the data were not
identified in known databases. Three representatives belong to Ciliophora, which also has
bacterivorous species [60]; thus, they also add to the non-cellulolytic part of the selected
microbial consortia.
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The relationship between microorganisms in lignocellulolytic communities can be
expressed not only through competition for the substrate. As an example, lignocellulosic
complexes in the process of degradation can themselves exhibit different antimicrobial
activity due to decomposition into specific secondary metabolites that are toxic to a part of
the microflora [61]. In addition, during cellulose decomposition. biofilm formation often
occurs, especially under conditions of reduced aeration [62]. According to the amplicon
sequencing, we have shown that the leaf litter consortium BL6 contains both aerobes
(Achromobacter) [63], microaerophiles (Methyloversatilis, Magnetospirillum) [64,65], and strict
anaerobes (Ruminiclostridium, Anaerocolumna, Herbinix) [66–68], which can be a sign of
biofilm formation in this consortium, since they are often formed in nature during the
breakdown of lignocellulose [69]. In the consortium OS4, we observed Flavobacterium as
the major component, which also was reported to be able to form biofilms [70].

Taxonomic differences between consortia were revealed both in the high and low
taxonomic resolution. On the phylum level, all consortia consisted predominantly of Pro-
teobacteria, Actinobacteriota, and Bacteroidota, but each consortium had an individual
imprint of minor phyla. For OS2, it was Verrucomicrobia, OS4–Myxococcota, Planctomyce-
tota, and Firmicutes. Analysis of taxonomical composition by PhILR package showed that
substrate specificity is associated with transitions at the taxonomic level below the genus.
What this means is that different microbial communities from different natural substrates
demonstrated the process of convergence, where similar, but not identical bacterial genera
were given growth advantage. These results are enforced by metagenome data, where we
can look more deeply into differences at the species level.

3.2. Functional Metagenome of the Cellulolytic Consortia

Four isolated consortia had similar profiles of GHs. Most of the GH families detected in
the consortia were associated with lignocellulose decomposition, with some exceptions. The
most abundant GH group in the consortia belonged to the family GH13, which predomi-
nantly consists of enzymes acting on α-glycosidic bonds, thus not partaking in lignocellulose
composition [71]. Another example of a major GH group not participating in cellulose
degradation is family GH23, consisting predominantly of lysozymes and peptidoglycan
lyases [72], probably contributing to interaction with other members of the consortium.
However, there is evidence that this family contains some unconventional genes, involved
in cellulose decomposition [73]. The most abundant cellulose-related families detected in
consortia (GH43, GH3, GH2, GH16, and GH1), were connected to genes encoding enzymes
from the last stage of cellulose and hemicellulose decomposition: glucosidases, xylosidases,
galactosidases, etc. [74]. GH families, encoding enzymes from the first stages of cellulose
and hemicellulose decomposition (GH5, GH51, GH10, GH9 and GH6), were present, but
less abundant [75]. Thus, isolated consortia demonstrated the later stages of lignocellulolytic
activity alongside defense functions and utilization of simple sugars.

Despite the high number of CAZy modules in the individual genomes and the
metagenomes as a whole, their quantities did not differ significantly in the consortia,
but actual differences were detected for the proteins of the transport systems and mem-
brane regulatory domains. Genes, characteristic of a certain consortium, were transport
proteins, genes associated with two-component systems (receptors) and housekeeping
genes (replication, repair, chaperones). At the same time, it is difficult to interpret what
role different transport proteins play. Most often, we cannot divide this group functionally
because it contains both ABC transporters associated with ion transport and peptide export.
It is known that the presence of copper transport, which is a limiting macronutrient for
microbial communities, from the cell is associated with ligninase activity (aldehyde dehy-
drogenase), [76]. It should not be ruled out that ABC transporters are an important part of
protective enzymes, which in turn can be associated with the important role of microbial
selection in the community [77]. It should be noted that the presence of exporters can be
associated both with the export of catalases and with the protective function associated with
microbial–microbial interactions. This is also supported by the fact that all metagenomes of
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the consortia have antibiotic resistance genes (kanamycin, sulfisoxazole), CRISP systems,
receptors associated with quorum sensing and toxin/antitoxin systems. Of the genes that
may play a role in the formation of biofilms in the studied communities, adhesins and
spermidine synthesis genes are worth noting, which is in good agreement with the data
obtained based on amplicon sequencing data [78]. Among the transport systems, specific
cassettes associated with the transport of oligosaccharides were found. This agrees with
the fact that around half of detected CGCs contained transport proteins.

In our consortia, we detected widely known cellulolytic bacteria, such as Sporocy-
tophaga and Cellulomonas. At the same time, we detected the genomes of cellulolytic mi-
croorganisms, which are not widely represented in the literature devoted to biotechnology,
as a major component of the consortia. For example, representatives of Verrucomicrobia are
very widely represented in the soil, but many of them are uncultivated [79]. The genome of
the representative of Verrucomicrobia (Opitutus) collected by us contained a high represen-
tation of glycoside hydrolases. Magnetospirillum isolated from the leaf litter consortium is
also an unexpected representative of cellulolytic communities. In addition, the presence
of microorganisms associated with methylotrophy, Methyloversatilis discipulorum [80], was
shown in the leaf litter consortium. In the article devoted to the early decomposition of oak
leaves, the presence of the dominance of Methylosinus trichosporium, which also has methy-
lotrophic activity, was shown in the early stages of decomposition [80]. Magnetospirillum
has a similar metabolic profile [81]. Methylotrophy is a specific feature of the microbial
process of lignocellulose degradation, in contrast to the fungal one. The methylotrophic
component found in the litter consortium is of considerable interest to biotechnologies
because it allows you to increase the yield of an organic product [82].

4. Materials and Methods

Oat straw, pine sawdust, and birch leaf litter were used to isolate minimal cellulolytic
consortia. The experiment was laid out in October 2018. Three replicate samples of each
substrate weighing 60 g were moistened up to 60% of the total capacity and mixed with min-
eral fertilizer (NPK elements in 16:16:16 ratio) to a concentration of 10 mg/g of the substrate.
All substrates and fertilizer were non-sterile and did not have any additional microbial
inoculum. Fertilizer was added to facilitate decomposition by removing macronutrient
deficiency, characteristic of C-rich biomass. The mixture of each substrate in three replicates
was composted in plastic containers at 28 C for 6 months. At two, four, and six months it
was remixed, and each substrate was sampled for the enrichment test. Each sample was
processed with a series of 10-fold dilutions in sterile water, which were inoculated into
5 mL of Hutchinson liquid medium (g/L: K2HPO4—1; NaCl—0.1; CaCl2—0.1; FeCl3—0.01;
MgSO4*7H2O—0.3; NaNO3—2.5) with ashless filter paper as the only carbon source [83].
We looked for microbial consortia grown from the largest dilutions, which preserved the
ability to macerate the filter paper. After the experiment, only four stable microbial consor-
tia with reproducible phenotypes and cellulolytic activity after several months of transfers
were selected for the 16S rRNA libraries and full metagenome sequencing.

For DNA extraction fresh microbial consortia were incubated in tubes for two weeks
in a new portion of Hutchinson liquid medium. In total, six replicate cultures for each of
the four consortia were acquired. After the incubation period, the contents of the tubes
were centrifuged, and the supernatant was removed. The cell debris with the remaining
filter paper was resuspended in SL1 buffer from NucleoSpin® Soil Kit (Macherey-Nagel
GmbH& Co. KG, Düren, Germany) and ground using a Precellys 24 homogenizer (Bertin
Technologies, Saint-Quentin en Yveline, France). This mixture was used for DNA extraction
according to the manufacturer’s recommendations. Construction and sequencing of the
16S rRNA amplicon libraries were performed on the Illumina MiSeq platform (Illumina,
Inc., San Diego, CA, USA) as described previously [84].

Amplicon libraries were processed using the DADA2 pipeline [85] in the R software en-
vironment [86]. Taxonomic identification was carried out using the Silva 138 database [87]
for 16S rRNA gene sequences and the Unite database [88] for ITS sequences. The phylo-
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genetic tree was constructed using the IQ-TREE 2.1.2 program [89]. Further processing
was carried out using the phyloseq [90] and ampvis2 [91] packages. Alpha diversity was
accessed by three indexes: Observed, Shannon [92], and inverted Simpson [93], with the
significance of mean differences between them calculated by the Mann–Whitney test [94].
Beta diversity was accessed by PCoA [95] with the Bray–Curtis distance matrix [96]. A
composite data analysis (phylogenetic isometric log-ratio) based on the PhILR package [97]
was used to search for distinct groups of microorganisms.

For the metagenome sequencing, all six DNA samples were mixed for each consor-
tium. The resulting four mixtures were used for the library construction with the ligation
sequencing kit (SQK-LSK110) using genomic DNA by ligation protocol (SQK-LSK110) and
sequencing on the MinION platform with the Flow Cell R9.4.1 (Oxford Nanopore Tech-
nologies, Oxford, UK). The initial processing of the full metagenomic reads was conducted
with the Guppy 3.6.1 neural network model [98]. The assembly was performed in the
metaFlye 2.8 program [99], additional cleaning of the resulting contigs was carried out
using algorithms included in Racon [100] and medaka [101].

Taxonomic classification of contig-assembled metagenome sequence data was per-
formed by Kraken2 [102]. Prokaryotic contigs were assigned using the pre-built database
based on GTDB 202 [103], eukaryotic-on the pre-built custom database maxikraken2
1903 based on RefSeq NCBI [104]. Visualization of relative abundance was performed
in Krona [105].

The annotation of Carbohydrate-Active Enzymes in the assembled contigs was obtained
using dbCAN [106]. An ORF match was considered if two tools from DIAMOND [107],
HMMER or Hotpep [108] annotated it. The search of CAZyme gene clusters (CGCs) in
assembled contigs was performed by the CGC-Finder [109]. The rest of the genes were
annotated using EggNOG-mapper (v.2.1.6) pipeline in ultra-sensitive DIAMOND mode
with the –framefix flag [110,111]. Gene overrepresentation analysis (GSEA) was performed
using the ClusterProfiler (v 1.3.1) package [112] using EggNOG-mapper with KEGG and
COG functional classifications with Fisher test [113] and FDR correction method [114] for
multiple comparisons. Taxonomic unevenness of KEGGs was calculated in vegan [115].

High-quality MAGs were isolated from the obtained assemblies using the MetaBat2
program [116] using the following parameters: over 90% completeness and less than 5% het-
erogeneity as defined by the CheckM program [117]. MAGs were taxonomically annotated
with the GTDB-Tk toolkit using the HMMER, pplacer, FastANI, and FastTree algorithms
based on the GTDB 202 database [118]. Functional annotation was carried out using the
DRAM pipeline using the UniRef90, PFAM, dbCAN, and MEROPS databases [119]. The
code is available at https://github.com/crabron/cellulolytic_consortia, accessed on 12
August 2022.

5. Conclusions

In our work we isolated four stable cellulolytic consortia from various natural ligno-
cellulose substrates by making enrichment cultures from diluted compost with the filter
paper as a sole carbon source. Each consortium was a complex microbial community with
distinctive phenotypic features. At the core of every consortium were cellulolytic bacteria
from various genera; however, in addition to them, auxiliary components were present,
such as biofilm inhabitants, predators, or methylotrophs. Being taxonomically different,
the composition of CAzyme genes in the consortia coincided. The main differences be-
tween consortia were detected in the taxon-specific transport and regulatory genes. The
similar conditions of selection and cultivation functionally brought together taxonomically
different consortia; however, each substrate left an individual imprint on their composition.
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