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Persistent homology, a topological data analysis (TDA) method, is applied to microarray data sets. Although there are a few papers
referring to TDA methods in microarray analysis, the usage of persistent homology in the comparison of several weighted gene
coexpression networks (WGCN) was not employed before to the very best of our knowledge. We calculate the persistent
homology of weighted networks constructed from 38 Arabidopsis microarray data sets to test the relevance and the success of
this approach in distinguishing the stress factors. We quantify multiscale topological features of each network using persistent
homology and apply a hierarchical clustering algorithm to the distance matrix whose entries are pairwise bottleneck distance
between the networks. The immunoresponses to different stress factors are distinguishable by our method. The networks of
similar immunoresponses are found to be close with respect to bottleneck distance indicating the similar topological features of
WGCNs. This computationally efficient technique analyzing networks provides a quick test for advanced studies.

1. Introduction

Quantitative skills have become much more essential to
distill meaning from the vast emerging and increasing diverse
data sets since the technological advances in DNA sequenc-
ing that occurred at the end of the 20th century. Modern
technological developments in high throughput data tech-
nologies such as microarrays and RNA-sequencing enable
the generation of terabytes of data in a short amount of time.
The type of the data generated comprises levels regarding
the abundance of RNA, quantification of protein-protein
interactions (PPI), and many other biological molecular
interactions. The generated data is embraced for statistical
inference and computational analysis including low-level
data processing and high-level algorithmic analysis with
computations and machine learning techniques. Making
use of the data is a reverse engineering approach. Gene
coexpression microarrays measure interactive activities of
thousands of genes. In network terms, the nodes of the
coexpression matrix represent the gene products and the
edges of the matrix represent the relationship between

the products (usually expressed by correlations). After a
chip scanning and an image processing process, a matrix
of coexpression values is obtained. The rows of the matrix
refer to the gene products while the columns refer to the
experiments/samples/tissues. The numeric values of the
matrix are the expression values of genes across the exper-
iments. The experiments may be “control versus treated”
or “time course.”

The networks constructed based on the gene expres-
sion similarity are called gene coexpression networks [1].
They can be named association, correlation, and influence
networks [2] as well. Coexpression network analysis
requires the selection of a similarity measure between
genes and a clustering algorithm to decompose the net-
work into functional clusters/modules following a mean-
ingful experiment design [3, 4]. However, there exist
clustering algorithms that do not require a distance matrix
as an input, but rather they require the network itself
(e.g., some community structure finding algorithms). The
modules found by running a clustering algorithm require
biological inference.
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In order to have a high-level overview of a coexpression
network construction and analysis, a few common processes
can be summarized [5]:

(i) Obtaining a filtered data

(ii) Making use of network inference or guilt by associa-
tion as in clustering

(iii) Enrichment analysis to see the biological relevance
of computational outputs

(iv) Extension of the model(s) integrating multiple data
types such as mRNA, miRNA data from RNA-req,
TF, DNA-binding data from ChIP-seq, and protein
interaction data from mass spectrometry

Ideally, network decomposition results in tight clusters/
modules with dense intracluster and sparse intercluster
connections. Tight clusters are supposed to include biologi-
cally relevant genes in terms of functions or residing in the
same pathway.

One of the widely used steps in constructing a gene coex-
pression network is trimming some of the edges based on a
threshold [6–8]. Persistent homology, which is first devel-
oped to explore the topological features of point cloud data,
is a topological invariant, and it addresses the problem of
choosing a reasonable threshold. Our method employs per-
sistent homology once the correlation similarity is calculated
on the filtered networks.

Persistent homology is a new tool for studying the shape
of a point cloud in application areas such as digital images
[9, 10], dynamical systems [11], biomolecules [12], and high-
dimensional data mining [13]. The persistent homological
framework enables us to analyze multiscale networks in a
consistent manner [14–16]. The output of the persistent
homology of a network can be summarized visually using a
persistent diagram, and the distance between two persistent
diagrams can be measured via bottleneck distance. Here, we
are using the persistent homology framework to do a
threshold-free analysis of weighted gene coexpression net-
works constructed from 38 Arabidopsis microarray data sets.
We list several advantages of our method:

(i) Our method does not require a choice of fixed
threshold as it considers the networks at every
possible threshold.

(ii) It gives a more robust result than an analysis of
unweighted networks for which the results might
depend on the choice of the threshold.

(iii) Persistent diagrams can be used for a standard data
analysis method such as cluster analysis.

(iv) Our method eliminates the computational burden of
analyzing many networks obtained for different
thresholds.

Topological data analysis (TDA) has been applied to
biological data before. Arsuaga et al. [17] associate a two-
dimensional (2D) point cloud with each array comparative

genomic hybridization (aCGH) profile and generate a
sequence of simplicial complexes. They use these mathemat-
ical objects to identify DNA copy number aberrations by
interrogating the topological properties. Camara et al. [18]
use TDA for mapping meiotic recombination at fine scales.
Comparing to standard linkage-based methods, they find
that TDA can deal with a larger number of genomes in a
computationally efficient way. Cang et al. [19] propose a sup-
port vector machine algorithm for protein classification.
They choose the machine learning feature vectors from the
persistent homology of the protein structure. Chan et al.
[20] use persistent homology to capture both vertical and
horizontal evolutions. They show that horizontal evolution
exhibits nontrivial topology of dimension greater than zero.
Nicolau et al. [21] introduce a topological method that iden-
tifies a unique subgroup of estrogen receptor-positive (ER+)
breast cancers that express high levels of c-MYB and low
levels of innate inflammatory genes. Perea et al. [22] present
a novel method based on persistent homology to classify
periodic or nonperiodic signals of microarray time series
data. Their method successfully identifies the periodic genes
in microarray data from the yeast cell cycle.

Here are the main results of the paper:

(i) We quantify topological features of WGCNs using
persistent homology and apply the hierarchical clus-
tering algorithm to the distance matrix whose entries
are pairwise bottleneck distance values between
the networks.

(ii) The immunoresponses to different stress factors are
distinguishable by our method. The networks of sim-
ilar immunoresponses are found to be close with
respect to bottleneck distance indicating the similar
topological features of WGCNs. Hence, persistent
diagrams of the networks can be used to determine
the topological and biological similarities.

2. Methods

Topological methods address several problems that arise in
biological data analysis [13]. We now summarize three of
these which are related to the analysis of our microarray data
sets. First of these problems is to extract qualitative informa-
tion from a given set of data prior to quantitative methods.
This might include studying the characteristics of the data
space such as determining the connected components, loops,
and higher dimensional surfaces. In the biological context,
these methods have already been used, for example, in iden-
tifying a novel subgroup of a certain disease [17, 21],
cataloguing the type of exchange of genomic material [20],
classifying protein domain [23], and discovering periodicity
in gene expression time series data [22].

The second issue in biological data analysis is the choice
of a natural coordinate system. A particular choice of a coor-
dinate system might not have an essential meaning during
the analysis. Topological methods, which are coordinate-
free and depend only on the chosen metric, enable us to
compare the data sets given in different coordinate systems
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where there is a concept of similarity in general, not only
the Euclidean metric.

Thirdly, fixing an optimal parameter in conventional
clustering algorithms might not reveal sufficient information
about the data set under consideration. Hence, it is preferred
to consider the entire set of parameters at once. This raises
the question of what the relationship between the infor-
mation obtained from different parameters is. Topology
deals with this problem via the concept of functoriality
which is used to compute the topological invariants from
discrete approximations.

Topology ideally aims to find the homeomorphism type
of a topological space. Roughly speaking, we would like to
classify the spaces up to stretching and bending but not tear-
ing and gluing. However, in most of the cases, it is very hard
to get the homeomorphism type of a space. Hence, we need
to consider other invariants: homotopy, homology, cohomol-
ogy, and so on. In order to find these topological invariants of
a data space, we need to construct a combinatorial approxi-
mation of the space called simplicial complex:

Definition 1. A simplicial complex K consists of a set of
objects, V K , called vertices and a set, S K , of finite non-
empty subsets of V K , called simplices such that (i) any
nonempty subset of a simplex is also a simplex, (ii) every
one element set v , where v ∈ V K , is a simplex, and (iii)
the intersection of any two simplices is also a simplex.

The dimension of a simplex σ ∈ S K is defined as dim
σ = σ − 1: simplices consisting of a single element are
zero-dimensional, and simplices consisting of two elements

are one-dimensional and so on. The dimension of the
complex dim K is defined as the largest dimension of
any of its simplices.

One can construct a simplicial complex from a data set in
ℝn using a Rips complex (see Figure 1).

Definition 2. Let X = xα be a set of points in ℝn. The
Rips complex R X, ∈ (also called Vitoris-Rips complex)
is the simplicial complex whose k-simplices correspond to
k + 1-tuples of points xa

k
0 which are pairwise within

distance ∈ .
The Rips complex can be considered a variant of Čech

complex construction. The problem with the Čech con-
struction is that it is computationally expensive as it
requires the storage of simplices of various dimensions.
On the other hand, the Rips complex is computationally
more efficient as the edges in the complex completely
determine the complex. Although there are other efficient
complexes (e.g., witness complex and alpha complex), in
this work, it is sufficient for us to use the Rips complex
because of the moderate size of the filtered microarray
coexpression data under study.

Once we obtain the simplicial complex K from our data
set, we assign a vector space via homology, which is a classical
invariant within algebraic topology. We now summarize the
construction of the homology. One can refer to [24] for a
more detailed description and properties.

(i) The first step is to construct the chain group
Cp, which consists of the formal sums of the

(a)

(b)

(c)

Figure 1: Construction of Rips complex. The leftmost figures show point cloud data, the middle the covering of the balls centered at each
point, and the rightmost Rips complex for the corresponding balls of each radius.

3International Journal of Genomics



p-dimensional simplices c =∑γiσi, where γi are in a
field F. These formal sums are called p-chains.

(ii) The next step is to define the boundary map,
∂ Cp⟶Cp−1 which maps each p-chain to the
sum of p − 1-dimensional subsets, faces, of its
p-simplices. One can easily check that the square
of the boundary map is zero; that is, ∂ ∘ ∂ = 0.

(iii) Hence, one obtains the following chain complex:

…⟶Cp+1⟶Cp⟶Cp−1⟶⋯ 1

(iv) As a result of ∂ ∘ ∂ = 0, one can define the pth homol-
ogy group Hp K as the quotient of the p-cycles Zp,
elements of Cp which are mapped to 0 by ∂, and
p-boundaries Bp, which is the image of Cp+1 under ∂.

As the coefficients of the p-chains are chosen from a field
F, the resulting abelian group Hp K is torsion free. Hence,

Hp K = Zp/Bp = Fβp is a vector space over F, with rank βp.
This number βp is called pth Betti number and is equal to 0
if p is greater than the dimension of K .

Given a simplicial map f K⟶ L between simplicial
complexes K and L, where f takes simplices to simplices
and it is linear, and f induces a homomorphism on homol-
ogy f p Hp K ⟶Hp L . This functoriality is crucial, when
we next introduce the concept of persistence.

We now review the persistent homology which is the
main mathematical tool that we use in our study. One can
refer to the survey articles [13–16] for more detailed discus-
sions. Given a fixed possibly obtained from the distribution
of a data set X, the Rips complex R X, ∈ is in most cases
not sufficient to extract details about the shape of X. Hence,
one needs to check R X, ∈ for different values to get a satis-
factory level of homological information. In order to deter-
mine the topological features that persist in a parametrized
family of spaces, we construct the family of spaces using
the Rips complexes R X, ∈ i of a data set for increasing
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Figure 2: (b) is the persistent diagram of point cloud data on (a). 0.0
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Figure 3: Persistent diagrams of experiments 5, 6, and 8.
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parameter values ∈ i
n
i . The inclusion maps give us a

filtration of spaces:

R X, ∈ 1 ↪R X, ∈ 2 ↪⋯↪R X, ∈ N 2

We next obtain the following sequence of vector spaces
and linear maps using the functoriality of homology:

Hk R X, ∈ 1 ⟶Hk R X, ∈ 2 ⟶⋯⟶Hk R X, ∈ N

3

One decomposes this algebraic structure into sum-
mands of the form 0⟶ F⟶⋯⟶ F⟶ 0, which points
out the spaces R X, ∈ i , where a certain homological
feature (i.e., connected components, loops, and voids)
manifests. The set of these summands corresponds with
finite subsets of P = ∈ birth, ∈ death ∣ ∈ birth ∈ 0,∞ ,
∈ death ∈ 0,∞ , ∈ birth < ∈ death , where ∈ birth and ∈ death
are the birth and the death times, respectively. The persis-
tence of a feature is defined as the difference between its
death and its birth time. The features with larger persis-
tence provide the most important information about the
topology, while the features with short persistence are
most of the time considered noise [19, 20, 23, 25].

The set P can visually be represented as a collection of
points of the first quadrant of the coordinate plane. This
visual representation is called persistence diagram and can
be considered a replacement for Betti numbers in the case
of a collection of thresholds ∈ i . With the help of the per-
sistence diagram, one can identify the significant homologi-
cal features, which are located far from the main diagonal
and filter the noisy features, which can be found near the
main diagonal. For example, for k = 0, we obtain the persis-
tence of the connected components, and for k = 1, we obtain
the persistence of the loops.

In Figure 2, a point cloud data and corresponding persis-
tent diagram are shown. The zero-dimensional features are
represented by black dots. The persistent one-dimensional
feature represented by a red triangle reveals the existence of
the big loop. In this work, we are mainly interested in the
evolution of the connected component of the networks.
Hence, the birth time of each component is fixed as 0. As
the threshold increases, the number of component decreases
and no new component is born (Figures 3 and 4).

In order to compare two networks, we need to find the
distance between the persistent diagrams of these two net-
works. The most common metric to measure the distance
between two persistence diagrams is the bottleneck distance
which is known to be stable under small perturbations due
to the bottleneck stability theorem [26].

Definition 3. The bottleneck distance between two persistent
diagrams PD and PD′ is defined as

dB PD, PD′ = inf
λ

sup
p∈PD

p − λ p ∞, 4

where λ ranges over all bijections from P to P′ and ⋅ ∞ is
the L∞-norm on the plane.

As the diagonals are also considered in the diagram
with infinite multiplicity, any bijection λ can map an extra
point in the diagram with a point on the diagonal. Hence,
it is not necessary to have the same number of points in
the diagrams. The stability of the bottleneck distance is
given by the following inequality:

dB PD, PD′ ≤ 2dGH X, Y ≤ 2dH X, Y , 5

where PD and PD′ are persistence diagrams for the
data sets X and Y in a Euclidean space, respectively, and
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Figure 4: Persistent diagrams of experiments 31 and 32.
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dH and dGH are Hausdorff and Gromov-Hausdorff distances
(Equation (1) in [22]). The bottleneck distance is the q =∞
version of the Wasserstein distance defined as

dq PD, PD′ = inf
λ

〠
p∈PD

p − λ p q
∞

1/q

6

The Wasserstein distance dq includes all the differences
between the diagrams while the bottleneck distance dB

measures the single largest distance between the persistence
diagrams. Thus, we have

dB < dq 7

The Wasserstein distance is also more sensitive to the
small differences due to noise as the sensitivity of dq
decreases when q increases.

The distance between networks can be used to determine
the topological and biological similarities. In this paper, we

Table 1: Pathogen resistance Arabidopsis microarray data collected. This is the part of the table that appeared in [34], and it is under CC BY
4.0 license.

ID GEO data set Plant Stress group Stress

1 GSE12856 Arabidopsis PTI Nonhost

2 GSE13739 Arabidopsis Induced resistance Induced resistance (SA)

3 GSE14961 Arabidopsis Induced resistance Induced resistance (SA)

4 GSE15236 Arabidopsis Fungi Fusarium oxysporum

5 GSE16471 Arabidopsis PTI PTI

6 GSE16472 Arabidopsis PTI PTI

7 GSE16497 Arabidopsis Induced resistance Induced resistance (Aphid)

8 GSE17382 Arabidopsis PTI PTI

9 GSE17875 Arabidopsis Fungi Botrytis cinerea

10 GSE19273 Arabidopsis Bacteria Ralstonia solanacearum

11 GSE20188 Arabidopsis Induced resistance Induced resistance (insecticides)

12 GSE21762 Arabidopsis Induced resistance Induced resistance (JA)

13 GSE21920 Arabidopsis Bacteria Pseudomonas syringae

14 GSE26679 Arabidopsis Fungi Golovinomyces cichoracearum

15 GSE26973 Arabidopsis Induced resistance Induced resistance (exudates)

16 GSE28800 Arabidopsis Induced resistance Induced resistance (chemistry)

17 GSE431 Arabidopsis Fungi Erysiphe cichoracearum

18 GSE5513 Arabidopsis Induced resistance Induced resistance (PTI)

19 GSE5752 Arabidopsis Induced resistance Induced resistance (SA)

20 GSE5753 Arabidopsis Induced resistance Induced resistance (SA)

21 GSE5754 Arabidopsis Induced resistance Induced resistance (SA)

22 GSE5755 Arabidopsis Induced resistance Induced resistance (SA)

23 GSE5756 Arabidopsis Induced resistance Induced resistance (SA)

24 GSE5757 Arabidopsis Induced resistance Induced resistance (SA)

25 GSE5758 Arabidopsis Induced resistance Induced resistance (SA)

26 GSE6831 Arabidopsis Induced resistance SAR(JA)

27 GSE8319 Arabidopsis PTI PTI

28 GSE10426 Arabidopsis Fungi Plasmodiophora brassicae

29 GSE10713 Arabidopsis Fungi Fusarium oxysporum pv. raphani

30 GSE13390 Arabidopsis Bacteria Pseudomonas syringae pv. tomato

31 GSE15880 Arabidopsis Fungi Botrytis cinerea

32 GSE15881 Arabidopsis Fungi Botrytis cinerea

33 GSE18757 Arabidopsis Bacteria Ralstonia solanacearum

34 GSE25838 Arabidopsis Fungi Botrytis cinerea

35 GSE34081 Arabidopsis Bacteria Pseudomonas syringae pv. tomato

36 GSE7990 Arabidopsis Induced resistance Induced resistance (ISR, Bradyrhizobium)

37 GSE8877 Arabidopsis Fungi Plasmodiophora brassicae

38 GSE31230 Arabidopsis Bacteria Ralstonia solanacearum
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use the bottleneck distance dB to construct a distance matrix
whose entries are the pairwise distance between the experi-
ments represented as networks. The networks are then clus-
tered using Ward’s hierarchical clustering algorithm
applied in R. The optimum number of clusters is predicted
using both the Bayesian information criterion (BIC) and
the within sum of squares (WSS).

3. Results

The pathogen resistance microarrays for Arabidopsis thali-
ana data sets are downloaded from the Gene Expression
Omnibus (GEO) database. The data sets can be accessed
entering the GEO ID into the query field in the link https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Table 1 summa-
rizes the data sets based on stress groups and stresses. The
existing four stress groups: PTI, bacteria, induced resistance,
and fungi, belong to 6, 6, 16, and 10 experiments, respec-
tively. The studies with the pathogen Botrytis cinerea are
the most abundant.

Persistent homology application workflow starts with the
robust multiarray average (RMA) normalization for the data
sets. R Bioconductor affy package is used for the normaliza-
tion of Affymetrix data. The two-color microarray data sets
are preprocessed using the marray and Agi4x44PreProcess
libraries. The expression matrices are constructed for each
microarray experiment independently. Each experiment
comprises several microarrays.

After the normalization, highly coexpressed genes are
retained through a gene filtering procedure so that only the
significantly expressed genes are retained in the data matrix.

R genefilter package is used, while any other filtering method
could be employed. Around 400 genes are remained after
filtering each data [21, 27].

The filtered genes are used to construct the weighted
coexpression network using the absolute value of the
Pearson correlation as the similarity measure, which is
commonly used in a gene expression cluster analysis
[28]. We use this measure to calculate the dependence
between the expression levels of the genes across samples.
These similarity measures take values in the same interval
0, 1 , where 0 indicates nondependence and 1 indicates
total dependence or maximum similarity. Unlike the stan-
dard approach in WGCN analyses [29, 30], we do not
need to specify a threshold to punish weak correlations
and emphasize strong ones because weak correlation is
regarded as noise by persistent homology as explained in
the previous section.
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In the next step, Rips complexes are generated for each
weighted network in order to determine the persistent topo-
logical features (connected components, loops, voids, etc.).
We then calculate the persistent homology of the Rips com-
plexes. In this study, we only consider 0 and 1 dimensional
homologies [17, 18, 20, 22]. According to our knowledge,
higher dimensional homology has not been used to analyze
microarray data. Higher dimensional features such as voids
might not have biological significance in weighted gene
coexpression networks.

The results for each network are summarized in persis-
tent diagrams. Afterwards, the distance matrix including
the distance values between persistent diagrams is
obtained employing the bottleneck distance, which is the
most commonly used metric to measure the distance
between two persistent diagrams [26]. The persistent homol-
ogy and bottleneck distance are calculated using R TDA
package [31].

The final distance matrix is used as an input to a hierar-
chical clustering method in order to compare 38 WGCNs.
Hierarchical clustering is frequently used in WGCN analyses
since it works well when there are many singleton clusters
and when cluster sizes vary greatly [29]. The optimum num-
ber of clusters is predicted to be four using both the Bayesian
information criterion (BIC) and the K-means within the sum
of squares method (Figure 5). They are mainly utilized to
choose the number of clusters according to the intrinsic com-
plexity present in a particular data set. BIC is employed using
the R adegenet package [32]. The workflow is illustrated in
Figure 6.

The hierarchical clustering using the bottleneck dis-
tance with four cluster results in the partition as seen

on the dendrogram (Figure 7). The clustering here is
obtained from zero dimensional persistent diagrams.
Figure 8 shows hierarchical clustering of one-dimensional
persistent diagrams.

We have four different stress groups in our data set: PTI,
bacteria, fungi, and induced resistance. The networks from
the same stress group were found to be in the same clusters.
Here are some examples from the clustering of zero-
dimensional persistent diagrams (Figure 7):

(i) The networks 5, 6, 8, and 18 associated with the
stress group PTI are close to each other; hence, they
are all in the first cluster. This means that they show
similar topological features as a result of the same
immune responses to PTI.

(ii) Four out of 6 bacteria experiments (IDs 10, 13, 33,
and 35; Ralstonia solanacearum and Pseudomonas
syringae) are located in the second cluster. Thus,
we can conclude that the immunity processes of
Arabidopsis that are represented in these networks
derived from the responses to pathogens Ralstonia
solanacearum and Pseudomonas syringae could
share some similarities.

(iii) Five out of 6 experiments in cluster 3 (IDs 9, 28, 29,
31, and 32; Botrytis cinerea, Plasmodiophora brassi-
cae, and Fusarium oxysporum pv. raphani) are
related to fungal experiments. Thus, we could say
that Arabidopsis has similar immunity responses to
Botrytis cinerea, Plasmodiophora brassicae, and
Fusarium oxysporum pv. raphani. Figure 4 shows
the persistent diagrams of experiments 31 and 32
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Figure 7: The clustering of zero-dimensional persistent diagrams.
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of the same study for which the one-dimensional
features also resemble each other.

(iv) A similar result can be observed in cluster 4, where 6
out of 7 experiments are identified as induced resis-
tance experiments (IDs 11, 12, 22, 25, 26, and 36;
insecticides, SA, JA, and SR; Bradyrhizobium).

(v) Networks 19, 20, 21, 23, and 24 from the same study
of natural genetic variation for plant disease resis-
tance responses to salicylic acid (SA) are found in
the second cluster. The networks 20, 23, and 24 are
particularly close to each other revealing similar
responses to SA.

Specifically, the similarity between persistent diagrams of
networks 5, 6, and 8, which are relatively close with respect to
bottleneck distance (Figures 7 and 8), indicates that the coex-
pression networks of these data sets have similar topological
features (see Figure 3). This represents the comparable
immunity process in each of these experiments. Indeed, this
result agrees with the original study [33]. The goal of these
experiments was to identify CPK5ac and CPK11ac early tar-
get genes (network 5) and early 22 amino acid peptide of
bacterial flagellin (flg22) responsive genes (networks 6 and 8)
in Arabidopsis mesophyll cells (networks 5 and 6) and
Arabidopsis seedlings (network8).Theydiscover thatCPK5ac
and CPK11ac activate the same genes, mimicking flg22.
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Figure 8: The clustering of one-dimensional persistent diagrams.
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Consequently, a small bottleneck distance between two
persistent diagrams of two networks could have a biological
meaning in correspondence with the experiment as some
clusters mainly contain specific stress groups. The clustering
of the bottleneck distance matrix with the hierarchical
algorithm identifies theoretically similar networks based on
topological and biological aspects.

On the other hand, some distinct stress groups can have
similar WGCNs. For example, induced resistance experi-
ment 16 is in the same group with fungal experiments 9,
28, 29, 31, and 32 of cluster 3. Similarly, PTI experiment
27 is in cluster 4 along with 6 induced resistance experi-
ments (IDs 11, 12, 22, 25, 26, and 36; insecticides, SA, JA,
and SR; Bradyrhizobium).

One can also notice that the topological features of the
networks from the same stress group can also be different.
For instance, networks 28 and 34 (Plasmodiophora brassicae
and Botrytis cinerea) from the fungal experiments are not
close to each other.

4. Comparison with the Principal Component
Analysis Method

Principal component analysis can also be used to provide a
framework to construct and compare weighted gene coex-
pression networks (WGCNs) employing the same data sets
[34]. Unlike in persistent homology, a threshold needs to be
determined to construct the network. In this case, the thresh-
old is chosen using mutual information for similarity mea-
surement and a clustering coefficient-based method. PCA is
applied to compare WGCNs. Similar WGCNs are projected,
that is, clustered, closely on the principal component space
using the K-means algorithm. Here is the comparison
between PCA and persistent homology methods:

(i) According to PCA results, 6 bacteria experiments
on Arabidopsis are associated to different clusters
(see Figure 7 in [34]) while 4 out of 6 experiments
are located in the same cluster in the persistent
homology method. Similar results can be observed
for fungi experiments as well. The persistent homol-
ogy method returns a much better result (i.e., 5 out
of 6 fungi experiments are in the same cluster) unlike
the PCA approach where fungi groups are spread
over distinct clusters.

(ii) According to both methods, PTI experiments 5, 6, 8,
and 18 are close to each other (see Figure 6 in [29]).

(iii) Similarly, in both clustering results, induced
resistance experiments appear in the same cluster
(see Figure 7 in [34]). However, persistence homol-
ogy is able to detect that networks 20, 23, and 24
revealing similar responses to SA are closer to
each other.

5. Conclusion

In this paper, a topological data analysis procedure is applied
to weighted gene coexpression networks (WGCN) which are

constructed from microarray data sets of pathogen-infected
Arabidopsis thaliana. We quantify topological features of
WGCNs using persistent diagrams and apply the hierarchical
clustering algorithm to the distance matrix whose entries are
pairwise bottleneck distance between the networks. The
closeness under the bottleneck distance between the zero-
dimensional persistent diagrams ofWGCNs indicates similar
plant immune responses and conserved signaling pathways.
The cluster analysis shows that a small bottleneck distance
between two persistent diagrams of two networks could have
a biological meaning in correspondence with the experiment
as certain clusters dominantly contain specific stress groups.

Our method has recovered what principal component
analysis (PCA) approach in the previous studies has iden-
tified from the same data set [34]. For certain stress
groups, the persistent homology approach outperforms
PCA-based clustering.

By using persistent homology along with other methods
that complement its strengths and lessen its weaknesses, this
method can be used as a tool in WGCN analyses. Indeed,
persistent homology can identify the sets of different stress
factors from the high-throughput biological data sets such
as microarrays. Hence, we provide another evidence that
the shape of the data can provide useful information in the
study of translational functional genomics.

The proposed method does not utilize any computation-
ally expensive algorithms and can be applied to any similar
biological networks such as RNA-seq and protein-protein
interaction (PPI) networks.
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