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Microbial communities colonize plant tissues and contribute to host function. How these communities
form and how individual members contribute to shaping the microbial community are not well under-
stood. Synthetic microbial communities, where defined individual isolates are combined, can serve as
valuable model systems for uncovering the organizational principles of communities. Using genome-
defined organisms, systematic analysis by computationally-based network reconstruction can lead to
mechanistic insights and the metabolic interactions between species. In this study, 10 bacterial strains
isolated from the Populus deltoides rhizosphere were combined and passaged in two different media envi-
ronments to form stable microbial communities. The membership and relative abundances of the strains
stabilized after around 5 growth cycles and resulted in just a few dominant strains that depended on the
medium. To unravel the underlying metabolic interactions, flux balance analysis was used to model
microbial growth and identify potential metabolic exchanges involved in shaping the microbial commu-
nities. These analyses were complemented by growth curves of the individual isolates, pairwise interac-
tion screens, and metaproteomics of the community. A fast growth rate is identified as one factor that can
provide an advantage for maintaining presence in the community. Final community selection can also
depend on selective antagonistic relationships and metabolic exchanges. Revealing the mechanisms of
interaction among plant-associated microorganisms provides insights into strategies for engineering
microbial communities that can potentially increase plant growth and disease resistance. Further, deci-
phering the membership and metabolic potentials of a bacterial community will enable the design of syn-
thetic communities with desired biological functions.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Bacterial communities exert significant influence over a wide
range of biological processes, such as human disease, plant interac-
tions, biogeochemical cycles, and food fermentation [1–3]. An
important challenge exists in understanding the underlying mech-
anisms that contribute to how bacteria shape their community and
how the resulting structure depends on distinct environmental
niches [2,4,5]. The interactions between species are dynamic and
community membership depends on possessing the metabolic
capabilities needed to survive in a particular environment [6].
Determining these trophic exchanges and interdependent meta-
bolic processes is difficult in natural microbial communities com-
prised of hundreds of members. For example, phylogenetic
marker and metagenomics analyses have revealed the extreme
diversity of rhizosphere bacterial communities and the complex
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interplay among them [7–11]. It has been established that the
composition and activity of root bacterial communities is spatially
and temporally dynamic and can be influenced by both abiotic
(e.g., soil nutrients, O2, pH, etc.) and biotic (e.g., host and
microbe-microbe) factors [12–15]. This complexity prevents track-
ing of metabolic fluxes from specific donor to acceptor strains or
identifying competitive and cooperative relationships that leads
to community structure [16,17].

Simplified synthetic microbial communities are being consid-
ered as comprehensible systems for uncovering an in-depth view
of community assembly principles. These systems are able to cir-
cumvent the complexity of natural ecosystems and allow the cap-
ture of community behaviors [17–21]. One approach is to reduce
the complexity of natural communities by selection of microbial
consortia under laboratory conditions from environmental sam-
ples [22]. This top-down approach can provide an overall co-
occurrence correlation network but does not assess metabolic
interactions in detail as individual genome and metabolic profiles
are lacking [23]. A second approach is to construct synthetic bacte-
rial communities from the bottom-up [24]. In the bottom-up
approach, individual bacterial isolates are combined to give rise
to a more complex microbial system where the original strains
serve as sub-systems in an emergent community [25–27]. These
easily manipulated bottom-up assemblies contribute to a promis-
ing approach for understanding interactions in natural communi-
ties [26,28,29]. Definition and characterization of each individual
strain facilitates the study of potential synergistic effects in the
synthetic community [25,30]. The metabolites driving interspecies
interactions can be determined and modeling of the metabolite
exchange is possible [16,19,29]. This bottom-up approach can be
used to experimentally select and investigate stable microbial
community assembly [22].

The interplay among bacterial members in a consortium can be
reconstructed using community-wide genome-scale metabolic
models [31]. Recent applications of computational biology and
genome-scale modeling approaches to the analysis of bottom-up
assembled communities is providing mechanistic insights into
the dynamic interactions occurring in defined bacterial communi-
ties [17,23,25]. For example, modeling studies have been applied
for understanding biodegradation and bioproductivity [32]. In
these models, it is often assumed that species interact in a pairwise
manner [33,34]. Two-species metabolic models assess cross-
feeding networks and usually capture the positive interactions
between the microorganisms [34–36]. Currently, metabolic
exchanges among greater numbers of microbes are being modeled
and found important for shaping community distribution [22,37].
Modeling these higher-order interactions will be helpful for
addressing questions regarding how and why a stable bacterial
community forms.

In this study, we describe the formation, characterization, and
modeling of synthetic bacterial communities assembled from a
highly characterized, phylogenetically diverse set of selected iso-
lates in different media environments. The aim of these efforts is
to define an approach to discovering simple, reproducible micro-
bial communities, without predefined relationships, for detailed
experimental studies that allow molecular and cellular level inves-
tigations into community structure. Using this discovery-based
approach, we hypothesize that different community structures will
result and depend on the media environment and the cooperative
and competitive characteristics of the emergent community mem-
bers. Ten bacterial strains (Table 1), isolated from Populus deltoides
rhizosphere and with defined genome sequences, were co-cultured
in either complex or minimal glucose media and serially trans-
ferred until a stable community structure formed. The resulting,
reproducible system allows for understanding community assem-
bly processes and investigation of causative molecular and cellular
1918
level events. To this end, a combination of marker gene profiling
and metaproteomics characterization was carried out for tracking
community structure and for gaining mechanistic insights into
interactions between isolates (Fig. 1). These data are comple-
mented by growth curve analyses and pairwise interaction screens.
Different stable communities assemble in these environments and
the higher-order interactions among community members are
investigated. To unravel potential metabolic interactions among
the surviving community members, genome-scale, community-
level metabolic models were constructed for predicting potential
metabolic processes involved in shaping the bacterial communi-
ties. The approach of discovering new microbial community struc-
tures under laboratory-defined conditions will facilitate
understanding of the formation and dynamics of natural communi-
ties and the rational design of synthetic consortia with desired bio-
logical functions.
2. Materials and methods

2.1. Community construction

All 10 wild type bacterial strains (Table 1) were previously iso-
lated from the rhizosphere of Populus deltoides [7,38–40]. Two
media were utilized in the experiments. A complex medium and
a minimal, chemically defined medium were used in order to
ascertain the influence of the chemical environment on microbial
community selection. R2A was selected as the complex medium
as this medium was used in the original environmental isolations
of the strains. The medium contains essential amino acids and both
simple and complex carbon sources that can potentially be utilized
for growth (e.g., pyruvate, starch, dextrose). In contrast, the second
medium, MOPS-glucose, is a defined mineral salts medium with a
single carbon source that also supports growth of each of the indi-
vidual strains. The MOPS minimal medium was prepared as
described in [41] and 0.2% glucose was added as the carbon source.
The R2A complex medium was prepared as described in [42]. The
bacterial community was cultured through a serial dilution proto-
col. Each strain was inoculated from an agar plate and grown indi-
vidually in a test tube with 10 mL R2A or MOPS liquid medium and
cultivated in a shaking incubator at 30 �C and 200 rpm for 48 h. The
growth of each strain was evaluated by measuring optical density
at 600 nm (OD600) and then the cultures were normalized to the
culture which had the lowest OD600 (0.228 in MOPS and 0.987 in
R2A). Equal volumes of the normalized culture were mixed
together, and the community was transferred into fresh medium
using a 1:10 dilution. The starting inoculum for each medium con-
tained a mixture of the ten bacterial strains at approximately equal
concentrations as determined by OD600. Triplicate cultures, for
both media, were incubated for 48 h at 30 �C with shaking at
200 rpm and passaged every 48 h at a 1:10 dilution for 15 pas-
sages. All bacterial strains in community are either obligate aer-
obes or facultative anaerobes, and shaking conditions ensured
aeration required for growth. At the end of each passage, the bac-
terial cells were collected by centrifugation at 12,000 rpm for
15 min and stored at �80 �C.
2.2. DNA extraction and microbial relative abundance analysis

To determine the composition of the bacterial communities at
each passage, genomic DNA was extracted from three replicate cell
pellets collected at the end of each passage using the Qiagen
DNeasy Blood and Tissue Kit (Qiagen, Valencia, CA) according to
the manufacturer’s instructions. DNA concentrations were deter-
mined on an Invitrogen Qubit fluorometer (Thermo Fisher Scien-
tific, Waltham, MA). The 16S rRNA gene was amplified using 515



Table 1
General features of the bacterial isolates utilized for community experiments.

Strain Phylogeny Genome size (bp) Number of coding sequence (CDS) G + C content (%) Reference

Pantoea sp. YR343 c-Proteobacteria 5,391,843 4985 54.5 [7]
Pseudomonas sp. GM17 c-Proteobacteria 6,866,808 6199 62.8 [7]
Sphingobium sp. AP49 a-Proteobacteria 4,506,188 4280 64.1 [7]
Rhizobium sp. CF142 a-Proteobacteria 6,068,985 5714 66.8 [7]
Variovorax sp. CF313 b-Proteobacteria 7,510,066 7608 60.1 [7]
Bacillus sp. BC15 Firmicutes 6,240,445 5413 62.9 [40]
Caulobacter sp. AP07 a-Proteobacteria 5,615,958 4915 68.9 [7]
Duganella sp. CF402 b-Proteobacteria 11,048,459 9632 61.9 [39]
Streptomyces mirabilis YR139 Actinobacteria 5,742,731 5635 34.8 [39]
Paraburkholderia sp. BT03 b-Proteobacteria 11,452,267 11,227 70.3 [38]

Fig. 1. Overview of experimental design for the bottom-up assembly of stable communities utilizing defined bacterial isolates.

J. Wang, D.L. Carper, L.H. Burdick et al. Computational and Structural Biotechnology Journal 19 (2021) 1917–1927
forward and 806 reverse primers, barcoded, and prepared for
sequencing using previously described methods [43]. The ampli-
fied products were then sequenced at Oak Ridge National Labora-
tory with a single 2 � 300 paired-end sequencing kit on Illumina
MiSeq (Illumina Inc., San Diego, CA). Raw sequences were trimmed
using cutadapt (v.1.18) to remove primers. The sequences were
imported into QIIME2 (v. 2019.1) for further processing. Sequence
variants were assigned using DADA2 implemented in QIIME2 plu-
gin. Taxonomy was assigned using the consensus vsearch option in
QIIME2 against a database of 16S sequences from the 10 commu-
nity members [44–47]. The resulting sequence variant table, map-
ping file, and taxonomy file were imported into Phyloseq (version
1.22.3) in R (version 3.4.4) for visualization. We corrected for 16S
rRNA copy number using a custom R script (available at https://
github.com/dlcarper/CopyNumberCorrection) and the number of
copies obtained from the isolate genomes. Raw sequences were
deposited in the NCBI SRA database under bioproject number
PRJNA658537.

2.3. Maximum growth rate measurements

Individual bacterial strains were inoculated from R2A agar
plates and grown in 10 mL of R2A or MOPS liquid media in test
tubes for 48 h as seed cultures. These seed cultures were measured
for OD600 and then normalized to the culture which had the lowest
OD600 value. The seed culture of each strain was inoculated (5%, v/
v) to the same liquid medium (10 mL) in a test tube and cultured at
1919
30 �C with shaking at 200 rpm for 48 h. Optical density measure-
ments at 600 nm were taken at 2-h intervals during the exponen-
tial phase of the growth curves. Bacterial cells were collected by
centrifugation at 12,000 rpm and heated at 60 �C to measure the
cell dry weight (CDW). A calibration curve for each strain was cre-
ated by correlating the OD600 to the CDW and applied to transform
the OD values to cell concentration. The maximum growth rates of
bacterial strains were calculated as the slope of the plot between ln
(X/X0) and time during the exponential growth phase. The X and X0

are the cell concentration (mg/mL) at time t and the time at the
beginning of the exponential phase [48]. The length of lag phase
was determined from a logarithmic plot of the growth curve and
identified as the time point that results from extrapolating the
slope of the exponential growth phase to the intersection with
the initial inoculum OD value [49].
2.4. Pairwise interaction screens

Pairwise interactions were performed as described previously
[11], briefly 5 lL of overnight R2A liquid culture of a selected
microbe was spotted on R2A agar plate containing a lawn of
another selected microbe and incubated at 25 �C for 48 h. Results
were recorded as antagonistic when a zone of inhibition was
observed, commensal when there was no obvious phenotype
observed, or mutualistic when enhanced growth was observed
around the test strain.

https://github.com/dlcarper/CopyNumberCorrection
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2.5. Individual and community modeling and flux balance analysis

The Department of Energy Systems Biology Knowledgebase
(KBase) platform (www.kbase.us) was applied for the automated
reconstruction of individualmetabolicmodels andfluxbalance anal-
ysis (FBA) for the 10 bacterial isolates [50]. The FBA was carried out
following previously described methods [51]. In brief, the genome
of each strain was annotated by Annotate Microbial Genome app,
which is based on Rapid Annotations using Subsystems Technology
(RAST) toolkit to annotate prokaryotic genomes [52–54]. The meta-
bolic modeling (Build Metabolic Model app) was performed using
the annotated genome of each strain, and then the model was gap-
filled (Gapfill Metabolic Model app) on R2A or MOPS media growth
conditions to ensure they are qualified to simulate growth. The
statistics on the constructed metabolic models for each strain are
shown in Tables S1 and S2. Finally, FBA of the gapfilled model was
predicted using biomass production as the objective value.

For communitymodeling, the individualmodels of themajor sur-
viving community members determined by 16S amplicon sequenc-
ing weremerged into communitymetabolic model using theMerge
Metabolic Models into Community Model app. The relative ratio of
the communitymemberswas adjusted by the 16S rRNA experimen-
tally determined ratio of the final passage of co-culture of 10 bacte-
rial isolates (Table S3) using the method in [51]. Then, the adjusted
community models were gapfilled and analyzed by FBA using the
same procedure as individual models to estimate the fluxes of bio-
chemical reactions and biomass production in the bacterial commu-
nity. For constrainingmicrobial growth in the communitymodels, a
calibration curve between the carbon uptake limit and growth rate
was built using the FBAmodel of each individual strain, and the car-
bon uptake limit was calculated based on the experimental growth
rate of each strain using the linear regression equation of the corre-
sponding calibration curve. The carbon uptake limit of the commu-
nity model was the summation of individual growth rate � relative
percentage. The models used in this study are accessible online
(https://narrative.kbase.us/narrative/73218 and https://narrative.
kbase.us/narrative/73221).

2.6. Community proteomics analysis

2.6.1. Cellular protein extraction
Cell pellets, collected at the end of the passage, were solubilized

in 600 mL of lysis buffer (4% sodiumdodecyl sulfate (SDS) in 100mM
Tris, pH 8.0) supplementedwith 1�Halt Protease Inhibitor Cocktail
(Thermo Fisher Scientific, Waltham, MA). Samples were vortexed
and then further disrupted with a Bullet Blender storm 24 (Next
Advance) bead beater for 5 min using 0.15 mm Zirconium oxide
beads at 3:1 sample to bead ratio. Samples were then placed in a
heat-block for 10min at 90 �C. Protein concentration wasmeasured
using aNanodropOne spectrophotometer (Thermo Fisher Scientific,
Waltham, MA). Protein disulfide bonds were reduced with 10 mM
dithiothreitol (DTT) at 90 �C for 10 min and then alkylated with
30 mM iodoacetamide (IAA) for 15 min in the dark to prevent the
reformation of disulfide bonds. As previously described [55], pro-
teins were extracted by protein aggregation capture on Ser-Mag
beads at 1:1 protein to beads ratio [55] and digested with sequenc-
ing grade Pierce trypsin (Thermo Fisher Scientific, Waltham, MA) at
1:75 (wt/wt) protein:trypsin ratio for overnight followed by a sec-
ond 3 h digestion at 37 �C at constant shaking. Samples were vor-
texed and centrifuged at 12,000g for 15 min in 10 kDa molecular
weight spin column filters (Vivaspin 500). Tryptic peptide flow-
throughs were collected and then desalted using Pierce peptide
desalting spin columns (Thermo Fisher Scientific, Waltham, MA)
as per the manufacturer’s instructions. Desalted peptides were vac-
uum dried with a SpeedVac Concentrator (Thermo Fisher Scientific,
Waltham, MA) and then resolubilized in 0.1% formic acid. Peptide
1920
concentrations were measured using a nanodrop (Thermo Fisher
Scientific, Waltham, MA) and transferred to the auto-sampler vials
for LC-MS/MS measurement.
2.6.2. Protein identification and quantification
Each sample was analyzed using two-dimensional (2D) liquid

chromatography (LC) on an Ultimate 3000 RSLCnano system
(Thermo Fisher Scientific, Waltham, MA) coupled with a Q Exactive
Plus mass spectrometer (Thermo Fisher Scientific, Waltham, MA).
For each sample, an aliquot of digested peptidemixturewas injected
across an in-house built strong cation exchange (SCX) Luna trap col-
umn (5 mm, 150 mm� 50mm; Phenomenex, Torrance, CA) followed
by a nanoEase symmetry reversed-phase (RP) C18 trap column
(5 mm, 300 mm � 50 mm; Waters, Milford, MA) and washed with
an aqueous solvent. Cellular peptide mixtures were separated and
analyzed across three successive SCX fractions of increasing concen-
trations of ammonium acetate (35 mM, 50 mM, and 500 mM), each
followed by a 100-minute organic gradient (25 nL/min flow rate)
to separate peptides across an in-house pulled nanospray emitter
analytical column (75 mm � 350 mm) packed with C18 Kinetex RP
C18 resin (1.7 mm; Phenomenex, Torrance, CA). All MS data were
acquired with Thermo Xcalibur (version 4.2.47) using the topN
method where N could be up to 10. Target values for the full scan
MS spectra were 3 � 106 charges in the 300–1500 m/z range with a
maximum injection time of 25 ms. Transient times corresponding
to a resolution of 70,000 atm/z 200 were chosen. A 1.6m/z isolation
window and fragmentation of precursor ions was performed by
higher-energy C-trap dissociation (HCD)with a normalized collision
energy of 27 eV. MS/MS scans were performed at a resolution of
17,500 atm/z 200with an ion target value of 1� 105 and amaximum
injection time of 50 ms. Dynamic exclusion was set to 20 s to avoid
repeated sequencing of peptides.

All MS raw data files were analyzed using the Proteome Discov-
erer software (version 2.3, Thermo Fischer Scientific, Waltham,
MA). Raw files were processed by the SEQUEST HT database search
algorithm [56] and confidence in peptide-to-spectrum (PSM)
matching was evaluated by Percolator [57]. Peptide and PSMs were
considered identified at q < 0.01 and proteins were required to
have at least one unique peptide sequence. Protein relative abun-
dance values were calculated by summing together peptide
extracted ion chromatograms. Protein abundances were normal-
ized by LOESS and mean central tendency procedures performed
on log2-transformed values by InfernoRDN [58]. From this normal-
ized dataset, protein abundances subset for each microbe were
extracted and further mean-centered by InfernoRDN. All pro-
teomics spectral data in this study were deposited at the Pro-
teomeXchange Consortium via the MASSIVE repository
(https://massive.ucsd.edu/). The data can be reviewed under the
username ‘‘MSV000086551_reviewer” and password ‘‘PMI”.

Organism relative abundance (i.e., population size) was
assessed using two approaches [59]: 1) total protein count per
organism divided by the total count of proteins per community
and 2) summed total relative protein abundance per organism
divided by the summed total protein abundance per community.
Note, it is important to evaluate and compare both approaches to
account for biases in protein expression. In this study, we found
these two approaches provided similar results and report relative
organism abundances using the second approach.
3. Results and discussion

3.1. Stable community structure in minimal and complex media

Stable microbial communities were formed by serial transfer of
batch cultures containing a mixture of ten, phylogenetically
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diverse bacterial strains derived from the Populus rhizosphere
(Table 1). These strains represent phyla that are abundant in the
rhizosphere of plants [43,60]. The use of batch cultures allows for
effective exchange of metabolites and the preparation of samples
for analytical measurements. The component strains’ genomes
are sequenced and comprise three a-Proteobacteria, three b-
Proteobacteria, two c-Proteobacteria, one Firmicute and one Acti-
nobacterium. These batch cultures were subsequently transferred
to fresh medium every 48 h and the relative proportion of each
member was analyzed by 16S rRNA gene amplicon Illumina
sequencing and quantitative metaproteomics. They are in general
agreement regarding the trends in membership of the stable
microbial communities that are formed in the two different media
environments (Fig. 2). In both environments, the bacterial diversity
decreases from the initial inoculation, and both measurement
approaches show changes in the relative proportions of the bacte-
rial strains that settle into a similar distribution beginning with
approximately the fifth dilution cycle (see Supplemental Fig. S1).
This observation is consistent with the expectation that competi-
tion for local resources will reduce the genotypic diversity within
a bacterial community [61]. In the MOPS minimal medium, four
strains consistently dominate in abundance and stably coexist
starting with passage No. 4. Organismal abundance trends in R2A
show a fluctuation in organism relative abundances occurring
between passages two and five that substantially alters the abun-
dance of several members of the community until a community
stably coexists starting with passage No. 10.
Fig. 2. Analysis of the relative abundances of the 10 bacterial strains after sequential pa
bacterial strain in the community are based on A) 16S rRNA gene amplicon sequencing re
cycle after the initial inoculation. Each bar is a replicate, with three replicates per pas
samples.

1921
In general, 16S rRNA gene amplicon sequencing and metapro-
teomics results provide similar estimates of the relative microbial
abundance distribution for each measured passage in the minimal
MOPS medium but differ in the rich R2A medium. In MOPS med-
ium, Pseudomonas sp. GM17 is the most abundant member along
with three other strains, Variovorax sp. CF313, Rhizobium sp.
CF142 and Sphingobium sp. AP49, that persist in consistent propor-
tions (Fig. 2). Estimates of organism proportion in the R2A med-
ium, on the other hand, are quite different between the two
approaches. For 16S rRNA gene amplicon sequencing, three mem-
bers dominate in abundance when grown in R2A complex medium,
and Pantoea sp. YR343 is the member with highest content after 15
passages (Fig. 2A). The less abundant strains in R2A medium are
Pseudomonas sp. GM17 and Sphingobium sp. AP49. Metaproteome
analysis reveals the same dominant members, albeit the relative
abundance of Pantoea sp. YR343 is strikingly different (Fig. 2B).
Additionally, there is a notable abundance of Bacillus sp. BC15
not seen in 16S rRNA gene amplicon sequencing data. These differ-
ences can be attributed to measurement distinctions that result
from using either a DNA- or protein-based approach to assess
organism proportions in microbial communities. For example,
examination of the proteins expressed by Bacillus sp. across the
passages reveals an abundance of sporulation-related processes.
Spores are notoriously challenging to measure by 16S rRNA gene
amplicon sequencing because they are difficult to lyse, which neg-
atively impacts DNA extraction efficiency [62]. Selective PCR
amplification before amplicon sequencing may be another poten-
ssages in MOPS minimal and R2A complex media. The relative abundances of each
sults and B) metaproteomic results. Passage 0 represents the end of the first growth
sage. The numbers shown on the bottom represent the passage number for those
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tial source of bias, since the designation of a perfectly matching
universal primer is not possible [63,64]. Nevertheless, there is
clearly a benefit in using both approaches. For instance, the
observed differences in the relative abundance of Pantoea sp.
YR343 is likely because 16S rRNA gene amplicon sequencing mea-
sures DNA from viable cells as well as ‘relic’ DNA (i.e., DNA from
dead cells), whereas metaproteomics is a more accurate estimate
of biomass from viable, functioning cells [59,65,66]. Assimilating
the results between these two measurements suggests that Pan-
toea sp. YR343 may experience a population dieback event prior
to the timepoint of sampling.

3.2. Experimentally determined growth rates for the individual
bacterial isolates

Individual microbial growth rates can impact interactions
within a community [33], experimentally determined growth rates
of the 10 individual strains were obtained for both media and show
substantial differences. In the MOPS medium, strain Pseudomonas
sp. GM17 has the highest growth rate (0.463 h�1) among the group
(Fig. 3A). It is also the dominant strain in the community growth
experiment (Fig. 2). In the same medium, Sphingobium sp. AP49
(0.430 h�1) has a maximum growth rate that is similar to that
observed with the Pseudomonas sp. GM17 and also maintains a
presence in the community. Compared to these two organisms,
Paraburkholderia sp. BT03 (0.379 h�1), Variovorax sp. CF313
(0.362 h�1), Pantoea sp. YR343 (0.346 h�1), Duganella sp. CF402
(0.333 h�1) and Caulobacter sp. AP07 (0.296 h�1) have slightly
lower maximum growth rates, but only Variovorax sp. CF313 per-
sists in the community. Three organisms, Rhizobium sp. CF142
(0.082 h�1), Bacillus sp. BC15 (0.055 h�1) and Streptomyces mirabilis
YR139 (0.039 h�1), have considerably lower growth rates when
compared to the other organisms. Interestingly, despite having a
relatively slow growth rate in the MOPS medium, Rhizobium sp.
CF142 prevails as a dominant community member.

In R2A medium, there is a strong correlation between the
growth rates of individual strains and community membership.
Not surprisingly, the growth rates of all of the selected microbes
are higher in this rich medium when compared to growth rates
observed in MOPS medium. Overall, Pantoea sp. YR343
(0.656 h�1), Pseudomonas sp. GM17 (0.563 h�1) and Sphingobium
sp. AP49 (0.479 h�1) are relatively fast growers in R2A and are sig-
nificant components of the emergent community. In contrast,
Paraburkholderia sp. BT03 (0.472 h�1), Bacillus sp. BC15
(0.442 h�1), and Duganella sp. CF402 (0.411 h�1), despite showing
growth rates only slightly lower than Sphingobium sp. AP49, do
not maintain a significant presence in successive community
growth cycles (Fig. 3B).

Comparison of the individual member growth rates to the
observed community composition indicates complex relationships
among the community members. On the one hand, the presence of
fast-growing microbes in the emerging community composition is
expected and consistent with observations in other systems. The
competitive exclusion principle predicts that when the bacterial
members in a community compete for the same resources, the fit-
ter strain will outcompete the other members [6] and has a greater
opportunity for recurrent colonization that can allow for persis-
tence in the community [67]. Yet, several fast-growing microbes
are absent in the final passages of the community and slow grow-
ers are present. Often, slower growing microbes persist in commu-
nities and allow for maintenance of diversity. Here, the well-mixed
conditions promote exchange of metabolites during bacterial
growth and prevents spatial structuring that often allows for main-
tenance of slower growing organisms [22,68]. Therefore, bacterial
strains must collectively adjust their behavior and selectively
cooperate in order to emerge into a community with stable propor-
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tions. The resulting supportive associations among community
members likely proceeds through metabolic interactions such as
the cross-feeding of essential nutrients [61]. One particularly inter-
esting observation to this point is the persistence of Rhizobium sp.
CF142 in the MOPS minimal medium community. When grown in
monoculture in MOPS minimal medium, this strain has a slower
growth rate and lower final OD when compared to the other
strains. It could be speculated that metabolic cooperation emerges
in these mixed microbial communities increasing the fitness of
strain CF142, potentially by providing some missing nutrients
made available by other community members [69,70]. This is con-
sistent with the existence of both cooperative and competitive
associations between the component members that lead to the for-
mation of a community network structure [71].

3.3. FBA-based growth prediction models for individual microbes

To gain a better understanding of individual strain metabolism
and the potential variety of exchanged metabolites, FBA models of
each of the component microbes were generated. By estimating
the reaction fluxes to generate biomass constituents, the growth
rate of the microorganism can be predicted [72]. The maximum
relative growth rates of the ten bacterial isolates in R2A and MOPS
media are displayed in Fig. 3. In these models, the objective value
of growth is determined by setting a maximum glucose uptake flux
of 100 mmol/g DCW/h. Among the 10 Populus bacterial isolates in
MOPS medium, Pseudomonas sp. GM17 has the highest predicted
and actual growth rate and was used for normalization. Similarly,
among the 10 Populus bacterial isolates grown in R2A medium,
Pantoea sp. YR343 has the maximal predicted and actual growth
rate and was used as the reference standard.

In MOPS medium, the hierarchy of relative predicted growth
rates generally matches the experimentally observed growth rates.
In this medium, the maximal growth rate predictions for the slow-
est growing organisms, Rhizobium sp. CF142, Bacillus sp. BC15, and
Streptomyces mirabilis YR139 are significantly overestimated and
likely reflect imperfect understanding of metabolism in these
organisms. When compared to the others, these organisms all have
long lag phases (Fig. 3A) which likely reflects unknown adaptations
to environmental conditions [73]. Further, these organisms may
adopt different growth strategies that do not prioritize the conver-
sion of glucose to biomass. In the case of Streptomyces mirabilis
YR139, the unusual growth and morphological characteristics of
this genus can contribute to experimental and predictive errors.

In R2A media, growth rate predictions show a different trend. In
general, the predicted relative growth rates of the slower growing
organisms match the experimentally observed maximal growth
rates. In contrast, growth rate predictions are poor for several of
the faster growing microbes (Fig. 3B). In particular, growth rate
predictions are significantly underestimated for Sphingobium sp.
AP49 and Bacillus sp. BC15 in this complex medium. Again, this
may reflect unknown limits on metabolism for these species. The
FBA predicted growth rates assume ideal conditions; all nutrients
in the medium are made available at the maximum uptake flux.
In the growth experiments of those individual strains, the growth
rate could not be ideally as high as the FBA models.

In the FBA model using R2A medium, the dominant strain Pan-
toea sp. YR343 has the highest number of exchange reactions of
nutrients (Table S4), and it has more transporters based on genome
annotation compared with the other community members. For
Pantoea sp. YR343, the higher number of transporter genes may
be related to its stronger metabolic interaction potential encoded
in the genome. In the nutrient rich complex medium, Pantoea sp.
YR343 is capable of utilizing a variety of nutrients which is consis-
tent with the observation that this organism has the highest simu-
lated growth rate. In contrast, the number of exchange reactions



Fig. 3. Comparison of experimentally determined growth parameters with FBA model predicted growth. A) Relative growth rates and lag times for the individual strains in
MOPS medium; B) relative growth rates and lag times for the strains in R2A medium. Each data column of experimental results represents the mean and error bars are the
standard deviation over three parallel experiments.
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identified in individual FBA models carried out in MOPS medium is
similar (Table S5). This likely results from the minimal medium
environment where nutrition is relatively limited compared with
the complex R2A medium. In MOPS medium models, the
medium-specific metabolic processes may override the strain-
specific metabolisms, leading to much less difference in simulated
growth rates among the 10 isolates when compared to models
employing R2A medium [74]. The discrepancy of simulated growth
rates of the same strain between MOPS and R2A media also corre-
sponds to the experimental observation that bacteria utilize their
metabolism for survival in the minimal medium, in contrast they
tend to have more active growth in the complex medium [75].

3.4. Evaluation of microbial community models

3.4.1. FBA-based growth prediction for community models
FBA-based community models were assembled in order to

identify microbial features that account for the observed stability
of the community and for assessing the suitability of these mod-
els and their use in understanding the molecular genetic bases for
the resulting community structure. Flux changes of the metabo-
lites involved in exchange may explain the interaction mecha-
nisms between the component members. Compartmentalized
models were created using the KBase platform to allow for the
community members to secrete and take up metabolites from a
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shared environment [17,51]. To create these models, the
genome-scale metabolic models of the primary constituents of
the final community were combined using the relative ratio of
the community members determined from the 16S rRNA gene
marker data for the final passage. These final, persistent strains
are considered the best-performing species and as community
drivers that affect dependent species and community organiza-
tion [76,77].

The FBA-based community models predict altered growth rates
for the constituent members when compared to their individual
growth rates. In MOPS medium, the dominant strain Pseudomonas
sp. GM17 is predicted to have the fastest growth among the con-
sortium members. However, this growth rate is lower when com-
pared with its individual FBA model (Fig. 3A). This is most likely
due to competition with other community members in this limited
nutrient environment and thus a lower growth rate is not surpris-
ing. In comparison, the three other major strains in this consortium
have significantly lower, but similar, predicted growth rates when
compared to Pseudomonas sp. GM17 as well as to their individual
models (Fig. 3A). Altered growth rates can result from competitive
interactions and have been observed in other studies using mini-
mal media for microbial community assembly [78–80]. These prior
studies indicate that the metabolic capability associated with each
strain can influence community composition and lead to the sur-
vival of the strongest competitors [22,81].



Fig. 4. Predicted metabolite exchange among the four dominant members of the microbial community formed in MOPS medium as proposed by the community FBA model.
The percentage of detected enzymes by metaproteomics analyses is shown in parentheses.
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When using R2A medium in the community metabolic model,
the dominant strain Pantoea sp. YR343 has a much higher theoret-
ical growth rate than that of its individual model. This suggests
that it is beneficial for Pantoea sp. YR343 to grow in the presence
of the other two members in the community. The higher predicted
growth rate for Pantoea sp. YR343 in the community model may
relate to the organism’s broad spectrum of transport reactions
[82]. In a community, the bacterial members that are metabolic
generalists have a better chance of survival compared to those that
are adapted to specific substrates [22,83]. For both media, the
community-FBA models support the dominant presence of a fast-
growing member and suggest that members of the community
influence each other’s growth rate.

3.4.2. FBA-based predictions of metabolic exchanges
Limiting the uptake flux of carbon is the foundation of a

constraint-based FBA model and allows prediction of the distribu-
tion of metabolic fluxes that depend on the medium [84]. Without
a carbon source uptake limitation, metabolite exchanges between
community members will be overestimated. Therefore, a limita-
tion of carbon uptake flux was added to the FBA models for the
communities modeled in either MOPS or R2A medium. Calibration
curves relating carbon source uptake flux and growth rate objec-
tive value were established for each community member, and
the individual carbon uptake flux limitation of each strain was cal-
culated based on the experimental growth rate. The carbon uptake
limit for a community FBA model was calculated as the sum of the
relative ratios of the individual microbial components multiplied
by their individual carbon uptake rates.

The extracellular metabolites involved in interspecies
exchanges can be predicted by the community FBA models [51].
Fig. 4 illustrates the predicted metabolite exchanges among the
four component members in MOPS medium. The dominant strain,
Pseudomonas sp. GM17 is predicted to supply more metabolites to
the other community members than it receives. Key among these
predicted metabolites are amino acids, sugars and purine deriva-
tives. In the minimal medium environment, cellular building mate-
rials must be wholly prepared from the glucose carbon source, or,
in a community environment, scavenged from the excretions of
other microbes. Accessing excreted metabolites may be vital for
the maintenance of those members with minor content in the com-
munity. In turn, Pseudomonas sp. GM17 may rely on the production
of metabolites from these minor community members as evi-
denced by its lower growth rate in the community FBA model
when compared with its individual FBA model. The metapro-
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teomics results provide an opportunity to assess whether the
appropriate pathways are represented. The percentage of the
detected enzymes in the metabolite supplier is related to the total
protein involved in the KEGG pathways for the exchanged metabo-
lites. Considering the dominant microbial component Pseudomonas
sp. GM17, there is high representation of the enzymes related to
the metabolites supplied by this organism (Fig. 4). In contrast,
enzymes involved in the preparation of metabolites shared from
the other organisms are low. This lower representation is a conse-
quence of the relatively lower number of proteins detected from
these organisms relative to Pseudomonas sp. GM17.

In the community model using R2A medium, metabolite
exchange can also be predicted. Here, the dominant strain Pan-
toea sp. YR343, based on the 16S rRNA marker data, is expected
to export a greater range of metabolites than it receives from
the other two members of the community (Fig. 5). Organic acids,
purine derivatives and biogenic amines are predicted to be
excreted and support the growth of the other community mem-
bers. The community FBA model predicts a faster growth rate
for Pantoea sp. YR343 in the community model when compared
to the individual model and this may result from access to
metabolites excreted by the other community members. Again,
the community metaproteomics results can be used to assess
the presence of relevant pathways. The high representation of
both Pantoea sp. YR343 and Pseudomonas sp. GM17 in the
metaproteomics data allows detection of most of the enzymes
expected to participate in the FBA-based predictions. As in the
case of the minimal medium environment, representation of the
minor microbial components is poor, and confirmation of relevant
components of metabolism is much lower when compared to the
major microbial components.

The combination of omics data with FBA modeling can aid with
understanding community function and stability. Here, the
metaproteomics results help support predictions of the FBA model
by providing evidence for the metabolic capabilities of each com-
munity member and making them more faithful representations
of the biological system being interrogated [23]. While the cover-
age of enzymes implicated in the exchanged metabolites is rela-
tively high for prominent members of the community, as
communities grow in membership diversity, metaproteomic
sequencing depth will need to improve for the more minor mem-
bers, which may disclose their survival mechanisms. Additionally,
the integration of metabolomics data will be valuable for con-
straining FBA models and for confirming predictions of interdepen-
dencies between community members.



Table 2
Pairwise interaction screen results. Strain designations across top of table indicate lawn of microbes spread on R2A agar plate and designations on left indicate cells spotted on
center of lawn. + indicates a positive interaction while - indicates an antagonistic interaction. Empty cells indicate no obvious colony phenotype change.

Genus Strain YR343 GM17 AP49 CF142 CF313 BC15 AP07 CF402 YR139* BT03

Pantoea YR343 + + ND
Pseudomonas GM17 – – – – – – ND –
Sphingobium AP49 – + ND
Rhizobium CF142 + ND
Variovorax CF313 – ND –
Bacillus BC15 – ND
Caulobacter AP07 – ND
Duganella CF402 + + ND
Streptomyces YR139 – – – ND
Paraburkholderia BT03 – ND

* Due to the growth characteristics of Streptomyces sp. YR139, a lawn of bacteria could not be prepared and resulted in no data (ND).

Fig. 5. Predicted metabolites exchange among the three dominant members of the microbial community formed in R2A medium as proposed by the community FBA model.
The percentage of detected enzymes by metaproteomics analyses is shown in parentheses.
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The inherent complexity of metabolic interactions is a challenge
in the modeling of microbial communities [85]. The genome-scale,
mechanistic modeling provided by the FBA approach is presently
insufficient to account for a large fraction of intracellular networks
or assess dynamic, population level changes that likely lead to
community structuring [72]. Integration with population-level
dynamic models, such Lotka-Volterra (LV) [86–88], or r/K selection
strategies [89] may help to describe the temporal progress of spe-
cies abundances and community formation processes. Dynamic
FBA, which simulates the dynamics of community growth and sub-
strate consumption in time-dependent processes, can also extend
current FBA approaches to temporal changes [90–92]. Effective
application of these tools will require new, time dependent global
sampling and measurement strategies for verifying the efficacy of
dynamic models.

3.5. Pairwise interaction screens

While the present metabolic models help to understand inter-
actions that support growth of a stable community, they provide
only partial insight into the selection process that leads to commu-
nity formation. In both tested environments, a fast-growing
microbe emerges as a dominant component that is supportive of
other community members. However, other relatively fast-
growing microbes are out competed in early growth cycles, and
their abundance fades from the composition of the community.
Antagonistic interactions may be present that facilitate the com-
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munity selection process. To assess this possibility, community
members were screened for mutualistic, commensal, or antagonis-
tic colony phenotypes in a pairwise interaction screen. While a
majority of the interactions appear to be commensal, with no obvi-
ous phenotypes, the screen did identify both positive and negative
interactions (Table 2). Pseudomonas sp. GM17 cells were antagonis-
tic to the growth of the majority of the other community members,
while Pantoea sp. YR343 demonstrated positive interactions with
several strains indicating an obvious role for competition, antimi-
crobial production and or beneficial interactions in microbial com-
munity selection, structure and stability.

Interestingly, although the growth of strain AP49, CF313 and
CF142 were inhibited by strain GM17 in pairwise interaction
screens, these strains still co-existed with strain GM17 during the
10-member community cultivation. Thismay be attributed to inter-
twined metabolic interactions among these four strains, in which
the beneficial effect from the metabolites in a shared extracellular
environment for growth overwhelms antagonistic effects by strain
GM17. Alternatively, different experimental conditions may
account for the unexpected result. The multi-member community
was grown in awell-mixed liquidmediumconditionwhich is differ-
ent from the static agar plate conditions of the pairwise interaction
screen andmay account for the observed discrepancy [93]. The inte-
gration of temporal modeling of microbial communities with time
course of community composition within the growth period in a
passage can be promising to accommodate these antagonistic inter-
actions and the dynamic processes that shape community structure.
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4. Conclusions

Distinct bacterial communities can be formed from a more
complex mixture of microbial isolates. Diverse bacterial species,
without previously known or expected obligate relationships, were
combined and put through dilution cycles. After approximately
five cycles, select members prevail and form fairly stable commu-
nity structures that persist through successive cycles. Further, the
resulting community structures depend on the media environment
used for the dilution cycles. The described approach to discovering
stable, media-dependent emergent communities takes advantage
of genome-defined isolates to allow for effective implementation
of systems biology tools. Growth curve analyses, metaproteomics
and FBA analyses were employed to identify key factors that con-
tribute to the resulting community structure. Growth rate was
identified as providing an advantage for a microbial member to
maintain presence in the community. Interestingly, some of the
fastest growing organisms remain in the final community structure
but other rapid growing organisms do not. Further, under minimal
medium conditions, a relatively slow growing organism was found
to persist. Pairwise interaction measurements highlight that selec-
tive antagonistic relationships may contribute to the final structur-
ing of the community. In order to gain a molecular-level
understanding of the resulting microbial organization, FBA analy-
ses were performed. Metabolic exchanges between organisms
can be identified and likely underpin the shaping of community
membership. Metaproteomic results support general findings of
the FBA models. However, presently accessible FBA tools primarily
account for central metabolite fluxes with cell growth as the final
objective. Understanding dynamic processes at the molecular and
cell population levels will be required to understand community
formation, dynamics, and structure. Improved modeling capabili-
ties, coupled with time dependent measurements and the
described, scalable approach to identifying stable communities
will facilitate definition of the molecular events that result in
microbial community structure and dynamics.
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