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Abstract: The classical laboratory mouse strains are genetic mosaics of three Mus musculus subspecies
that occupy distinct regions of Eurasia. These strains and subspecies carry infectious and endogenous
mouse leukemia viruses (MLVs) that can be pathogenic and mutagenic. MLVs evolved in concert
with restrictive host factors with some under positive selection, including the XPR1 receptor for
xenotropic/polytropic MLVs (X/P-MLVs) and the post-entry restriction factor Fv1. Since positive
selection marks host-pathogen genetic conflicts, we examined MLVs for counter-adaptations at
sites that interact with XPR1, Fv1, and the CAT1 receptor for ecotropic MLVs (E-MLVs). Results
describe different co-adaptive evolutionary paths within the ranges occupied by these virus-infected
subspecies. The interface of CAT1, and the otherwise variable E-MLV envelopes, is highly conserved;
antiviral protection is afforded by the Fv4 restriction factor. XPR1 and X/P-MLVs variants show
coordinate geographic distributions, with receptor critical sites in envelope, under positive selection
but with little variation in envelope and XPR1 in mice carrying P-ERVs. The major Fv1 target in the
viral capsid is under positive selection, and the distribution of Fv1 alleles is subspecies-correlated.
These data document adaptive, spatial and temporal, co-evolutionary trajectories at the critical
interfaces of MLVs and the host factors that restrict their replication.

Keywords: mouse gammaretroviruses; restriction factors; endogenous retroviruses; positive selection;
coevolution; Fv1 restriction; XPR1 virus receptor; CAT1 virus receptor; geographic mosaics

1. Introduction

The classical inbred strains of laboratory mice carry mouse leukemia viruses (MLVs)
of three host range groups: ecotropic, xenotropic, and polytropic (E-MLVs, X-MLVs, P-
MLVs) [1–3]. These gammaretroviruses are found either as infectious retroviruses (XRVs)
or as endogenous retroviruses (ERVs), which are viral DNA copies inserted into host chro-
mosomes during past infections. These inbred strains are intersubspecific hybrids of three
house mouse subspecies, Mus musculus musculus, M. m. castaneus, and M. m. domesticus [4].
All of these subspecies carry MLVs; polytropic ERVs (P-ERVs) are predominate in Western
European and North African M. m. domesticus, while xenotropic and ecotropic XRVs and
ERVs (X- and E-MLVs) are found in Eurasian M. m. castaneus and M. m. musculus [5]. These
subspecies, and the viruses they carry, likely originated in the Indian subcontinent and the
neighboring Iranian plateau [6] but followed humans engaged in migration or trade and
now have a global distribution with largely nonoverlapping geographic ranges in Eurasia
that can be separated by defined hybrid zones [7].
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The various laboratory strains and wild mouse subspecies differ in their susceptibility
to MLVs, and to virus-induced disease, due to host factors that can inhibit virus replication
at different stages of the virus life cycle, including entry, reverse transcription, transport
to the nucleus, transcription, and budding [8]. Some of these factors have no known
function other than virus restriction, while others serve important host functions that also
facilitate virus replication but can have restrictive polymorphic variants. These factors act
to mitigate the consequences of exposure to infectious and endogenous MLVs that can be
pathogenic and mutagenic. Polymorphisms in these host restriction factors can alter virus
restriction patterns, and viruses can acquire adaptive mutations at sites that interact with
these antiviral host factors. This evolutionary “arms race”, described by the Red Queen
hypothesis [9], notes that both the host and pathogen have to change continuously to keep
up with the newly acquired antagonistic adaptations in their adversaries. This process
has produced adaptive changes in the post-entry restriction factor Fv1 and in the XPR1
receptor for X/P-MLVs [10,11]. Both genes are under positive selection, in rodents, that is
centered on sites critical for virus restriction. These analyses, however, present a limited
picture of this host-pathogen co-evolutionary history as they have largely focused on the
host partner in these conflicts.

The divergence of M. musculus, into subspecies that are geographically separated, also
provides a unique opportunity to describe any phylogeographic evolutionary patterns in
these viruses and host restriction factors. Antagonistic host-pathogen interactions can drive
evolutionary changes on spatial, as well as temporal, scales, generating genetic diversity in
physically separated populations. Coevolution can thus proceed along different trajectories
in separated populations, creating distinctive geographic mosaics as described by the
Geographic Mosaic Theory of Evolution [12].

Here, we focused our attention on the divergence of MLVs and ERVs in M. musculus,
examining the capsid target of Fv1 and the receptor binding domains (RBDs) of X/P- and
E-MLV envs, which utilize the XPR1 and CAT1 receptors, respectively. We looked for
positive or purifying selection at these protein interfaces and for any previously overlooked
restriction factor variants. We describe the geographic distribution of MLV env variants and
Fv1 alleles in natural house mouse populations. We show evidence of reciprocal positive
selection at the MLV sites that interact with Fv1 and the XPR1 receptor, but we find a “cold
spot” in European M. m. domesticus where there is no obvious sign of conflict between the
MLVs they harbor and XPR1. We also report that, despite extensive sequence variation in
the E-MLV RBD, these MLVs show no adaptive changes in the receptor binding pocket
nor is there variation in the receptor critical region of the M. musculus CAT1 suggesting
that other factors, such as the Fv4 restriction gene in some virus-infected populations, help
mitigate the consequences of infection.

2. Materials and Methods
2.1. Sources of Mouse DNAs and RNAs

Sources of mice and DNAs are listed in Table S1. Some DNAs were isolated from mice
maintained in our laboratory or obtained from M. Potter (NCI, Bethesda, MD, USA) and
from S. Rasheed (University of Southern California, Los Angeles, CA, USA). Additional
DNAs from wild-caught or wild-derived mice were purchased from The Jackson Labora-
tory (Bar Harbor, ME, USA) and from RIKEN BioResource Center (Tsukuba, Japan) with
assistance from Drs. Toshihiko Shiroishi and Takehide Murata, or were obtained from R.
Abe (Naval Medical Research Institute, Bethesda, MD, USA) and from S. Chattopadhyay
and H. Morse III (NIAID, Bethesda, MD, USA).

2.2. Primers, PCR, Cloning and Sequencing

Primers for PCR (Table S2) were designed to amplify the full-length or C-terminal half
of Fv1, MLV subtype specific segments, and the full length CAT1 receptor or genomic CAT1
segments, including exons 3-5, which cover the receptor determining region. Selected
PCR products were cloned into pCR2.1-TOPO (Thermo Fisher, Waltham, MA, USA) and
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sequenced (Datafile S1). Other sequences used for analysis included previously reported
mouse ERVs and XRVs and genes for CAT1 and Fv1 from various Mus musculus subspecies
and other rodents (Table S3) [13–15].

2.3. Identification of Variants in Fv1 and Slc7a1(CAT1) Genes in M. m. castaneus

Aligned sequence reads (BAM formatwere obtained for ten wild M. m. castaneus ani-
mals trapped in different locations in northwest India from Daniel Halligan and P. Keight-
ley (University of Edinburgh) [16]. Reads were subset for the Fv1 and CAT1 genes using
SAMtools (version 0.1.18) [17], coordinates chr4:147242588-147244967 or chr5:149138986-
149211480 according to the mm9/NCBIM37 reference assembly. For Fv1, files for each strain
were converted to FASTQ format with bam2fastx (from TopHat package [18]) and aligned
to the reference using BWA MEM [19] (version 0.7.5a-r405) For both genes, duplicates were
marked with MarkDuplicates (http://broadinstitute.github.io/, accessed on 22 December
2014; version 1.75), and variants were called using GATK (version 3.3) Best Practice meth-
ods [20–22], including indel realignment, single-sample calling with HaplotypeCaller and
joint genotyping with GenotypeGVCFs. To further refine the indels at the C-terminus of
Fv1, reads were assembled with SOAPdenovo2 [23] (version LINUX-generic-r240) with
kmer setting ranging from 25 to 61 and resulting contigs with coverage > 1 were assembled
using Lasergene SeqMan (DNASTAR, Inc, Madison, WI, USA). Variant effects were an-
notated using VEP [24] (archived tool at http://may2012.archive.ensembl.org/tools.html,
accessed on 22 December 2014). Linkage/phasing of variants within a strain was deter-
mined by HaplotypeCaller or manual inspection of paired reads using IGV [25], SAMtools,
and BLAT [26] at the UCSC Genome Browser (http://genome.ucsc.edu/, accessed on
22 December 2014) [27].

2.4. Identification of the Subspecies Origin of Fv1

We used the Mouse Phylogeny Viewer (MPV) at the University of North Carolina
(http://msub.csbio.unc.edu, accessed on 14 March 2021) [28] to identify the subspecies
of origin of Fv1 alleles using chromosome coordinates from the NCBI37/mm9 reference
assembly. This browser uses a set of diagnostic single-nucleotide polymorphisms (SNPs)
to define the local subspecific origin along each autosome and the X chromosome for a set
of 100 classical laboratory strains and 98 wild-derived and wild-caught mice. MPV also
identifies regions of haplotype identity for the inbred strains and the SNP variants that
define those regions.

2.5. Phylogenetic and Positive Selection Analyses

The sequence of the Slc7a1 (CAT1) gene and segments of env and gag from E- and
X/P-MLVs were aligned using MUSCLE as implemented in Geneious 10.0.9 using default
settings [29,30]. Env genes were analyzed using a set of full-length genes as well as a larger
set covering the RBDenv that includes newly sequenced wild mouse ERVs and previously
published sequences [31]; the capsid analysis emphasized E-XRVs tested for Fv1 sensitivity.
Phylogenetic trees were generated using the RaxML program with the GTR+G+I model
and 500 bootstraps for branch support [32].

For maximum-likelihood analysis of codon evolution, we used codeml of PAML 4.9,
in addition to four programs on the DataMonkey Web server: MEME, FUBAR, SLAC,
and FEL [33,34]. Alignments for RBDenv of E-MLVs and the CAT1 genomic segments
were trimmed to the shortest sequence and were manually inspected to exclude indels
found in more than a few species, as recommended by the developers of PAML. Primer
sequences used for amplification were excluded from the analysis. To calculate branch-
specific dN/dS values, we utilized the free-ratio model in codeml of PAML, and to identify
specific codons under positive selection, the F61 and F3x4 codon frequency models were
used with different initial seed values of ω. Likelihood ratio tests were performed to
compare two pairs of site-specific models: M1, a neutral model that does not allow positive
selection, with M2, a model that allows positive selection; M7, another neutral model
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http://genome.ucsc.edu/
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with beta distribution of dN/dS values, with M8, a positive-selection model with beta
distribution. In each case, chi-square analysis was done, and a model that allowed positive
selection was a significantly better fit to the data than the null (neutral) model (p < 0.05).
Posterior probabilities of codons under positive selection were inferred using the BEB
algorithm in the M8 model [35]. Alternative tests for positive-selection analyses used
the MEME, FEL, SLAC, and FUBAR programs with recommended settings [36] and the
positively selected residues with p < 0.1 were chosen.

3. Results and Discussion
3.1. E-MLVs and Their CAT1 Receptor
3.1.1. E-MLVs

E-MLVs infect cells of the mouse and some related rodents. Decades of studies
identified three E-MLV env subtypes carried by laboratory and/or wild mice (AKV, Cas/Frg,
HoMLV), and a fourth group consisting of the laboratory-derived FMR strains (Friend,
Moloney, and Rauscher). E-MLV genomes appear to be recombinants with different E-
MLV env genes embedded in non-ecotropic gag-pol backbones [15]. Despite their shared
ecotropism, the surface (SU) domains of the env subtypes are only 66.4–77% identical, with
similar identities in the RBD—the first 236 codons of the SU (Figure 1). While many of these
subtype differences localize to the proline-rich region [15], most polymorphisms within
RBD are concentrated in the VRA and VRB variable domains [37].
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Figure 1. Variation in E-MLV env genes. The matrix shows percent sequence identity of representative
E-MLVs in SU and RBD.

Here we typed a large panel of wild-caught and wild-derived mice (Table S1) by PCR
to identify the presence and geographic distribution of AKV, Cas/Frg, and HoMLV ERVs.
Primers were specific for the gag-pol and env regions of HoMLV, the env genes of AKV and
Cas/Frg, and the virus-cell junction and empty insertion site of the Cas/Frg env, integrated
at Fv4, a restriction factor that blocks E-MLV replication [38] (Table S2). Consistent with
limited earlier analyses based on Southern blotting [5,39,40], E-ERV envs were restricted
to some M. musculus subspecies indicating their recent acquisition (Figure 2). No mice
carry HoMLV except the original source, the Eastern European mouse M. spicilegus, in
which HoMLV did not endogenize [41], while the AKV, Cas/Frg, and Fv4 envs show broad,
but distinctive, geographic distributions, although none are found in M. m. domesticus
of Western Europe and North Africa (Figure 2). AKV E-ERVs, carried by many classical
inbred strains [1,42], are found in M. m. musculus populations in southern China, Russia,
and Korea, as well as Japan, where house mice are natural hybrids of M. m. musculus and
M. m. castaneus and are often designated as a separate subspecies, M. m. molossinus [43].
Cas/FrgMLVs are found in Korea and SE China as well as the various countries of SE Asia
(Figure 2).
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The Cas/Frg-derived protective factor Fv4 is an expressed env gene carried by all
mice from SE Asia, Eastern China, and Korea (Figure 2), indicating that this ERV was
domesticated in M. m. castaneus. We also found this highly advantageous antiviral gene
in about half of the mice sampled in Japan and in all seven of the mice trapped in Lake
Casitas, CA. Fv4 is thus present where mice of two different subspecies were artificially
introduced through commensalism: M. m. castaneus and M. m. musculus in Japan, and
M. m. castaneus and M. m. domesticus in California [5,44]. Although effective against AKV
MLVs in laboratory mice [45], Fv4 has not successfully crossed the hybrid zone separating
M. m. castaneus and M. m. musculus in China, a barrier largely defined by the Yantgze
River [46]. This suggests the possibility that AKV type E-MLVs are not a major survival
threat in M. m. musculus, likely due to the fact that lymphomagenesis by E-MLVs requires
recombination with P-ERVs [47], which are not carried by M. m. musculus [5]. The Cas/Frg
E-MLVs present in California and M. m. castaneus can also induce neurological diseases
without alteration by recombination [48], but they are subject to Fv4 restriction.

We sequenced env genes from various wild mice to screen for additional E-env variants.
Sequence alignments and a phylogenetic tree of the env or RBD sequences show five clades
with distinctive patterns of shared substitutions (Figures 3 and S1); these clades correspond
to the three known wild mouse subtypes and the FMR viruses, and they identify a novel
AKV-related mouse subtype, AKCh E-MLV, found in mice trapped in regions occupied by
M. m. castaneus in Wuhan, in the S. Central city of Lasa, near the western Chinese border
and in Russia near the eastern Chinese border. In RBD, AKCh MLVs are 99% identical but
90% identical to AKV MLVs. The Cas/Frg env genes were found in M. m. castaneus and in
mice trapped in S. California, and AKV MLV envs were identified in M. m. molossinus.

The N-terminal end of the MLV RBD containing VRA has been linked to receptor
choice [37]. Virus entry into susceptible mouse cells is governed by seven RBD residues [49],
three of which (S84, D86, W102) form a binding pocket for the CAT1 receptor [50]. Sub-
stitutions at six of these seven sites in FMR isolates can alter infectivity and/or induce
cytopathic syncytia in some susceptible cells (Table 1).
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Despite the extensive sequence variation in the E-MLV env genes, two of the three
binding pocket residues, D86 and W102, are invariant in all naturally occurring env genes,
while the third site shows the conservative substitution S84A in Cas/Frg E-MLVs; this
substitution is also found in the FrMLV variant F-S MLV, where it modifies, but does not
compromise, receptor use [51] (Table 1). The other sites that can influence virus entry
show a few substitutions found in XRVs or that are lineage specific. S76 and/or S77 are
deleted in MoMLV and HoMLV, and substitutions are found in the Cas E-MLVs (S76D,
S77K). The only wild mouse virus substitution at E116 (E116G) is found in HoMLV, which
is replication competent.

Table 1. Phenotypic changes in viruses, with replacement mutations, at receptor critical sites.

Polymorphisms at
Receptor Critical Sites MLV or ERV Phenotype Reference

S76∆,S77∆ MoMLV Reduces infection of M. dunni cells [52]

S84A
F-S MLV Induces syncytia in M. dunni,

infects hamster cells [51]

Cas/Frg E-ERVs Unknown

S82F 1 Mo-Spl574 Induces syncytia in M. dunni,
restricted in other mouse cells [53]

S82F, E114G 1 Spl574-E114G Correction of host range restriction
of Spl574 [54]

W102G TR1.3 (FrMLV) Syncytia formation in SC-1 cells,
neurologic disease [55]

E116G, W129K PVC-211
(FrMLV)

Enhanced ability to infect hamster
cells [56]

1 Numbering in MoMLV variants reflects the two codon upstream deletion.
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Two sets of env sequences, 11 full length and 28 segments of the RBDenv, were
separately tested for evidence of diversifying/positive or purifying/negative selection,
based on the ratio of the rate of nonsynonymous (dN) versus synonymous (dS) changes.
Laboratory derived FMR strains were excluded from this analysis since their evolutionary
path was likely different than the other groups. Using the maximum likelihood models in
the codeml program of PAML4, and the MEME, FEL, FUBAR, and SLAC programs in the
datamonkey webserver, we identified an excess of nonsynonymous mutations (dN/dS > 1,
p < 0.1) at 26 sites scattered throughout the sequence, 15 of which were identified in the full
env analysis, and 11 additional sites were found in the analysis based on RBD (Figure 4,
Table S4). There are 14 of the 26 sites in the RBD, which includes VRA and VRB, with
seven in VRA (Figure 4, Table S4), four of which form a patch surrounding the deletion,
which alters MoMLV entry (Table 1), but none are at the residues that form the binding
pocket. The various replacement mutations at all sites under positive selection are found in
infectious E-MLVs.
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These data show that the E-MLVs all use the CAT1 receptor but the extensive diversity
among their env genes does not impact sites involved in virus entry. While it is possible
the different env subtypes are independent acquisitions, it is more likely they derive from
cumulative adaptations to their different mouse hosts, resulting in the emergence of three
distinctive E-MLV envs in Eurasia and a fourth set of laboratory-derived FMR viruses. The
limited historical record shows that FMR viruses were isolated from passaged tumors
that probably arose in fancy mice carrying AKV E-MLVs; this virus was likely present in
the fancy mouse progenitors of laboratory strains, which included the Japanese waltzer
mouse [57]. These tumors had undergone forced passage through many mouse hosts
for decades before virus isolation, the first report of which was by Gross in 1951 [58]
who passed such tumors and tumor filtrates in mice as well as rats; this work inspired
other investigators to attempt virus isolation from other transplantable tumors. MoMLV,



Viruses 2021, 13, 1864 8 of 19

for example, was isolated by John Moloney in 1960 [59] from Sarcoma 37, a tumor that
had been passaged in mice since 1907 [60], before the development of inbred strains.
Similarly, FrMLV was isolated by Charlotte Friend, in 1957, from an NIH Swiss mouse
inoculated with Ehrlich ascites cells [61]. The env sequence variants in these FMR viruses
were thus acquired over a short time frame. Similarly, in natural populations, the acquired
changes in the Eurasian and FMR Env proteins differ from each other and from the Eastern
European HoMLV. The evolutionary pressures responsible for the observed env variation
are, therefore, unrelated to receptor interactions but may result from evasive changes in
response to host immune defenses [62]. Env glycoproteins stud the outside of the virion
and are thus vulnerable to host defenses, and the majority of sites under positive selection
are in RBD, the most prominently exposed domain of the viral Env.

3.1.2. CAT1 Receptor

All E-XRVs use the CAT1 receptor, encoded by Slc7a1, and the active receptor sites
have previously been localized to a patch of critical residues (232NVKYGE237) in the third
of its seven extra cellular loops (ECL3) [63] (Figure 4). CAT1 is an amino acid transporter
that functions as an E-XRV receptor only in Mus species and some other rodents, including
rats and hamsters, where virus entry can be restricted by glycosylation [64,65]. The
receptor critical region of CAT1 varies extensively between E-MLV susceptible and resistant
species, as well as among susceptible rodent species, none of which has any obvious
effect on transport function [66]. Two variants of the laboratory mouse receptor, mCAT1,
have been found in wild mice. The M. dunni receptor, dCAT1, has an added residue in
the receptor critical region (NVKYGGE) and its restriction of MoMLV is regulated by
glycosylation [67]. A second variant, found in the African pygmy mouse M. minutoides,
has a V233L replacement that has no effect on AKV MLV entry [68], although V233 has
been assigned a role in virus entry and gp70 binding [69,70]. These two CAT1 variants are
carried by mice that have had no known exposure to E-MLVs.

Few CAT1 genes carried by M. musculus had been characterized [49], so we examined
CAT1 sequences from M. musculus subspecies, selected from widely separated geographic
locations, including mice with and without E-ERVs. We identified no new variants in the
CAT1 ECL3. Ten additional CAT1 genes, mined from the genomes of individually trapped
M. m. castaneus mice, revealed that four are heterozygous for the V233L polymorphism
(H12, H25, H24, H28) and two are homozygotes (H14, H26).

Evaluation of the rodent CAT1 for positive selection included sequences from various
Mus species and other rodents (Table S3). The phylogenetic tree generated for this analysis
showed strong bootstrap support in the vast majority of branches and revealed clustering
of CAT1 sequences from the genus Mus and the subfamily Murinae, with a clear separation
of the species in the different rodent suborders (Figure S2). This screen identified 14 sites
under positive selection, including a cluster at the C-terminus of ECL3 with two sites,
V233 and E237, which are within the patch implicated in virus entry (Figure 4, Table S4).
Limiting the analysis to mice and hamsters, which are generally susceptible to E-MLV
infection, identifies only five sites under positive selection, none of which is in ECL3. Thus,
while two sites within the receptor critical region are under positive selection in the broader
set of rodent species, sites important for E-XRV entry have remained unchanged in taxa
exposed to virus challenge.

This analysis of E-MLVs and their CAT1 receptor in wild mice shows that, although E-
MLVs are recently acquired and show substantial variation in env, their acquisition, spread,
and rapid diversification has not altered the receptor interface in M. musculus. While this
near absence of CAT1 polymorphism, in response to virus challenge, may reflect a relatively
short evolutionary timeframe, a comparable time period produced multiple functional
variants of the receptor used by the X/P-MLVs carried by these same mice (see below).
One possible explanation for the failure of CAT1 to evolve in response to potentially lethal
virus challenge is the presence of the Fv4 restriction factor in many E-MLV infected mouse
populations (Figure 2). The Cas/Frg env inserted at this gene produces an Env glycoprotein,
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originally proposed to block exogenous infection by interference [38], and also has a fusion
defect, so its incorporation into virions in virus-infected Fv4-positive mice results in entry
defective virions [71]. The presence of this dispersed and highly effective Fv4 antiviral
gene, in E-MLV infected wild mice, would thus decrease virus-directed selection pressure
on CAT1. This also supports the suggestion that the extensive E-MLV env variation is
unrelated to receptor interactions.

3.2. X/P-MLVs and Their XPR1 Receptor

The XPR1-dependent X/P-XRVs were initially distinguished as two host range groups:
broad host range xenotropic XRVs (X-XRVs), otherwise unable to infect cells of most labo-
ratory mice [72], and polytropic XRVs (P-XRVs) able to infect mice and other species [73].
These host range differences are due to polymorphisms in the viral env RBD and corre-
sponding changes in the receptor determining regions of XPR1 [11].

3.2.1. XPR1

The functional variants and adaptive evolution of XPR1 have been described previ-
ously. To summarize: The X/P-XRVs use the XPR1 receptor to infect cells of M. musculus
subspecies as well as all but a few other mammals [74]. XPR1 is a ubiquitously expressed
phosphate exporter, and sequence variations in phylogenetically distinct species maintain
exporter function [75]. Mus taxa carry six distinctive functional variants of Xpr1 [11], one
of which, Xpr1sxv, is permissive, while the rest restrict different subsets of XPR1-dependent
viruses. The permissive receptor, Xpr1sxv, predates the divergence of the house mouse
subspecies and their acquisition of MLVs, and is retained exclusively by one subspecies,
M. m. domesticus [11]. The five restrictive XPR1 receptor variants show a taxon-delimited
distribution in Eurasian subspecies: M. m. musculus (Xpr1m), M. m. castaneus (Xpr1c, Xpr1c2),
and M. m. molossinus (Xpr1m, Xpr1n) [76]. These variants are marked by alterations in two of
the four putative XPR1 ECLs and include replacement mutations as well as three different
but overlapping deletions [11,77]. Additional sequence variants found in M. tenellus, and
in Iranian M. musculus, have not been tested for receptor function [11,14]. Phylogenetic
analysis of the rodent Xpr1 showed it to be under positive selection, affecting key residues
implicated in receptor function in ECL3 and ECL4 [11] (Figure 4).

3.2.2. X/P-MLVs

Compared to the E-MLVs, X/P-MLVs show considerably less overall sequence di-
vergence in SU and RBD (>89.5%) (Figure 5a), but at least six X-XRV isolates have been
described that differ in their ability to use the restrictive XPR1 variants [78]. While the
critical Env residues involved in XPR1 receptor interactions have not been identified, re-
ceptor choice has been mapped to the VRA variable domain in the RBD [37]. The VRA
differs in sequence and size among infectious X/P-XRVs; relative to P-XRVs, the X-XRV
RBDenv is larger, with three distinct indels (insertions/deletions) involving nine codons at
the 5′ end of VRA (Figure 5b). Infectious X/P-XRVs with different VRA indel patterns show
different XPR1 receptor preferences, suggesting these indels may contribute to receptor
specificity [49,78].

Southern blotting previously showed that, unlike E-ERVs, X/P-ERVs are carried
by all M. musculus subspecies, indicating that X/P-ERVs were acquired by this species
earlier than the E-ERVs [5]. Sequenced X/P-ERVs from geographically separated Mus taxa
identified P-MLV-like VRA indel patterns and overall sequence homologies in Western
Europe (M. m. domesticus) and in M. spretus, which is sympatric with M. m. domesticus in
Spain and Morocco; these species are partially interfertile, explaining the acquisition of
P-MLV ERVs by M. spretus. X-ERVs are not detected in M. m. domesticus but predominate
in the three Eurasian subspecies. The geographic distribution of subspecific Xpr1 variants
coincides with subspecies ranges and with the X/P-MLV env subtypes they carry, as
previously shown [11].
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In addition to their differences in geographic distribution, the P-MLV VRAs show
more limited sequence variation compared to the X-MLVs (Figure 5c,d). In contrast to
the P-MLVs, the X-MLV VRAs are marked by many more replacement mutations and
some indels. This indicates that the conserved receptor/virus interface involving P-MLVs
and their permissive XPR1 receptor does not show evidence of genetic conflicts, whereas
there is substantial and coordinated sequence and functional variation at the interacting
interface of the X-MLVs and their XPR1 receptors in Eurasian subspecies. These different
patterns define geographically separated coevolutionary “hotspots” experiencing mutual
antagonistic selection and “coldspots” with no evidence of selective adaptations. The
existence of such “hotspots” and “coldspots” is one of the key predictions of Thompson’s
Geographic Mosaic Theory of Coevolution [12].

The absence of adaptive changes at this interface in M. m. domesticus is likely due to
the fact that P-ERVs do not produce infectious virus or transmit without the assistance of
replication competent XRVs, which this subspecies does not harbor [5]. Infectious P-XRVs
result from recombination [79], and transcribed products of P-ERVs can co-package into
E-XRV virions [80,81]. These P-ERVs therefore pose less of a risk to their hosts than the
ERVs carried by Eurasian mice, which can produce infectious X-, as well as E-XRVs [82,83].

Newly sequenced X/P-MLV env genes from geographically separated Mus taxa were
aligned with known X/P-MLVs to construct phylogenetic trees using the full length env
and a set of RBD sequences. Both trees showed strong bootstrap support at the majority of
branches and a clear separation of X-MLVs and P-MLVs was observed (Figures S3 and S4).
These sequences were evaluated for evidence of positive selection and together revealed 18
such sites in the RBD (Table S4). The one site identified by all five programs in both DNA
sets is 217T, which maps near the C-terminus of the RBD and is one of two adjacent sites
with a key role in mediating X/P-XRV entry into human and mink cells [84]. Six positively



Viruses 2021, 13, 1864 11 of 19

selected sites were mapped to the VRA and form a patch overlapping the six adjacent
residues involved in the various deletions associated with the different entry phenotypes
(Figure 4 and Table S4). Three additional sites under positive selection map to the second
major variable region in RBD, VRB, which has a secondary role in virus entry [37].

Just as the domesticated Fv4 E-ERV env blocks replication of E-XRVs, there is evidence
of comparable X/P-ERV env genes that serve protective functions. The first of these, Rmcf,
has only been found in DBA/2 and related inbred strains [85,86], but M. m. castaneus carries
at least one similar gene, Rmcf2, and possibly others [74,87]. While the CAT1 receptor
may have been protected by Fv4 from selective pressures exerted by E-MLV infection, the
distribution of Rmcf -like genes in wild mice has not been determined, but it is clearly
not significant enough to obviate the co-adaptive changes that have altered XPR1 and
X/P-MLVs.

3.3. Fv1 and Its Capsid Target
3.3.1. Fv1

The first antiretroviral host factor to be discovered was Fv1 [88]. Fv1 is a rodent-specific
restriction factor that was identified for its post-entry restriction of different subgroups of
mouse-tropic MLVs [89], but it can also restrict other retroviruses [90]. Fv1 is a co-opted
retrovirus-related capsid sequence derived from the ERV-L family [91,92], and while it
was originally thought to have originated in Mus, it was subsequently identified in other
rodents [93,94]. The Fv1n allele, first identified in NIH Swiss cells, limits the replication of
B-tropic E-XRVs, and the b allele, found in BALB/c mice, restricts N-tropic E-XRVs [95].
Laboratory strains carry two other restriction variants (Fv1nr, Fv1d) [96,97], and there are
additional sequence and functional variants in wild mice [10]. These restriction variants
are distinguished from one another at four residues in the C-terminal half of the gene,
and by variations in length and sequence at the C-terminus, all of which influence the
restriction phenotype [98]. The Mus Fv1 shows positive selection that is centered on six
codons including three of the seven residues known to govern restriction (261, 268, 270,
349, 352, 358, 399) [90,98] (Figure 4). Additional residues under positive selection were
identified in the expanded set of rodents carrying Fv1 [93,94].

The inbred strains represent different mosaics of the M. musculus subspecies [99]. The
Mouse Phylogeny Viewer (MPV) is an online tool that identifies the subspecies of origin
of segments along each chromosome for 98 inbred strains [4]. Here, we typed 35 mouse
strains in the MPV dataset for Fv1 [42], and Figure 6a shows that the Fv1b allele originated
in Japanese M. m. musculus, while the Fv1n,nr,d alleles are embedded in segments derived
from M. m. domesticus. These three M. m. domesticus derived Fv1 alleles, however, are not
found in shared haplotype segments defined by common flanking SNPs, suggesting their
independent derivation or acquisition through mutation or recombination.

Fv1b and Fv1n,nr,d are distinguishable by a 1.3 kb indel at the Fv1 3′ terminus that
extends Fv1b by 22 residues [92]. Our PCR analysis of Eurasian mouse DNAs found the
Fv1b-like extension in 19/20 Japanese mice, in mice from SE Asia, and in Iranian mice,
identified as M. bactrianus (Figure 6b). Mice from northern China, Russia, Eastern and
Western Europe all produced the smaller Fv1n-like segment.

Fv1 sequences from selected house mice were determined by direct sequencing or
were extracted from the genomes of ten M. m. castaneus mice. Of the 34 genes, 22 had an
Fv1b extension, one of which included a 4 bp insert (Table 2). The residues that distinguish
these genes are at positions 270, 352, 358, and 399; these sites are all functionally relevant,
and three are under positive selection in Mus (Figure 4) [10]. The K358E substitution, found
in Fv1b laboratory strains, was identified in only one of these genes—in a Japanese mouse.
All 12 genes with short C-termini have residue combinations corresponding to three of the
inbred strain alleles. Eight of the 22 genes with the longer extension have unusual residue
combinations, suggesting these mice might face viral antagonists.
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Figure 6. Distribution of Fv1 variants in mouse strains and species. (a) Fv1b is embedded in a segment
of Chromosome 4 derived from M. m. musculus (Japan). The left panel shows subspecies origins
in the chromosome regions surrounding the location of Fv1 indicated by a black bar. Blue tracks,
M. m. domesticus; red, M. m. musculus. The right panel shows SNP-defined haplotype regions defined
by different colors. (b) Geographic distribution of Fv1 variants having C-termini that are Fv1b-like
(blue) or Fv1n-like (red).

An Fv1 ORF is present in most other species in the Mus genus [10,100], and these have
large C-terminal insertions [10], suggesting that this configuration is the ancestral form.
Thus, the shorter Fv1n-like versions of this gene were likely generated by deletion and
then acquired mutations at key sites. The retention of Fv1b-like genes is most prevalent in
mice harboring Cas/Frg E-ERVs, which have B-tropic capsid genes that are therefore not
restricted by Fv1b, a clear adaptive advantage for these MLVs.

3.3.2. Viral Capsid Target of Fv1

Fv1 restriction targets the capsid of the viral gag gene [101,102]. Sequence comparisons
and mutagenesis determined that the site determinative for N/B tropism is 110 [97], and
residue replacements at other capsid sites can contribute to alternative restriction patterns
defined as NR-tropic [96,103], D-tropic [97], or NB-tropic (viruses insensitive to both Fv1n

and Fv1b) [104,105] (Figure 4). Virtually all laboratory mouse E-ERVs are N-tropic and
carry R110. B-tropic E-MLVs, which carry E110, can be isolated from aging mice of Fv1b

strains [106], and some Fv1b mice have acquired B-tropic E-MLV ERVs [107]. The C57BL/6
mouse reference genome carries Fv1b and has one E-ERV, Emv2, which is N-tropic and 36
X/P-ERVs with gag ORFs, of which 34 have the residue associated with B-tropism, E110.

We used these capsid gene sequences to construct a phylogeny. As shown in Figure S5,
this phylogenetic tree showed strong bootstrap support at the majority of the nodes. Nine
sites were determined to be under positive selection (Table S4). All programs identified
positive selection at position 110, which determines N/B tropism, but at no other site
implicated in Fv1-determined tropisms; no replacement mutations were found at positions
114 and 117, and the variations found at 92-95 did not show selection. These findings
establish that the antagonistic interaction between Fv1 and its viral target has resulted
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in coevolutionary adaptive changes at the sites of interaction of both participants in this
arms race.

Table 2. Restriction critical residues in sequenced wild mouse Fv1 genes.

Fv1 Sites

Fv1 Type 1 Subspecies, Name (Location) 270 352 358 399 C-Terminus 2

n or n-like

domesticus, SK/Cam (UK) S K V n
domesticus, CalWM (USA) K S K V n

musculus, PWK (Czech Republic) K S K V n
musculus, SKIVE (Denmark) K S K V n

nr or nr-like

musculus, (Novobirsk, Russia) F K V n
musculus, CZII (Slovakia) K F K V n

spp., Aks (China) K F K V n
spp., Las (China) K F K V n

spp., (Vladivostok, Russia) K F K V n
domesticus, ZALENDE

(Switzerland F K V n

domesticus, CLA (USA) F K V n

d-like domesticus, PRAE (Morocco) Q S K V n

b or b-like

molossinus, MOM (Japan) K S E R b
bactrianus, (Iran) S K V b

castaneus, (Philippines) S K V b
castaneus, H12 (India) 5 K/Q 3 S K V b/b2 3

castaneus, H30,34 (India) 5 K/Q 3 S K V b3
castaneus, H15,27 (India) 5 K/R 3 S K V b

castaneus, H24,26,28,36 (India) 5 K S K V b
molossinus, MOLD (Japan) K S K R b
molossinus, MOLC (Japan) K F K R b
molossinus, MAE (Japan) K F K R b

molossinus, JF1/Ms (Japanese
fancy mouse) K F K R b

molossinus, (Saitama, Japan) F K R b
spp., IAS3 (Korea) F K R b
spp., Wuh (China) S K R b

domesticus LEWES (USA) Q S K V b3
castaneus, CAST/EiJ (Thailand) Q S K V b4

castaneus, H14 (India) 5 Q - 4 - 4 - 4 - 4

1 Based on C-terminus for b, 352 for n and nr, 270 for d. 2 C-terminus types: n, ELSLKPTAATKL; b, ELSLKP-
TAAGLTSVGSVGVLSLSPWKHQSNS; b2, ELSLKPTAAGLTAGLAPVGSVGVLSLSPWKHQSNS; b3, ELRGQR; b4,
ELSLKPTAAGLPAGLASVGSVGVLSLSPWHKH. 3 Heterozygous. 4 Stop gain variant at position 327 (TGG > TAG)
in both H14 alleles, resulting in predicted protein truncation or lack of expression of the corresponding allele. This
variant has the b2 C-terminus. 5 The ten Fv1b-like castaneus H genes are identical to Fv1b except where indicated
and a 137T/S substitution in H34.

4. Conclusions

The mouse gammaretroviruses co-evolved with their host species, and while the
recently acquired MLV ERVs can retain the ability to produce viral proteins and infectious
viruses, there are many host antiviral restriction genes that interfere with these processes.
These interacting agents are subject to bidirectional selective pressures, resulting in a cycli-
cal process that produces viruses that evade host restrictions and counter-adaptive changes
to the restriction factors. Another component in this process is the geographic segrega-
tion of virus-infected M. musculus subspecies resulting in mosaic patterns of adaptations
that generate distinctive MLV and restriction factor variants that can be taxon as well as
locality specific.

The three virus/host pairings examined here provide examples of different co-evolutionary
patterns. Our previous work showed that Fv1 and the XPR1 receptor are under positive
selection in rodents [11,93] and that XPR1 has distinctive functional variants in house
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mouse subspecies [10,11]. Here, we show that Fv1 alleles also show defined geographic
distributions as well as novel variants in house mouse populations. We also show that the
variations in the Fv1 and XPR1 sites, critical for restriction, correlate with mutations in their
viral targets that are also under positive selection.

There are two examples of coevolutionary “cold spots” with no significant selection
at the interacting sites. First, the E-MLVs and their CAT1 receptor in M. musculus are not
polymorphic at their interfaces in any of the three subspecies carrying E-MLVs. While
that means these mice should be vulnerable to infection, their survival in the face of
virus challenge is at least partly ensured by the presence of the Fv4 E-ERV in some of
these populations. The second example, with no obvious virus-host conflict, is found in
M. m. domesticus mice that retain the ancestral and fully permissive Xpr1sxv receptor. These
mice carry P-ERVs, not known to produce virus except by recombination with XRVs of
other host range groups [79]; P-ERVs can spread but this is XPR1-independent [108]. Thus,
there is no ongoing conflict, as Xpr1 is under no pressure to adapt to ERVs that do not
produce infectious virus, and variation in the P-ERV VRAs is much more limited than in
their X-ERV counterparts.

Adaptations that provide a clear survival advantage to their hosts can spread rapidly
through populations and into neighboring populations. Fv1 and Fv4 are both ERVs that
have been coopted for antiviral functions; Fv1 is the gag capsid gene of the ancient MuERV-
L family, while Fv4 is a Cas/Frg env. We show that Fv4 likely arose in SE Asia, but it is
now fairly widespread in Japan and is also found in pockets of California [5]. For Fv1,
b-like variants predominate in Japan and are present in about half the M. m. castaneus
population in SE Asia and through southern Asia to Iran, which is the ancestral home
of M. musculus [6]. Fv1b-like genes are also found in basal species in the genus Mus [10]
suggesting that Fv1b is the ancestral form, and the Fv1n alleles were generated by deletion.
Most wild mouse ERV gag genes carry the B-tropic determinant and are therefore not
restricted by the Fv1b gene prevalent in these mice.

ERVs are stable components of the mammalian genome that can alter host gene
function and that can induce a variety of pathologies. Analysis of these antagonistic
pairings of restrictive genes and viruses has enhanced our understanding of their origins,
spread, and diversification. These entities co-evolve on a temporal scale, as evidenced
by positive selection at their interacting interfaces that produces functional variants, but
their evolution can also be understood on a spatial scale with distinctive sets of virus/host
combinations in different locations, as predicted by the Geographic Mosaic Theory of
Evolution [12].
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