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Abstract

The algorithm unfolding networks with explainability of algorithms and higher efficiency of

Deep Neural Networks (DNN) have received considerable attention in solving ill-posed

inverse problems. Under the algorithm unfolding network framework, we propose a novel

end-to-end iterative deep neural network and its fast network for image restoration. The first

one is designed making use of proximal gradient descent algorithm of variational models,

which consists of denoiser and reconstruction sub-networks. The second one is its acceler-

ated version with momentum factors. For sub-network of denoiser, we embed the Convolu-

tional Block Attention Module (CBAM) in previous U-Net for adaptive feature refinement.

Experiments on image denoising and deblurring demonstrate that competitive perfor-

mances in quality and efficiency are gained by compared with several state-of-the-art net-

works for image restoration. Proposed unfolding DNN can be easily extended to solve other

similar image restoration tasks, such as image super-resolution, image demosaicking, etc.

1 Introduction

Image restoration is an ill-posed inverse problem to recover clean images from degraded

images. It can be used in many significant applications, such as medical image processing, face

identification, traffic statistics, cultural relics reconstruction, etc.

Mathematically, image restoration problems are defined as y = Hx + n, where y and x are

degraded images and clean images, H represents degradation matrix, n in this paper denotes

Additive White Gaussian Noise (AWGN). Different image restoration tasks are expressed by

different operations of matrix H. For example, when H is an identity matrix, image restoration

problems are denoising tasks. When H is a blurry matrix about 2D convolution operations,

they turn into deblurring tasks.

The methods to solve linear inverse problems are divided into two main categories, i.e.,

model-based methods [1–7] and learning-based methods [8–12]. Variational methods
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minimize energy functions as tools to solve linear inverse problems. Variational model is

expressed as

x ¼ arg min
x
fEðxÞ ¼ Dðx; yÞ þ lRðxÞg; ð1Þ

where y is degraded inputs, and x is reconstructed outputs. D denotes a data fidelity term to

guarantee that solutions of image restoration accord with degradation process. R is a prior

(regularization) term with a regularization parameter λ that ensures image features. It is flexi-

ble to handle different image tasks by simply integrating different degradation operations

(noise level, blur kernel, and downsampling factor) into equations. Whereas, model-based

methods lack an intuitive evaluation. Another approach is deep learning with a pre-learned

function Fðy;YÞ, where Θ denotes trainable parameters. Data-driven approaches tend to

enjoy better performance. However, learning-based methods suffer from black-box properties

and have limitations in specified tasks.

Above two categories of methods have their advantages and disadvantages. Therefore, it

would recently be attractive to explore their integration with respective merits, dubbed as

unrolling iterative methods. Such an integration results in Plug-and-Play (PnP) methods

which replace proximal operators with learning-based denoiser prior. Splitting algorithms of

PnP methods split an energy function into multiple stand-alone solution functions. Zhang

et al. [13] used Half Quadratic Splitting (HQS) to split a problem into a data recovery term and

a feature expression term. Fast Fourier Transform (FFT) solves a data recovery sub-problem

due to an analytical solution. The denoiser settles a feature expression sub-problem. Lei et al.

[14] put forward that Deep Convolutional Neural Networks (DCNN) are inserted into Split

Bregman (SB) methods. Chan et al. [15] proved that plug-and-play Alternating Direction

Method of Multipliers (PnP-ADMM) converges to a fixed point for any denoising algorithms

satisfying asymptotic criterion. Methods without splitting algorithms open a new door to inte-

grate degraded operations into equations. Al-Shabili et al. [16] utilized Bregman Proximal Gra-

dient Methods of PnP (PnP-BPGM) to reduce splitting algorithms for solutions of Poisson

inverse problems. Gavaskar et al. [17] proposed that plug-and-play Fast Iterative Shrinkage/

Thresholding Algorithm (PnP-FISTA) is achieved in virtue of Asymmetric denoisers. Nair

et al. [18] analyzed the PnP convergence of Iterative Shrinkage/Thresholding Algorithm

(ISTA) using asymmetric denoisers. Although superior performances through pre-training

can be harvested by PnP approaches, several conceptual problems remain to be addressed.

First, hand-crafted parameter adjustment significantly affects the time costs. Second, dynamic

characteristics of model optimization are ignored by fixed parameters. Dynamic process to

find a better solution is not represented by constant parameters. Third, it is difficult to know

which parameters are optimal, and, finally, soundness of image reconstruction profoundly

interferes with fluctuation of parameters.

To address above drawbacks, we advocate an end-to-end training structure with trainable

parameters to unroll iterative algorithms. It not only infers desirable high-quality images or

missing high-frequency information from a large number of degraded images, but also adjusts

given parameters to learn automatically. Dong et al. [19] used deep unfolding networks to

make up for the insufficiency of parameter tuning. Liu et al. [20] unrolled ADMM into a proxi-

mal alternating direction network and used dynamic parameters to guarantee at least fixed-

point convergence when dealing with unknown and intractable regularization terms. Yang

et al. [21] put forward that unrolling ADMM networks realize discriminative learning from

training data instead of setting hyperparameters by hand in traditional compressive sensing

methods. Aimed at artificial tweaking of PnP methods, Wei et al. [22] proposed a parameter

automatic tuning network to achieve automatically tuning of internal parameters, which is a
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tuning-free PnP proximal algorithm. Undoubtedly, computational costs by hand can be

greatly controlled by a self-learning technique of parameters.

The contributions of this work are outlined below:

• The proximal gradient descent algorithm is unfolded into a novel and simple Iterative Deep

Neural Network (IDNN) with the U-Net denoiser. Attention mechanism incorporated into

the denoisers effectively understands which image information needs to be emphasized or

suppressed.

• An improved Fast Iterative Deep Neural Network (FIDNN) is proposed based on parameter

constraints and a momentum factor. Faster convergence speed and shorter testing runtime

are obtained without stronger criteria compared to identical iteration-based methods.

2 Related works

PnP approaches have the benefit of being incredibly convenient. Time costs of parameter

adjustment are better controlled by deep unfolding networks. We provide a brief review of two

methods based on effective DCNN denoisers.

2.1 Plug-and-Play method

PnP methods have recently made significantly empirical progress, particularly with incorpo-

ration of learning-based denoisers. Moreover, Convolutional Neural Networks (CNN) have

shown good performances through end-to-end training, e.g., FFDNet [10],TNRD [11] and

DnCNN [23] for image denoising, DPDNN [19] and IRCNN [24] for non-blind deblurring.

These methods demonstrate that CNN can train an excellent mapping function from a large

number of degraded images to clean images. As a result, PnP approaches can make use of a

pre-trained CNN denoiser to solve the Gaussian-like denoising subproblem

x ¼ arg min
x

1

2
kHx � yk2

2
þ lFðxÞ

� �

; ð2Þ

where λ is a penalty parameter. PnP methods through variable splitting algorithms, such as

HQS and SB, decouple data term and prior term of Eq (2). When HQS introduces an auxiliary

variable s, Eq (2) becomes a constrained optimization problem given by

ðx; sÞ ¼ arg min
x;s

1

2
kHx � yk2

2
þ lFðsÞ

� �

; s:t: x ¼ s: ð3Þ

An equally constrained problem transforms into an unconstrained problem, namely

ðx; sÞ ¼ arg min
x;s

1

2
kHx � yk2

2
þ lFðsÞ þ

m

2
kx � sk2

2

� �

; ð4Þ

where μ denotes a penalty parameter. Above problem can be addressed by resolving iteratively

following subproblems for x and s while holding remaining variables fixed,

xk ¼ argmin
x

1

2
kHx � yk2

2
þ
m

2
kx � sk� 1k

2

2

� �

; ð5aÞ

sk ¼ argmin
s

1

2ð
ffiffiffiffiffiffiffiffi
l=m

p
Þ

2
ks � xkk

2

2
þ F sð Þ

( )

: ð5bÞ

8
>>>><

>>>>:
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In this paper, k is iteration index. Eq (5a) has a closed-form analytic solution x,

xk ¼ F � 1 FðHÞFðyÞ þ mkFðsk� 1Þ

FðHÞFðHÞ þ mk

 !

; ð6Þ

where the Fð�Þ, F � 1ð�Þ, and FðHÞ express FFT, inverse FFT, and complex conjugate of Fð�Þ,
respectively. Gradient descent can also solve x-subproblem of Eq (5a) [19]. Any advanced

Gaussian denoiser can be plugged into alternating iterations to solve z-subproblem. Therefore,

numerous ill-posed inverse problems are quickly addressed using PnP approaches.

Algorithm 1 Two-step iterative algorithm
Initialization:
(1) Set H; �H ; g > 0; k ¼ 1;
(2) Initialize z0, x0 = y.

While not converge do
(1) Compute zk ¼ xk� 1 � gk

�HðHxk� 1 � yÞ;
(2) Compute xk ¼ f ðzk;

ffiffiffiffiffiffiffiffiffiffi
l=mk

p
Þ;

(3) k = k + 1.
End while
Output: xk

2.2 Deep unfolding network

Deep unfolding networks enhance interpretability of network structures in contrast to pure

neural networks. Chen and Pock [11] proposed a flexible frame with a dynamic nonlinear dif-

fusion model based on denoising tasks. Zhang and Ghanem [25] achieved proximal mapping

related to sparsity-inducing regularizer without handcraft parameter adjustment. Tolooshams

et al. [26] utilized an unfolding autoencoder neural network with an accelerated proximal gra-

dient to learn compression matrix. Based on prior knowledge, model-based iterative networks

with stationary layers are interpreted as the convolution and activation operations.

DCNN denoisers can be plugged into end-to-end deep unfolding networks to gain self-

learning parameters. Wei et al. [22] achieved parameter automatic learning by proximal algo-

rithms. Zheng et al. [27] used Hybrid ISTA to unfold ISTA with trainable parameters drawing

in free-form Deep Neural Networks (DNN) to obtain guaranteed convergence. Jiu and Pustel-

nik [28] used primal-dual proximal iteration associated with standard penalized co-log-likeli-

hood minimization to design a deep neural network. Iterative-based unfolding networks are

used to achieve effectiveness of machine learning and adaptability of formula derivation.

3 Proximal gradient descent algorithm

3.1 Two-step iterative algorithm

Since deep unfolding networks are well-studied, it is interesting to integrate different degraded

operations into an iterative algorithm. Different image restoration problems can be solved by

studying uniformity of different degradation operations. To achieve this, a proximal operator

is used to implement proximal gradient descent algorithm without splitting algorithms. Taylor

expansion linearization equation [29] is calculated as

xk ¼ arg min
x

1

2
kHxk� 1 � yk2

2
þ
m

2
kx � xk� 1k

2

2

þh �HðHxk� 1 � yÞ; ðx � xk� 1Þi þ lFðxÞ

8
><

>:

9
>=

>;
; ð7Þ

where μ denotes the penalty parameter, kðx � xk� 1Þk
2

2
denotes a proximal operator, y denotes
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degraded inputs, x denotes restored outputs. For image deblurring, �H is a transpose convolu-

tion matrix. And by omitting a data term that is irrelevant to results, Eq (6) is merged into

xk ¼ arg min
x

m

2
x � xk� 1 þ

1

m
�H Hxk� 1 � yð Þð Þ

�
�
�
�

�
�
�
�

2

2

þlFðxÞ

( )

: ð8Þ

For the convenience of calculation, auxiliary variable z is introduced to substitute for complex

and lengthy variable. Variable z is equal to

zk ¼ xk� 1 � gk
�HðHxk� 1 � yÞ; ð9Þ

where γ is step size. Therefore, the solution can be expressed as

xk ¼ arg min
x

1

2ð
ffiffiffiffiffiffiffiffi
l=m

p
Þ

2
kx � zkk

2

2
þ FðxÞ

( )

: ð10Þ

This is a Gaussian denoising problem with a standard deviation parameter sk ¼
ffiffiffiffiffiffiffiffiffiffi
l=mk

p
.

Clean images are gained using any existing DCNN denoiser, i.e., xk = f(zk), where f(�) denotes

a high-performing denoiser approximating a mapping equation. In summary, proposed itera-

tive algorithm is summed up in Algorithm 1. The two-step algorithm is unfolded into an end-

to-end neural network based on DCNN denoisers.

Algorithm 2 Three-step iterative algorithm
Initialization:
(1) Set H; �H ; g > 0; r 2 ½0; 1�; k ¼ 1;
(2) Initialize �z0 ; x0; b0 ¼ y.

While not converge do
(1) Compute �zk ¼ bk � gk �HðHbk � yÞ;
(2) Compute xk ¼ f ð �zk ;

ffiffiffiffiffiffiffiffiffiffi
l=mk

p
Þ;

(3) Compute bk + 1 = xk + ρk(xk − xk−1);
(4) k = k + 1.

End while
Output: xk

3.2 Three-step iterative algorithm

3.2.1 Fast iterative algorithm. Fast algorithms, e.g., Fast ADMM [30] and FISTA [31],

show that convergence speed is accelerated by momentum factors. In this paper, we therefore

adopt momentum factors to speed up convergence. Based on Algorithm 1, a momentum factor

ρ is introduced to force the variable x to continue being calculated with a similar inertial force.

The momentum factor falls between 0-1. The updated value of variable x is gotten by multiply-

ing difference between two previous iterations by a momentum factor, i.e., ρk(xk − xk−1). A new

variable b is equal to

bkþ1 ¼ xk þ rkðxk � xk� 1Þ: ð11Þ

The new auxiliary variable �z of accelerated methods changes due to the momentum factor ρ.

Auxiliary variable becomes

�zk ¼ bk � gk �HðHbk � yÞ; ð12Þ

where b and z are intermediate variables of final results, γ represents step size. The fast iterative

algorithm is summarized as Algorithm 2. Stimulated by IDNN, Algorithm 2 can also be

unfolded into a fast iterative deep neural network. Proposed fast method can accelerate
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convergence effectively, and detailed description will be given in Section 5.4. Moreover, FIDNN

indeed shortens testing runtime than IDNN.

3.2.2 Parameter constraint. Parameters including step size and a momentum factor are

likely to affect image reconstructed solutions. The discovery that FIDNN might result in non-

positive step size and momentum factors is in conflict with how these parameters are defined.

To ensure positive convergence, these parameters including fgk; rkg
K¼6

k¼1
must also be subject

to specific constraints. Parameter constraints [32] are guaranteed using auxiliary variables.

These parameters follow a pattern in our implementation, in which γ smoothly decays with

iterations, while ρ monotonously increases. With above rules, parameter constraint can be

described as

gk ¼ spðw1kþ c1Þ; w1 < 0

rk ¼
spðw2kþ c2Þ � spðw2 þ c2Þ

spðw2kþ c2Þ
; w2 > 0

8
><

>:
ð13Þ

where sp(x) is Softplus equation, i.e., sp(x) = ln(1+ exp(x)). The process that image restoration

accords with meaning of model-based iterative solutions can be validly guaranteed.

4 Iterative deep neural networks

4.1 Deep unfolding network framework

Algorithm 1 and Algorithm 2 are unrolled into end-to-end iterative deep neural networks

without numerous manual parameters. Network framework of Algorithm 1 is shown in Fig 1.

Model framework of Algorithm 2 possesses a similar structure. One stage of proposed net-

works corresponds to one iteration of Algorithm 1. For K iterations, briefly introduce the first

stage of forwarding propagation. First, variable y 2 Rny is equal to degraded inputs. Variables

of x0 and z0 are initialized to variable y. Variables of x0 and y times downgraded operations.

Add x0 to previous results to obtain z1. The z1 is processed by any efficient DCNN denoisers to

get x1. Denoiser in this paper is high-performance U-Net [33]. The same procedures are car-

ried out six times.

4.2 Deep convolutional neural network

Pre-trained DCNN models are attractive to be used as denoisers. Zhang et al. [13] leveraged

noise level maps as inputs to train denoiser for image restoration tasks. Tirer and Giryes [34]

used IRCNN denoiser to solve image inpainting and deblurring problems. Li and Wu [35]

exploited DnCNN denoiser to resolve depth image tasks. Romano et al. [36] utilized explicit

regularization by pre-trained TNRD as a Gaussian denoiser to solve deblurring and super-res-

olution problems. Motivated by U-net for image segmentation, proposed U-net with only con-

volutional and activation operations is convenient to process for any size of natural images.

Different from denoiser sub-network [19], our proposed methods introduce the attention

Fig 1. Framework of proposed iterative deep neural network.

https://doi.org/10.1371/journal.pone.0276373.g001
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mechanism to obtain attention mapping making up for inadequate weight information of

image pixels. The proposed network contains three parts: feature extraction, Convolutional

Block Attention Module (CBAM) [37] and image reconstruction, as shown in Fig 2.

In feature extraction module, there are four similar blocks. For each encoder layer, it con-

sists of a convolution operation of 3×3 kernel and activation operations of Rectified Linear

Unit (ReLU) nonlinearity to produce 64-channel feature maps. Each down-sample layer con-

tains a convolution operation followed by an activation function. Receptive field is increased

in down-sample layers to reduce spatial resolution of feature maps. Finally, there is an encoder

layer with only a convolution and an activation operation. It is emphasized that feature maps

are scaled twice as small by scaling factor 2 in down-sample layer, but image feature size is

unchanged in encoder layer.

CBAM can be seamlessly integrated into any CNN architecture and trained by end-to-end

methods together with basic CNN on account of CBAM is a lightweight general-purpose mod-

ule. Attention maps are gained by sequentially computing two independent dimensions,

namely channel, and space. Input feature maps are multiplied by attention maps to obtain

adaptive feature refinement. Feature-channel relationship is exploited by channel attention to

produce a channel attention map, focusing on “what” makes sense given an input. Spatial con-

nections of image features are exploited by spatial attention to generate spatial attention maps,

focusing on “where” is an informative element. Spatial attention is complementary to channel

attention. Attention module effectively boosts information flow to learn which image informa-

tion to be emphasized or suppressed. Comparative experiments on deblurring and denoising

are done to demonstrate benefits of attention mechanism, as indicated in Section 5.2.

The image reconstruction module comprises up-sample layers that increase spatial resolu-

tion of feature maps followed by feature decoder layer. For each up-sample layer, it contains a

transpose convolution operation of 3 × 3 kernel and ReLU nonlinearity to produce 64-channel

feature maps. Feature maps are scaled twice as large by scaling factor 2 in up-sample layer.

Reconstructed images suffer from a loss of some of their spatial information during feature

extraction process. To compensate for loss of spatial information, cascaded feature maps are

obtained by fusing one generated in up-sample layer with one generated in encoder layer. Cas-

cading operations double the number of channels from 64 to 128. For decoder layers, there are

five convolution layers. The first four have a convolution layer and ReLU nonlinearity. Only

convolutional operations are used in final one. But feature map channel is adjusted through

the first convolution operations from 128 to 64. The others generate 64-channel feature maps.

Then feature maps are put into the last convolutional layer to generate the same number of

channels as observed images. However, denoiser networks predict residual parts instead of

Fig 2. Model architecture of proposed DCNN denoiser. Right part is specific operations.

https://doi.org/10.1371/journal.pone.0276373.g002
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directly utilizing outputs of the last convolutional layer as reconstructed images, which has

been proved to be more robust. Therefore, a shortcut is exploited from inputs to reconstructed

images.

5 Experiments and results

5.1 Training process

5.1.1 Training dataset. Observed images are gained utilizing different degraded opera-

tions. For denoising, clean images are added with AWGN for different noise levels to produce

noisy images. For deblurring, blurry images are gained by convolving clear images with differ-

ent blur kernels and adding AWGN. Training dataset is DIVerse 2K (DIV2K) resolution

image dataset [38]. Each image is randomly cropped into 1000 images of size 128. During

training process, these inputs are cropped into 64 size patches. To realize data augmentation,

cropped randomly patches are flipped and rotated to generate a total of 250,000 ones.

5.1.2 End-to-end training. Each DCNN denoisers shares the same parameters to reduce

numerous parameters and prevent overfitting. In our implementation, networks are trained

using Mean Square Error (MSE) loss function

Y ¼ arg min
Y

XN

n¼1

kFðyn;YÞ � xnk
2

( )

; ð14Þ

where yn and xn are ith pair of damaged and clear image patches, Fðyn;YÞ is proposed net-

works with parameters Θ. ADAM optimizer [39] is utilized to optimize parameters. Convolu-

tional kernels are initialized by Xavier initializers developed in [40]. Warmup scheduler

strategy is adopted for learning rate. Learning rate remains constant over the first three epochs

of early training. We in later epochs use CosineAnnealingLR strategy. Learning rate is initially

set to 0.0002. Proposed network is implemented under Pytorch framework and trained by Nvi-

dia RTX 3090. Denoising experiment takes about 32 hours to achieve convergence, while

deblurring experiment takes about 48 hours. Parameter γ initialization of IDNN is set to 1.0.

Parameters {w1, c1, w2, c2} of FIDNN are initialized as {−0.2, 0.5, 1.2, 0.0}.

5.2 Ablation study

Regarding the effects of attention module with U-Net, we conduct whether models have

CBAM or not. Several comparative experiments are in Tables 1 and 2. DCNN_N represents

a DCNN denoiser without CBAM. FIDNN_N represents a fast iterative network without

CBAM. When noise level is high, DCNN denoiser with attention mechanism makes great

progress. Regarding Gaussian deblurring experiments from Table 2, FIDNN increases PSNR

value by 0.25. Therefore, information flow is effectively taught which information needs to be

emphasized or suppressed due to attention module. In future trials, methods proposed in this

paper are all introduced into attention mechanism.

To verify the effectiveness of consolidation degradation operations, we implement two

types of experiments, i.e., DCNN denoisers and iterative network FIDNN. Comparable trials

Table 1. Ablation study of denoising on Set12 dataset.

Methods DCNN_N DCNN FIDNN_N FIDNN

Noise level 15 32.82 32.83 32.89 32.91

Noise level 25 30.49 30.52 30.56 32.58

Noise level 50 27.34 27.39 27.47 27.53

https://doi.org/10.1371/journal.pone.0276373.t001
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are shown in Tables 1 and 2. For denoising and deblurring, FIDNN without attention mecha-

nism improves maximum PSNR gains by up to 0.13 and 0.38, respectively. The 0.5 and 0.19

gains of average PSNR in gaussian and motion deblurring are realized over pure denoisers

with CBAM, demonstrating the significance of integrating degradation operations into unfold-

ing networks.

5.3 Image restoration results

5.3.1 Denoising. We compare our methods with several state-of-the-art denoising meth-

ods, including two model-based methods, i.e., BM3D [41] and EPLL [42], and three learning-

based methods, i.e., TNRD, DPDNN, and IRCNN. Average PSNR results of different methods

are shown in Table 3 on widely-used Set12 dataset [23]. Learning-based methods are superior

Table 2. Ablation study of deblurring on Set10 dataset.

Methods DCNN_N DCNN FIDNN_N FIDNN

Gaussian blur for noise level 2

Standard deviation 1.2 33.51 33.65 33.60 33.85

Standard deviation 1.6 30.53 30.63 30.91 31.13

Motion blur for noise level 7.65

Levin 19×19 [45] 28.90 28.98 29.12 29.17

Levin 17×17 [45] 28.49 28.55 28.56 28.66

https://doi.org/10.1371/journal.pone.0276373.t002

Table 3. PSNR results of denoising by different methods on Set12 dataset.

Image C.man House Peppers Starfish Monor Airpl Parrot Lena Barbara Boat Man Couple Average

Noise level 15

BM3D [41] 31.93 34.94 32.70 31.16 31.86 31.08 31.38 34.27 33.11 32.14 31.93 32.12 32.39

EPLL [42] 31.81 34.13 32.58 31.07 32.03 31.16 31.41 33.86 31.33 31.92 31.97 31.89 32.10

TNRD [11] 32.15 34.56 33.02 31.76 32.55 31.45 31.65 34.25 32.15 32.13 32.25 32.08 32.50

IRCNN [24] 32.53 34.88 33.21 31.96 32.98 31.66 31.88 34.50 32.41 32.36 32.36 32.37 32.76

DPDNN [19] 32.44 35.40 33.19 32.06 33.32 31.78 31.45 34.80 32.81 32.55 32.52 32.51 32.90

IDNN 32.54 35.19 33.38 32.23 33.16 31.78 31.99 34.70 32.57 32.41 32.43 32.49 32.91

FIDNN 32.57 35.19 33.36 32.22 33.16 31.75 31.97 34.71 32.56 32.43 32.44 32.53 32.91

Noise level 25

BM3D [41] 29.46 32.86 30.16 28.56 29.25 28.43 28.93 32.07 30.72 29.90 29.63 29.72 29.97

EPLL [42] 29.25 32.04 30.06 28.44 29.30 28.56 28.91 31.63 28.56 29.68 29.62 29.48 29.63

TNRD [11] 29.70 32.52 30.53 29.03 29.85 28.89 29.19 31.99 29.42 29.90 29.89 29.73 30.05

IRCNN [24] 30.12 33.02 30.81 29.21 30.20 29.05 29.47 32.40 29.93 30.17 30.02 30.05 30.37

DPDNN [19] 30.12 33.55 30.90 29.43 30.31 29.14 29.28 32.69 30.30 30.34 30.15 30.24 30.54

IDNN 30.16 33.47 31.05 29.50 30.42 29.21 29.55 32.72 30.02 30.26 30.10 30.21 30.56

FIDNN 30.16 33.52 30.99 29.47 30.42 29.24 29.56 32.72 30.04 30.27 30.13 30.20 30.58

Noise level 50

BM3D [41] 26.14 29.69 26.68 25.03 25.82 25.11 25.90 29.04 27.23 26.79 26.82 26.46 26.73

EPLL [42] 26.02 28.75 26.62 25.05 25.79 25.24 25.83 28.44 24.80 26.66 26.73 26.22 26.35

TNRD [11] 26.61 29.46 27.13 25.42 26.30 25.60 26.09 28.96 25.71 26.95 27.00 26.50 26.82

IRCNN [24] 27.16 29.90 27.33 25.48 26.66 25.78 26.48 29.36 26.17 27.17 27.14 26.86 27.12

DPDNN [19] 27.12 31.04 27.44 25.95 27.00 25.97 26.47 29.86 27.22 27.42 27.32 27.23 27.50

IDNN 27.25 30.76 27.52 25.75 26.95 26.05 26.59 29.79 26.50 27.38 27.28 27.19 27.42

FIDNN 27.29 30.80 27.74 25.96 27.12 26.02 26.67 29.87 26.88 27.37 27.35 27.28 27.53

https://doi.org/10.1371/journal.pone.0276373.t003
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to model-based methods. DPDNN greatly outperforms IRCNN and TNRD, while FIDNN per-

forms better for higher noise levels than DPDNN. We also test denoising results of Color

Berkeley Segmentation Dataset (CBSD68) [43] and Kodak24 dataset [44], as shown in Table 4.

Model-based method, i.e., CBM3D [41], is outperformed by FIDNN to 0.81 average PSNR

gains for noise level 50 on CBSD68 dataset.

Qualitative results of gray images for noise level 50 are shown in Fig 3. DPDNN is sur-

rounded by edge connections, while FIDNN is filled with better and smooth image details.

Visual effects of color images are shown in Figs 4 and 5. CBM3D is too smooth to preserve the

Table 4. Average PSNR results of denoising by different methods on CBSD68 and Kodak24 datasets.

Datasets Noise level CBM3D [41] IRCNN [24] DnCNN [23] FFDNet [10] DPDNN [19] FIDNN

CBSD68 15 33.47 33.87 33.89 33.88 33.99 34.02

25 30.69 31.18 31.23 31.22 31.30 31.35

50 27.37 27.88 27.92 27.97 28.14 28.18

Kodak24 15 34.41 34.69 34.59 34.63 34.73 34.80

25 31.81 32.15 32.13 32.13 32.12 32.21

50 28.62 28.94 28.95 29.11 29.11 29.23

https://doi.org/10.1371/journal.pone.0276373.t004

Fig 3. Gray image denoising results for noise level 50 on ‘Parrot’ image from Set12 dataset. (a) original. (b) BM3D (25.90). (c) TNRD (26.09). (d)

IRCNN (26.48). (e) DPDNN (26.47). (f) FIDNN (26.67).

https://doi.org/10.1371/journal.pone.0276373.g003

Fig 4. Color image denoising results for noise level 50 on ‘253055’ image from CBSD68 dataset. (a) original. (b) CBM3D (30.54). (c) IRCNN (30.91).

(d) FFDNet (30.98). (e) DnCNN (31.02). (f) FIDNN (31.40).

https://doi.org/10.1371/journal.pone.0276373.g004

Fig 5. Color image denoising results for noise level 50 on ‘Kodim23’ image from Kodak24 dataset. (a) original. (b) CBM3D (31.75). (c) IRCNN (31.83).

(d) FFDNet (31.98). (e) DnCNN (31.77). (f) FIDNN (32.10).

https://doi.org/10.1371/journal.pone.0276373.g005
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edge. Three learning-based methods suffer from poor edge preservation of small objects at a

distance. In contrast, proposed method benefits from comprehensive textures and sharper

edges.

5.3.2 Deblurring. Deblurring experiments of non-linear blur kernels are carried out to

further confirm wide applicability of proposed methods, as shown in Tables 5 and 6. The blur

kernel includes Gaussian blur of size 25 with standard deviations of 1.2 and 1.6, and motion

blur of size 19 and 17 in [45]. For Gaussian deblurring, AWGN for noise level 2 is added to

blurred images. For motion deblurring, add AWGN for noise level 7.65 to them. The model-

based method, i.e., IDDBM3D [46], and four learning-based methods, including IRCNN,

IRCNN+ [13], DPIR [13], and DPDNN are compared with our methods on widely-used Set10

dataset [19]. IRCNN+ refers to the method [13] in which the denoiser sub-network is replaced

with IRCNN. Model-based methods perform poorly while processing Gaussian blur. Com-

pared to the same iteration-based method, i.e., DPDNN, 0.12 gains of average PSNR for

Table 5. PSNR results of deblurring by different methods on Set10 dataset.

Image Barbara Boats Butterfly C.Man House Leaves Lena Parrot Peppers Starfish Average

Gaussian blur with standard deviation 1.2 for noise level 2

IDDBM3D [46] 31.92 33.33 32.17 30.18 35.60 33.18 33.12 34.55 31.74 32.90 32.60

IRCNN [24] 31.40 33.40 32.45 30.44 35.51 33.68 33.44 34.58 32.00 33.42 33.03

IRCNN+ [13] 31.32 32.69 32.45 30.04 34.40 33.13 32.80 33.83 31.49 32.72 32.49

DPDNN [19] 31.62 33.81 33.33 30.84 36.01 34.01 34.13 35.51 32.19 34.23 33.57

IDNN 31.60 33.86 33.20 30.83 35.94 34.15 34.14 35.51 32.35 34.33 33.59

FIDNN 32.39 34.02 33.40 30.93 36.16 34.39 34.38 35.72 32.44 34.62 33.85

Gaussian blur with standard deviation 1.6 for noise level 2

IDDBM3D [46] 25.99 31.17 29.79 27.68 33.56 30.13 30.91 31.90 29.64 30.57 30.13

IRCNN [24] 26.15 31.41 30.44 28.06 33.79 30.43 31.14 31.82 30.68 30.77 30.47

IRCNN+ [13] 25.77 30.87 30.06 27.65 32.81 30.14 30.83 31.64 29.79 30.42 30.00

DPDNN [19] 26.47 31.54 30.67 28.24 34.25 30.23 31.48 32.40 30.18 32.00 30.75

IDNN 25.60 31.62 31.13 28.63 33.96 30.95 31.65 32.79 30.90 31.77 30.90

FIDNN 26.02 31.80 31.42 28.84 34.20 31.48 31.79 32.90 30.98 32.12 31.13

19 × 19 motion blur kernel 1 of [38] for noise level 7.65

IRCNN [24] 28.18 29.12 28.51 28.11 32.03 28.41 29.51 31.07 28.87 27.86 29.17

IRCNN+ [13] 28.29 29.03 27.99 28.31 31.70 27.73 29.56 30.74 28.68 27.55 28.96

DPDNN [19] 28.01 29.19 28.24 27.77 32.06 27.98 29.42 31.03 28.42 28.00 29.01

IDNN 28.14 29.36 28.23 27.89 32.06 27.81 29.70 31.17 28.79 27.87 29.10

FIDNN 28.22 29.33 28.30 28.06 32.06 27.96 29.77 31.23 28.76 27.99 29.17

17 × 17 motion blur kernel 2 of [38] for noise level 7.65

IRCNN [24] 27.36 28.94 28.20 27.70 31.94 27.91 29.27 30.67 28.71 27.67 28.84

IRCNN+ [13] 27.34 28.78 27.77 27.76 31.42 27.38 29.17 30.37 28.36 27.46 28.58

DPDNN [19] 26.86 28.84 27.47 27.48 31.91 27.28 29.23 30.46 28.02 27.82 28.54

IDNN 26.63 28.82 27.37 27.25 31.69 26.86 29.30 30.60 28.28 27.34 28.41

FIDNN 26.76 29.06 27.60 27.40 31.91 27.48 29.46 30.81 28.47 27.64 28.66

https://doi.org/10.1371/journal.pone.0276373.t005

Table 6. Average PSNR results of Gaussian deblurring for different standard deviation by different methods on Kodak24 dataset.

Methods IRCNN [24] IRCNN+ [13] DPDNN [19] DPIR [13] FIDNN

Standard deviation 1.2 32.96 32.17 32.89 32.69 32.99

Standard deviation 1.6 30.40 29.70 30.46 30.03 30.55

https://doi.org/10.1371/journal.pone.0276373.t006
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motion blur of size 17 are acquired by FIDNN. In color image dataset, FIDNN outclasses two

PnP approaches.

Qualitative results of deblurring experiments are shown in Figs 6 and 7. IRCNN is so

smooth that it produces distorted edges. IRCNN+ and DPDNN are encircled by obvious

motion artifacts. However, FIDNN effectively defeats motion artifacts as well as enjoys sharper

edges and a more pleasant texture structure than other methods.

5.4 Convergence analysis

Effects of detail restoration are likely to be affected by the trend of parameter variation. Under

the same configuration, step size of DPDNN shows a downward trend, and penalty parameter

shows an upward trend from Fig 8a. This is consistent with meaning of parameters mentioned

in this paper. However, DPDNN in later iterations shows a very modest fluctuation. Its unsta-

ble noise variance and blur composition go counter to iterative solutions. In early stages,

parameters of FIDNN change rapidly. Correspondingly, degraded images become clearer

quickly, as shown in Fig 9. Therefore, parameter variation provides a clearer explanation of

what an iterative solution means.

Quantitative experiments are shown in Fig 10 to demonstrate influence of parameters.

Under the same configuration, DPDNN yields vital fluctuations in intermediate periods. It

may be connected to parameter instability. IRCNN sacrifices more iterations to achieve good-

Fig 6. Motion deblurring results for kernel size 17 and noise level 7.65 on ‘Boat’ image from Set10 dataset. (a) original. (b) IRCNN(28.94). (c) IRCNN

+(28.78). (d) DPDNN(28.84). (e) FIDNN(29.06).

https://doi.org/10.1371/journal.pone.0276373.g006

Fig 7. Gaussian deblurring results for standard deviation 1.6 and noise level 2 on ‘kodim19’ image from Kodak24 dataset. (a) original. (b) IRCNN

(33.25). (c) DPIR (32.64). (d) DPDNN (33.04). (e) FIDNN (33.34).

https://doi.org/10.1371/journal.pone.0276373.g007
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performing results. IRCNN+ converges quickly in early stages, but its stability is poor. Con-

trarily, FIDNN remains fast and stable convergence with a lower number of iterations.

5.5 Model complexity and runtime

Under the same hardware equipment, we test model complexity and testing runtime for sev-

eral deep learning methods, as shown in Table 7. IRCNN gains the best performance in model

FLOPs and parameters. With the same U-Net denoiser, FIDNN_N owns better results of aver-

age PSNR for higher noise levels than DPDNN. Numerous convolution parameters of FIDNN

Fig 8. Parameter variations on motion deblurring with kernel size 19. (a): step size and penalty parameter of DPDNN; (b): step size and

momentum parameter of FIDNN.

https://doi.org/10.1371/journal.pone.0276373.g008

Fig 9. Gray deblurring results and parameter variations on each iteration for motion blur with kernel size 19 on ‘House’ image from Set10 dataset.

(a) x1 (25.48). (b) x2 (26.43). (c) x3 (27.01). (d) x4 (28.62). (e) x5 (30.99). (f) x6 (32.06).

https://doi.org/10.1371/journal.pone.0276373.g009

Fig 10. Comparison of PSNR and SSIM results for motion blur kernel size 17 and noise level 7.65. (a): PSNR results on ‘Parrrot’ image; (b): SSIM results

on ‘Parrrot’ image; (c): Average PSNR results on Set10 dataset.

https://doi.org/10.1371/journal.pone.0276373.g010
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result in longer testing runtime. It is worthwhile to mention that runtime of FIDNN does

decrease distinctly over IDNN per image.

6 Conclusion

This work links variational models of model-based methods to learnable deep learning

approaches. Firstly, the proximal operator is used to implement Taylor expansion linearization

under energy minimization of a variational function. Proximal gradient descent algorithm is

unrolled to IDNN model with proposed U-Net denoiser by end-to-end training. The attention

mechanism incorporated into denoiser sub-network effectively understands emphatic or sup-

pressive image information. Furthermore, by introducing a momentum factor that drives

reconstruction results to continue iterating with inertial force, IDNN is extended to fast IDNN

(FIDNN) without stronger conditions to speed up the convergence.

Self-learning parameters in this paper through an end-to-end approach effectively reduce

manually tuning costs. Moreover, proposed iterative solution with trainable parameters can

express dynamic characteristics of image reconstruction than constant parameters. The experi-

mental results show that FIDNN with fewer iterations has more stable and faster test conver-

gence than several iterative-based unfolding methods. Due to extensive applicability of

proposed models, more computer vision tasks in the future can be addressed by handling dif-

ferent degraded operations simultaneously.
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