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Abstract

Patterns of genetic diversity in parasite antigen gene families hold important information about their potential to generate
antigenic variation within and between hosts. The evolution of such gene families is typically driven by gene duplication, followed
by point mutation and gene conversion. There is great interest in estimating the rates of these processes from molecular
sequences for understanding the evolution of the pathogen and its significance for infection processes. In this study, a series of
models are constructed to investigate hypotheses about the nucleotide diversity patterns between closely related gene sequences
from the antigen gene archive of the African trypanosome, the protozoan parasite causative of human sleeping sickness in
Equatorial Africa. We use a hidden Markov model approach to identify two scales of diversification: clustering of sequence
mismatches, a putative indicator of gene conversion events with other lower-identity donor genes in the archive, and at a sparser
scale, isolated mismatches, likely arising from independent point mutations. In addition to quantifying the respective probabilities
of occurrence of these two processes, our approach yields estimates for the gene conversion tract length distribution and the
average diversity contributed locally by conversion events. Model fitting is conducted using a Bayesian framework. We find that
diversifying gene conversion events with lower-identity partners occur at least five times less frequently than point mutations on
variant surface glycoprotein (VSG) pairs, and the average imported conversion tract is between 14 and 25 nucleotides long.
However, because of the high diversity introduced by gene conversion, the two processes have almost equal impact on the
per-nucleotide rate of sequence diversification between VSG subfamily members. We are able to disentangle the most likely
locations of point mutations and conversions on each aligned gene pair.

Key words: multigene families, diversification, VSG archive, African trypanosome, gene conversion, point mutation, hidden
Markov model.

Introduction
The African trypanosome, a protozoan pathogen prevalent in
Equatorial Africa is the causative agent of human sleeping
sickness. Despite extensive research efforts, the development
of vaccines against this parasite remains a challenge. This is
mainly due to trypanosome antigenic variation, a complex
process whereby the parasite switches expression of its variant
surface glycoprotein (VSG) genes during infection, in a largely
unpredictable manner. As antibodies arise against an anti-
genic variant, parasites that have switched to another variant
survive and can proliferate, continuing the infection.
Trypanosomes contain a large family of >1,600 VSG genes,
involved in antigenic variation (Morrison et al. 2009). These
genes are genetically diverse and their products are antigen-
ically diverse. Although just a single VSG gene from this rep-
ertoire is expressed by the trypanosome at any time, the other
silent genes undergo evolutionary changes in an incremental

manner, thought to facilitate future immune evasion of this
parasite.

In this context, studying the dynamic mechanisms that
generate and maintain diversity within such antigen reper-
toires is crucial. Multigene families, such as the VSG antigen
repertoire of trypanosomes, are groups of genes that include
multiple copies generated by duplication from a common
ancestor gene, usually serving a similar function. To under-
stand the biological function of gene families, one needs to
examine their evolutionary histories. Typically, multigene
families diversify through a variety of mutational mechanisms,
prominent among which are base substitutions, insertions–
deletions (indels), and intergenic conversions through
overwriting one sequence with a copy of another. Although
conversion reduces globally the diversity between sequences,
it can potentially increase it locally (within subfamilies), in
particular by introducing one diverged sequence adjacent
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to another (Parham and Ohta 1996; Martinsohn et al. 1999;
Ohta 2010). Diversification of gene family members has the
potential to expand the range of biological functions served
by the entire gene family.

The nearly completed sequencing of the African trypano-
some genome (Berriman et al. 2005) provides unprecedented
opportunities to explore the effects of such processes on the
antigen gene family of this parasite. The VSG archive evolves
through whole-gene duplication followed by divergence
through point mutation and recombination events. As
individual VSGs are rarely expressed, they are under low
direct selection. It seems likely that the archive is under
second-order selection (Weber 1996), through the evolution
of mechanisms for high intrinsic mutation rates across the
entire coding sequence (Marcello and Barry 2007). As the
archive is located in subtelomeres, which undergo promiscu-
ous ectopic recombination, most VSGs are able to interact
recombinationally, independently of locus. Consequently,
gene conversion has also an important role to play in genetic
diversification of silent antigen copies.

The target of antibodies is typically the N-terminal do-
main of the VSG genes, whose main feature is hypervariability:
modal peptide identity across N-domains is<25%. However,
multiple DNA sequence alignments have revealed that the
archive is structured, with �40% of VSGs occurring as
high-identity pairs or triplets of >50% peptide identity
(Marcello and Barry 2007). The presence of such antigen
gene groupings, consisting mainly of pseudogenes, and their
genetic similarity, facilitate the processes of homology-driven
recombination, whereby successful novel mosaic VSGs are
formed and expressed in the chronic stages of trypanosome
infections. Despite its role in the generation, disruption, and
maintenance of gene similarity, the extent to which recom-
bination occurs in the antigen gene archive of African try-
panosomes remains largely unknown.

To track and characterize the mutational events that di-
versify this archive, there is a need for a mechanistic paramet-
ric analysis of these processes. An interesting question, central
to mosaic gene formation in African trypanosomes, is how do
highly similar, newly arisen, archive subgroups diverge?
Presumably, similarity between two archival copies indicates
short divergence time since duplication. However, what is the
relative contribution of point mutation and gene conversion,
early in the course of this evolution? Quantifying the rates of
these evolutionary processes may be key for addressing more
complicated questions about the underlying mechanisms in-
volved and their maintenance by selective forces.

The function of the VSG gene family is fundamental to the
life history of trypanosomes. Determining the extent to which
pathogen genes recombine has been considered one of the
central problems to map mutations that determine parasite
phenotypes, such as immune evasion or pathogenicity
(Awadalla 2003). Naturally, recombination must occur at var-
ious temporal and spatial scales, e.g., within the pathogen
genome and between genomes, within the same strain and
between strains, potentially serving a different function, and
leaving a different signature at each scale.

In this study, we aim to unravel the short-term divergence
of duplicated genes within an antigen gene family, resulting
from the interplay between point mutation and gene
conversion. We develop a general mathematical model that
describes changes to aligned gene pairs, by individual point
mutation events and by conversion from donor genes in the
gene family. The model relies entirely on patterns of identity
and mismatches between pairs of aligned sequences, without
needing or using any explicit information about the donors
that have contributed the genetic material. We are interested
only indirectly in detecting the locations of conversion events.
A key assumption is that imported conversion tracts differ
from the original sequence they replace due to their higher
density of nucleotide mismatches. At the temporal scale soon
after gene duplication, both point mutation and gene con-
version imports from third-party donors in the gene family
have a diversifying effect on newly arisen gene pairs.

We apply this modeling framework to pairwise alignment
data from small VSG subfamilies, whose gene members
display high pairwise nucleotide identity. Such high identity
indicates recent gene duplication, followed by moderate dis-
cernible diversification. Our method estimates the probabil-
ities of point mutation and gene conversion, the average
diversity introduced by gene conversion events and their
tract length distribution. We find evidence for a higher fre-
quency of point mutations, compared with gene conversion
events, although the resulting per-nucleotide rate of substi-
tution is almost the same for the two processes. Although
there are differences in the number of events inferred on each
gene pair, the VSG pairs considered exhibit the same size
distribution of conversion fragments, characterized by a
short average length and a rate of substitution much higher
than that of nonrecombined regions. In conclusion, we sug-
gest that patterns of diversity in N-domains of African
trypanosome VSG genes may reflect a dynamic in which
point mutation and gene conversion are kept at a balance,
which could facilitate antigenic dissimilarity, yet without dis-
rupting substantially the homology structure so fundamental
to the formation and expression of mosaic genes during
chronic-phase infection.

Methods

Gene Isolates

We examined a VSG data set consisting of five triplets of
high-identity VSG genes, from the antigen gene archive of
African trypanosomes (fig. 1). The 15 genes were obtained
from the trypanosome VSG database (http://www.vsgdb.net),
with the members of each triplet being 1) Tb927.5.5260,
Tb09.160.0100, Tb11.38.0005; 2) Tb09.244.1860, Tb11.57.
0027, Tb09.244.0130; 3) Tb927.3.400, Tb08.27P2.680, Tb09.
244. 0900; 4) Tb09.244.1850, Tb09.244.0 140, Tb11.57.0026;
and 5) Tb09.v2.0430, Tb09.v4.0178, Tb927.6.5210. In the
chronic stages of trypanosome infection, such highly related
genes can recombine with expressed genes and form novel
mosaic genes that can sustain parasite antigenic variation.
Given the importance of N-domain hypervariability in deter-
mining the epitopes essential for antigenic variation of this
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parasite, our analysis is restricted to the N-domain encoding
regions of these genes (supplementary material SI1, Supple-
mentary Material online, for details). The pairwise alignments
used in the analysis were performed by CLUSTALW (Thomp-
son et al. 1994), aligning the three genes of each triplet sep-
arately and subsequently retaining only the N-domain
encoding regions, comprising�1,050 nucleotides on average.
Pairwise nucleotide identity within the same triplet ranges
between 80% and 90%, whereas gene comparisons across
triplets display a much lower identity of approximately 50%.
Because we are interested in understanding the evolutionary
processes that diversify high-identity gene pairs, we consider
only pairwise alignments within the same triplet (3 pairs per
triplet), thus obtaining a total of 15 pairwise alignments.

Model Formulation

Patterns of nucleotide diversity within each gene pair can be
simplified into numerical vectors taking the values of 0 and 1
at each alignment position, to denote a mismatch or an iden-
tical nucleotide respectively. From left to right along each
alignment, regions of low mismatch density are assumed to
be affected only by point mutation, whereas regions of high
mismatch density are considered as possible locations where
a conversion with an outside donor may have occurred. To
distinguish between these two spatial patterns: the higher
rate of diversity within conversion tracts and the sparsity of
mismatches introduced by point mutation, we develop a
simple probabilistic model as follows.

We denote each pairwise alignment by a vector X(n),
n = 1, . . N, of length L, where each element Xi

(n) takes the
values of 0 or 1, to indicate, respectively, a mismatch or iden-
tity at nucleotide position i between the two genes. N is the
number of gene pairs we analyze. Assuming mutational pro-
cesses occur at fixed rates per nucleotide, we represent point
mutation by a Bernoulli process. For gene conversion events,
we assume a parallel Bernoulli process with fixed probability
of occurrence per nucleotide, given by �begin. A mismatch

is positioned at the leftmost border of a conversion with
probability �begin per nucleotide, denoting the initiation of
the converted region. Within the imported conversion tracts,
we assume there are only two possible events: either an in-
ternal mismatch is introduced with probability � per nucle-
otide or the conversion terminates with an end mismatch
with probability �end per nucleotide. This formulation implies
that a conversion tract is imported noninterrupted and
always delimited by two mismatches at its borders. In
the alignment regions between conversions, there are two
possible events: either a point mutation occurs, altering the
sequence with probability m per nucleotide (m<�) or a new
conversion is initiated with probability �begin. Implicitly, we
make the simplifying assumption that conversion events are
nonoverlapping, which might lead to an underestimation of
the real conversion event probability and an overestimation
of the conversion tract length. The average relative number of
conversion and point mutation events that occur on each
alignment depends directly on the ratio �begin/m.

The simulation of this process can be carried out on an
event-by-event basis (supplementary material SI2, Supple-
mentary Material online), essentially similar to the Gillespie
algorithm (Gillespie 1977). The memoryless property of the
process ensures the distances to the next event, i.e., to the
next mismatch, are geometrically distributed with parameter
corresponding to the total probability of events that can
happen at the current point. As a consequence, the resulting
conversion lengths, defined (conservatively) by the distance
from the first to the last mismatch inside conversion tracts,
follow a geometric distribution with parameter �end.
The geometric tract length distribution appears to describe
well the mechanistic basis of gene conversion and has been
applied previously (Hilliker et al. 1994; Betran et al. 1997;
Didelot and Falush 2007).

Estimation of Mutation and Gene Conversion
Probabilities

Instead of focusing on mismatches themselves and their
locations, it is more convenient to transform the data
into intermismatch distances. Suppose alignment X(n) has
M mismatches. We can thus consider on any alignment
that each observation yi(i = 1, . . . M) of “waiting-times” (dis-
tances) to the next mismatch is associated with an unob-
served hidden state si = k, k2 f1, 2}: 1, corresponding to a
between-conversion region, and 2, corresponding to a “within
conversion region”. Conditioned on the type of the hidden
state, each yi observation is assumed to be independently
drawn from a geometric distribution: �k(d) = P( yi = djsi =
k) = (1��k)d�1�k, with parameters �1 = �begin + m, for
between-cluster distances, and �2 =�+ �end, for within-
cluster distances, where d = 1,2,3, . . . L� 1.

This model is an example of a large class of models known
as Hidden Markov Models (HMM) (Durbin et al. 1998),
widely used in biological sequence analysis. The numerical
values of intermismatch distances we observe are generated
by hidden states, forming an ordered sequence where the
probability of the next state depends only on the current

FIG. 1. Data phylogenetic structure. The phylogenetic tree of the five
VSG triplets considered in our study. A total of 15 VSG sequences from
the antigen gene archive of African trypanosomes were extracted from
the VSG database (http://www.vsgdb.net) and multiply aligned by
CLUSTALw. The close relatedness between genes within the same triplet
suggests recent divergence from a common ancestor.
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state. The transition matrix between states 1 and 2 in our
model is given by:

T ¼

m

�begin þm

�begin

�begin þm

�end

�end þ �

�

�end þ �

0
BB@

1
CCA; ð1Þ

where entry T1,2 = P(si = 2jsi�1 = 1) and so on, expressing the
probabilities for the mismatches to persist within the same
conversion or to jump between conversions. Given the four
basic parameters (�begin, �end, �, and m), the transition prob-
abilities Ti,j and the two geometric distributions for the
next-mismatch segment lengths (“emission” probabilities)
are uniquely determined. Conditioned on the sequence of
hidden states S = fsi, i = 1, . . . , M}, the likelihood of the data
y = fyi, i = 1, . . . M} on each alignment is:

PðyjSÞ ¼
YM
i¼1

ð1� �si
Þ

yi�1�si
: ð2Þ

The joint probability of the observations and a particular
hidden path is given by:

Pðy; SÞ ¼ T0k

YM
i¼1

ð1� �si
Þ

yi�1�si
Tsisiþ1

; ð3Þ

where T0k is the transition probability from an artificially
introduced initial state to state k and can be thought of
as the probability of starting in state k. Because many differ-
ent hidden paths can give rise to the same sequence of
observations y, to obtain the full likelihood of y, we must
consider and sum over all possible sequences of hidden
states. We do not impose a priori any information about
the hidden states.

Given the observations of next-mismatch distances in N
closely related pairs of gene sequences, we wish to infer the
genetic parameters (�begin, �end,� and m) that are most likely
to have generated the diversity pattern. Each aligned gene
pair within the same triplet is treated as an independent
realization of the stochastic process describing the evolution-
ary dynamics of recently duplicated genes. This implies the
total likelihood of the data becomes a product over the in-
dividual alignment likelihoods. Such a simplifying assumption
about independence between the gene pairs in our data set
should introduce no bias in our estimates, although it could
potentially underestimate the associated standard deviations.
The fact that we consider all gene pairs within each triplet:
(i,j), (j,k), and (i,k), allows each conversion and mutation event
that has occurred on one of the triplet members, e.g., on gene
i, to be counted twice, if detected correctly, because it should
appear on both alignments with the other members (i,j) and
(i,k). Reassuringly, numerical simulations confirm an accuracy
of event detection �80%, even for short conversion tracts,
the only difficulty arising in the estimation of imported tract
lengths, where the identifiability of all mismatches imported
from outside is more challenging.

Testing Different Hypotheses

We construct different models to investigate competing
hypotheses on the same data set. Each model is based on
different assumptions about the origin of differences across
aligned pairs (fig. 2). In the following, we present results for
four models that we consider most relevant and biologically
plausible:

1) Global fit model: The simplest hypothesis is the one
where the same parameter values apply to all (N = 15)
closely related pairs simultaneously. All gene pairs can be
thought to derive from the same process, thus sharing
the same probability of conversion, conversion length
distribution, point mutation probability, and the same
mismatch density per conversion. This model results in
four parameters that should explain the mismatch pat-
tern of every pairwise alignment.

2) Triplet fits: Alternatively, the data may be seen as a
collection of five completely independent triplets, each
governed by its own set of parameters (�begin, �end, �,
and m). This formulation entails 5 � 4 = 20 parameters
in total.

3) Triplet ages: The data may consist of five partially re-
lated triplets, which are governed by the same density of
mismatches within conversions � and same probability
of conversion termination �end but differ in the
time elapsed since sharing a common ancestor, thus
display triplet-specific point mutation probability m
and triplet-specific conversion event probability �begin.

FIG. 2. Model diagrams. The four models differ in the assumptions they
make about the nature of the evolutionary processes (depicted by line
type) and the divergence time between the compared sequences (de-
picted by line length). Model 1 assumes point mutation and conversion
are governed by the same parameters on all gene pairs, and each pair
within a triplet shares the same “age” with other pairs. Model 2 assumes
distinct triplet-specific probabilities of genetic processes, and it allows
for triplet-specific conversion length distribution and conversion mis-
match density. Model 3 assumes the processes occur universally at equal
rates across triplets, including conversion length distribution and mis-
match density; however, the divergence time of each triplet may be
different. Model 4 assumes equal process rates across gene pairs, but it
allows for within-triplet variation in divergence time.
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Under the convention that the latter probabilities scale
by the same factor in each triplet relative to the first
triplet, we can introduce a new parameter in the
model, namely the relative “age” of each triplet. Triplet
1 gets assigned age A1 = 1. Then, for the other triplets
(2, . . . N/3� 1), the “ages” relative to the first triplet
Atriplet can be inferred. It is sufficient to parameterize
the model in terms of �begin and m only for the first
triplet and A2, A3, A4, and A5. Such a model has 4 + 4
= 8 parameters, which are estimated jointly across
all data. When “ages” are included, the triplet-specific
probability of conversion initiation per nucleotide
�begin and the triplet-specific probability of point muta-
tion per nucleotide m, after scaling become the products
�begin Atriplet and mAtriplet, in the range [0,1]. Intuitively, in
aligned pairs from an “older” triplet, we should expect
more conversion events and more point mutation
events on average compared to a “younger” triplet.
This model considers the scenario that all three genes
within the same triplet have arisen at the same time from
a common ancestor.

4) Individual ages: Here we consider the case where each
gene pair shares the same � and �end with the other
gene pairs but differs in �begin and m. Assuming that the
probabilities of conversion and point mutation events
scale equally among gene pairs, we can introduce again a
scaling parameter, similar to a pair-specific “age” relative
to pair 1. This yields a set of four primary parameters
governing the reference pair/alignment and 14 = N� 1
parameters for the relative “ages” of the other gene pairs.
For these other alignments, the pair-specific parameters
�begin and m become the products of the corresponding
parameters in the reference pair, multiplied (as in the
triplet ages model) by their relative age Ai,i = 2, . . . N. The
total number of parameters here is 4 + 14 = 18. This
model also results in the same conversion tract length
distribution and the same density of mismatches per
conversion across all gene pairs, while allowing for vari-
ability in divergence time from one same common
ancestor.

Inference Procedure and Model Selection

We adopt a Bayesian approach that allows us to estimate
explicitly the transition probabilities between large-scale
and small-scale next-mismatch distances and the probability
distributions associated with each of these states. In addition,
this approach enables us to include any prior knowledge
about the process and to quantify the statistical uncertainty
associated with our data. Because the posterior distributions
themselves are impossible to get analytically, we implement
the Metropolis–Hastings Algorithm, one of the simplest
Monte Carlo Markov Chain (MCMC) sampling techniques
(Gilks et al. 1996), to obtain numerically the probability dis-
tributions of model parameters. We reparameterize the
model from (�begin, �end, �, m) to the more convenient

form � = ( p1, p2,�2, e), yielding the following transition and
emission probabilities in the HMM:

T ¼
1� p2 p2

p1 1� p1

� �
; �kðdÞ ¼ ð1� �kÞ

d�1�k;

k 2 f1; 2g; �1 ¼ �2 � � � �2:

We can recover explicitly the genetic parameters from:
�begin = p2�1; m = (1� p2)�1;�end = p1�2; �= (1� p1)�2,
after the auxiliary composite parameters � = (p1,p2,�2,e)
have been estimated. Notice that � varies across the four
models considered. For example, in Model 4,
� = (p1,p2,�2,e1,e2,. . .e15), where the index of e runs through
all gene pairs. Then, the relative ages are obtained as
Ai =�begin (i)/�begin (1) = m(i)/m(1), where �begin (1) and
m(1) are the estimated probabilities in the reference gene
pair.

The algorithm is implemented in MATLAB (MathWorks,
2010) and its performance evaluated on simulated data (sup-
plementary material SI3, Supplementary Material online). We
use uniform priors U(0,1) for all parameters, truncating to the
range [0,1] where parameters are probabilities. For calculating
the overall likelihood of each sequence of observations, pos-
terior HMM decoding is used (Durbin et al. 1998), taking into
account all possible hidden paths that might have generated
the intermismatch distances.

MCMC sampling starts with an initial guess of the param-
eter values �0. Then a new guess is generated from a proposal
distribution, e.g., a multivariate normal distribution centred
at the current value of the parameters N(�old,�2). The new
likelihood of the data is calculated for the new parameter
values �new. If the new likelihood exceeds the old one, �new

is accepted with probability minf1; Lð�newÞ

Lð�oldÞ
g, otherwise it is

rejected. The covariance matrix of the proposal distribution
is tuned to optimize the speed of convergence to the sta-
tionary distribution. In our case, �2 was between 0.00025
and 0.0025. This yielded an acceptance rate in the range
[0.15,0.5] .

For each model, we ran three MCMC chains from different
starting points, until no autocorrelation remained and con-
vergence to the stationary distributions in parameter sample
paths was reached. To check convergence, the Gelman–
Rubin convergence statistic, as modified by Brooks and
Gelman (1998), was monitored. After the burn-in period,
which generally consisted of 10,000 iterations, the Markov
chains continued to run for 50,000 further iterations. For
every parameter, the posterior was thus obtained from a
sample of 3 � 50,000 independent MCMC observations.

Model selection was performed on the basis of the
Deviance Information Criterion (DIC) (Spiegelhalter et al.
2002), the Bayesian analog of the Akaike’s Information
Criterion from maximum likelihood methods. Generally,
models with lower DIC are preferred over models with
higher DIC, although this is not always a strict criterion for
model choice (supplementary material SI4, Supplementary
Material online). As independent goodness-of-fit tests, we
compared the original data set and the simulated data gen-
erated with estimated parameters, by checking higher order
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characteristics such as pair-correlation functions (Illian et al.
2008) and next-mismatch distance cumulative distributions.
These tests are explained in more detail in the supplemen-
tary material (supplementary material SI6, Supplementary
Material online).

Results
We tested the performance of our Bayesian algorithm on
simulated mismatch data for different parameter combina-
tions, acting on the same sequence length as the N-domains
we considered in our study (supplementary material SI3,
Supplementary Material online). Even with small sample
sizes of simulated mismatch sequences, our algorithm was
able to retrieve within the 90% inferred credibility interval
the true parameter values for all four genetic parameters of
the baseline model. Furthermore, the average accuracy of the
“decoded” types of intermismatch regions was>85%. As the
sample size of simulated data increases, both the precision of
the method and the accuracy of the posterior decoding in-
crease, with the mean of the inferred posterior distributions
approaching the true parameter value. The algorithm per-
forms better when the difference between mismatch density
within converted regions (�) and mutation probability (m) is
higher, independently of the conversion tract length.

Estimates of Mutation and Conversion Probabilities

In Model 1, the estimated mean probability of conversion
was estimated to be 0.0099 per base pair, whereas the

mean probability of point mutation was estimated to be
0.0410, i.e., about four times higher. This suggests that
mutation events are more frequent than conversion
events with other members of the gene archive in the
short time scale after duplication. In Model 2, we consid-
ered the case of each triplet being governed by distinct
values of parameters. We found that the estimated �begin

was in the range 0.0038–0.0175 across triplets, a result not
very far from the estimate obtained with Model 1. The
point mutation probability also showed some variation
0.0325–0.0623, but the values predicted for each triplet
stayed within the same order of magnitude. The ratio
m/�begin increased slightly in Model 3, &4.7, strengthening
the dominance of the point mutation process. In Model 4,
because the effective event probabilities on each gene pair
are obtained by the baseline values in the reference pair
multiplied by the corresponding relative ages, the �begin

and m values are pair specific. The values inferred in this
model for the reference pair are lower than the values
obtained in Model 1, for example. The ratio m/�begin, how-
ever, is invariant across gene pairs and independent of their
relative ages. We observe that point mutations in this last
model occur five times more frequently than conversion
events (table 1). Note that to obtain the conversion event
and mutation probability per gene per nucleotide, the ob-
tained estimates across all models need to be divided by 2.
The posterior probabilities associated with the location of
imported gene conversion tracts for Model 4 are shown in
figure 3.
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FIG. 3. The posterior probabilities of gene conversion tracts in Model 4. This model gives results, which are the best among the four models considered,
on the basis of both DIC and log likelihood. Because a Bayesian approach is adopted, the uncertainty around the most likely hidden path is given in the
posterior probabilities of each inter-mismatch segment being of type within or between conversion. The triplets of closely related genes are presented in
each row panel in the order (1,2), (1,3), (2,3) for each triplet.
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Gene Conversion Tract Length

The average conversion length predicted by all models is no-
tably small, compared with the total length of the sequences
analyzed. Model 1 predicts a mean imported tract length of 1/
0.0387 &25 nucleotides, thus about 2.5% of the total gene
length. This increases in Model 2, where for �end, the mean
range was 0.0126–0.0836, implying more variable conversion
lengths between 12 and 80 nucleotides. Model 3 fixes again
the conversion tract length across triplets, with the mean
estimated to be �21 nucleotides. By allowing conversion
probabilities to vary across pairs, Model 4 supports even
shorter gene conversions, ranging in mean from 14 to 25
nucleotides, with an average of approximately 18 nucleotides
(fig. 4). Naturally, the assumption of the geometric distribu-
tion of imported tract lengths implies that the inferred con-
versions do vary in length within the same alignment and
across alignments; however, a common feature remains a
high mismatch frequency within conversions, which helps
to distinguish converted regions from nonconverted regions.

Genetic Diversity Introduced by Gene Conversion

The density of mismatches within conversion tracts gives in-
formation about the potential donors with which the given
genes might have interacted in the course of their evolution.
We estimated the density to be�= 0.2552 in Model 1, which
suggests a large contribution from conversion events with
other archive genes in introducing genetic novelty to recently
duplicated sequences. In Model 2, the mean density of mis-
matches per conversion varied across triplets, ranging from
0.2043 to 0.3469; however, its global average,�0.26, was con-
sistent with the value of � predicted by the first model. An
increase in the estimate of� is observed with Model 3, where
the diversity within converted tracts is�27%. We notice that

in Model 4 (table 1), the frequency of mismatches introduced
by gene conversion is estimated to be even higher, �0.29. A
comparison with the average density of mismatches observed
in nonconverted regions by the ratio�/m, which significantly
exceeds 1 across all models, suggests a very diverse pool of
donor genes in the archive.

Estimates of Relative Divergence Time

The only models that allowed for variation in divergence time
from a common ancestor between and within triplets were,
respectively, Model 3 and Model 4. In Model 3, which as-
sumed each triplet had a different “age” relative to the first
triplet of genes, we obtained mean estimates for the relative
“ages” ranging from 1.09 to 2.05, a result that supports a
moderate variation between triplets in divergence time
from the most recent common ancestor. In Model 4, which
allowed each gene pair to be characterized by a different
evolutionary “age” relative to the reference gene pair (1),
more variation in estimated ages than in Model 3 emerged,
with an approximate range from 0.96 (gene pair 10) to 5.28
(gene pair 9). These values strongly correlated (correlation
coefficient 0.85) with differences in pairwise identity between
gene pairs. In any case, this variation is still within a factor of
5, which is unsurprising given the fact that all the gene pairs
within triplets display similar levels of nucleotide identity
(&90.7%), suggesting a short divergence overall from their
common ancestor in the archive.

Assessing Different Models

The models we considered are nested within each other, and
due to the differences in their underlying assumptions, the
estimates of the genetic parameters and the DIC and
log-likelihood values across models show variation (table 2).
However, all models agree on the estimates for the density of

Table 1. Parameter Estimates Obtained for Model 4.

Parameter 5% Confidence
Bound

Mean 95% Confidence
Bound

jbegin (pair 1) 0.0021 0.0035 0.0052

jend 0.0400 0.0551 0.0718

l 0.2611 0.2877 0.3127

m (pair 1) 0.0124 0.0191 0.0270

A2 1.4725 2.3980 3.6719

A3 1.5531 2.5507 3.9701

A4 1.8741 2.9923 4.5708

A5 2.6478 4.2168 6.3249

A6 1.7537 2.9912 4.6698

A7 1.3536 2.3153 3.5950

A8 3.0133 4.7650 7.1719

A9 3.3190 5.2838 8.0093

A10 0.5063 0.9645 1.5966

A11 1.6073 2.6257 4.0232

A12 1.6795 2.7357 4.1687

A13 1.0776 1.8165 2.8530

A14 1.9615 3.2001 4.8341

A15 1.5089 2.5283 3.9155

FIG. 4. The most likely conversion tracts from Model 4. The 15
high-identity VSG alignments are listed in the order (1,2), (1,3), (2,3)
for each triplet. The bars refer to mismatches between nucleotides in
the N-domains of the two sequences. The most likely conversion tracts
(highlighted in yellow) were estimated by the “decoding” algorithm
using the means of the posteriors in table 1. Between-conversion regions
are given in blue.
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mismatches per conversion � and the per-nucleotide prob-
ability of conversion termination�end. This is reassuring as the
two parameters are expected to remain invariant under all
hypotheses. For all parameters, the posteriors obtained are
generally unimodal and symmetric around the mean, resem-
bling the normal distribution (supplementary material SI5,
Supplementary Material online, for details).

DIC values for each model indicated that rank order per-
formance of these four formulations supports Model 4 as the
best model, despite its large number of parameters, followed
by Model 2, Model 3, and Model 1. Applying the Viterbi
algorithm (Forney 1973) within the framework of Model 4,
to the observed mismatch patterns on all 15 alignments, we
were able to “decode” the most likely hidden path, thus ob-
taining the most likely locations of point mutations and con-
version tracts, shown in figure 4. As expected, the empirical
conversion lengths obtained from this maximum-likelihood
decoding fit well the theoretical geometric distribution with

parameter E[�end] predicted by our model. Further, as inde-
pendent goodness-of-fit tests, we compared pair correlation
functions in the original data set with pair correlation
functions (Illian et al. 2008) of simulated data for the best
model. We also compared the cumulative distribution of
next-mismatch distances in the real data and in simulated
data with estimated parameters, to verify the quality of fit of
Model 4. As shown in figure 5, simulated statistics very closely
matched the statistics from the original data set, demon-
strating the usefulness of the individual ages model in
capturing the diversity pattern displayed by our data set of
closely-related VSG pairs.

Discussion
We have presented a general modeling framework that can
describe pairwise identity patterns within gene families and
an inference framework that can disentangle two genetic
processes: gene conversion with partners outside the family
and point mutation. Although applied to the VSG genes of
African trypanosomes, our approach has several advantages
that may apply to other, similar contexts: 1) it uses abstract,
global-level information about mismatch occurrence be-
tween two aligned gene sequences, without requiring specific
information about the underlying DNA; 2) it accounts for the
spatial ordering of the identity pattern; 3) it allows direct
estimation of switching rates between two different scales:
short and long intermismatch distances; 4) it provides a

Table 2. Summary of Model Selection Criteria.

Model Number of parameters Log likelihood DIC

1. Global fit 4 �4430.8 8232.8

2. Triplet fits 20 �4399.4 8140.4

3. Triplet ages 8 �4414.2 8188.4

4. Individual ages 18 �4390.5 8136.1

NOTE.—The model with the lowest DIC/log likelihood is best to fit the data.

FIG. 5. Goodness-of-fit tests for Model 4 using higher order statistics. (A) Pair correlation functions, denoting the density g(r) of mismatches at distance
r from each other (supplementary material SI6, Supplementary Material online). (B) Cumulative next-mismatch distance distribution. The gray shaded
area represents 95% credibility intervals for the modeled mismatch patterns (100 replicates, with mean estimates for each parameter as in table 1). The
lines represent the respective statistics of observed mismatches from the data set. The panels show the VSG gene pairs in the order 1–5 (row 1), 6–10
(row 2), and 11–15 (row 3).
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means of quantifying the mutational processes that mecha-
nistically give rise to clustered identity pattern on a pairwise
alignment; 5) its results can be applied to the case when
another process acts instead of gene conversion but with
the same systematic effect of introducing clustered mis-
matches (e.g., localized point hypermutation, such as in im-
munoglobulin gene somatic hypermutation); and 6) it can be
readily extended through the incorporation of additional fac-
tors that may influence the nature of evolutionary processes.

Of many computational approaches currently available
for detecting gene conversion, the most prominent apply
phylogeny-based methods (e.g., recHMM [Westesson
and Holmes 2009]) that identify gene conversions by find-
ing breakpoints that change the tree topology and
similarity-based methods, which search for segments of un-
usually high similarity within two homologous sequences in
the set (e.g., GeneConv [Sawyer 1989]). These approaches are
powerful in detecting recombination events, especially when
the potential set of donor sequences is known, when the
recombination tracts are long and the number of data is
large. However, they are usually of a less-parametric nature,
thus making it difficult to explicitly link them to the mecha-
nistic processes involved. Rather than replacing these models,
we see our method as a potentially valuable extension to
existing approaches for generating new insight into the rela-
tive roles of mutation and gene conversion in a new context,
genetic diversification of antigen families, and for parameter-
izing their underlying mechanisms.

Among the existing parametric approaches that estimate
recombination, our approach is most similar to the one
adopted by Didelot and Falush (2007). There are parallels in
the construction of the HMM, in the higher substitution rate
of recombination and geometric distribution of converted
regions that both approaches assume. Furthermore, neither
approach attempts to model the origin of imported DNA
explicitly. However, the primary difference with our approach
is that we do not adopt an underlying coalescent model and
make no assumptions about the underlying demographic
processes or the strength of selection that may be acting. A
coalescent approach can be very useful in some cases, but it
inevitably requires more assumptions. Therefore our method,
although simpler, is likely to provide robust results even when
the nature of past demographic history and selection are
unknown. Instead of inferring the entire genealogy and
branching events, we consider systematically several discrete
possibilities about the ways in which evolutionary processes
such as gene conversion and point mutation might have
acted to shape the identity patterns between highly related
genes in a multigene family. In contrast to the multilocus
sequence data, which is the main target of the algorithm by
Didelot and Falush (2007), to compare different bacterial
strains, the algorithm we propose is more suited to deal
with relationships between genes of the same organism.
Because of this difference in scale of resolution, the conversion
tracts we model are intrinsically of much smaller size.

Through our analysis, we find that the patterns of pairwise
diversity between highly related VSG genes can be explained
by two processes: one that results from importation of

genetic material existing elsewhere in the archive and one
that generates diversity de novo from within. All models con-
sidered reveal that the probability of importing a conversion
tract from outside is lower than the probability of undergoing
point mutation, which by virtue of m<� serves to slow
down overall diversification of these pairs. We do not
impose additional mechanisms behind clustering. In our con-
text, it is highly likely that clustering of mismatches reflects
conversion events with third-party older donors, because:
first, there is no reason to expect that different regions of
the N-domains of VSG genes should evolve at different mu-
tation rates; second, there is no evidence that the mutation
rate is bimodal or that it might switch from one value to
another so frequently and stochastically as we observe in
our data; and third, the difference of the substitution rate
by a factor of 14, in converted and nonconverted regions,
as observed in our model, cannot be easily attributed to var-
iation in the mutation process alone.

Gene conversion from other donor genes in the archive
could be restricted due to several factors, one possibility being
pairwise homology requirements which might be satisfied by
only a few donor candidates. Finding the donors of these
imported fragments may be challenging for several reasons.
First, and in this particular example, although the trypano-
some genome is available, only about two thirds of the VSG
genes have been assembled; second, the donors may have
themselves changed since the conversion event, thus to
match the sequence of the putative converted region with
the sequence of the actual donor may be far from trivial.

Combining the estimate for average mismatch density
within converted regions, �& 0.29, obtained from Model
4, with the average conversion length given by 1/�end &18,
we estimate the average number of mismatches contributed
by one gene conversion into the alignment is rough�5.2. This
implies that the relative contribution of gene conversion on
pairwise diversity between two genes, on a per-nucleotide
basis, is �0.96 times that of point-mutation. Thus, although
on an event basis, point mutation is apparently much more
prominent than conversion, on a per-nucleotide basis, the
two processes are of roughly equal importance for sequence
diversification.

Model 4 ranked as the best model by our model selection
procedure, suggesting the inclusion of relative ages of gene
pairs holds key information that explains the variance in the
sample we considered. Reassuringly, the estimated ages have a
small mean of 2.83 and a small standard deviation, confirming
a relatively minor variation, expected among gene pairs that
share similar pairwise identity. Notably, Model 4 supports
short conversion tracts, between 14 and 25 nucleotides in
length, geometrically distributed with mean equal to 18 nu-
cleotides, much lower than the total length of the N-domain.
This characteristic small scale resembles human major histo-
compatibility complex gene conversion events, which display
a mode of 14 nucleotides (range: 2–35) (Parham et al. 1995),
inevitably arising from a mechanistic basis in the recombina-
tion pathway involved. Conceivably, the observed length
range can serve to maximize effective alteration in VSG
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epitopes and slow down the pace of archive homogenization
globally.

From visual inspection of the mismatch patterns, one can
also notice regions of unusually low mismatch density, besides
regions of high mismatch density on the aligned pairs.
Although neglected in this analysis, such high-identity regions
are potentially indicative of within-pair recombination and
could be addressed in future studies. It may be that the short
range of mismatch clustering we observe reflects the differ-
ence between those conversion events that occur and those
that persist over evolutionary time. Perhaps, the actual im-
ported regions from third-party donor genes in the archive
are longer than our current estimates suggest, but frequent
within-pair gene conversion can act to break them down,
thus interrupting the highly diverse regions imported from
outside, by regions of sparser diversity generated from within.

Clearly, an important aspect of VSG archive evolution that
this framework may elucidate is the divergence between sub-
sets of a multigene family. The assumption that gene conver-
sion by external donors introduces diversity to a recently
duplicated gene pair through a cluster of mismatches can
be translated into a hypothesis for the divergence time of
the entire family relative to the high-identity subfamily in
consideration. It is worth noting that pairwise identity be-
tween recently duplicated genes is higher than sequence iden-
tity of an arbitrary gene pair from the archive. This results in a
higher density of mismatches in the regions where the se-
quence has been mutated from outside through conversion,
rather than changed from within, through point mutation. If
one assumes that point mutation happens at the same rate
across all VSG genes, as would occur in second-order selection
(Weber 1996) and indeed appears to be the case (Hutchison
et al. 2007; Marcello and Barry 2007; Jackson et al. 2010), the
difference in mismatch density within (�) and between con-
versions (m) should be attributable to differences in evolu-
tionary time, an avenue calling for further investigation.

Furthermore, our inferred mean density of mismatches per
conversion, approximately equal to 0.25, is considerably lower
than the mean frequency of nucleotide mismatches mea-
sured across the whole archive, which is very high (&0.75),
thus conversion appears to be biased toward more similar
donor genes. As argued earlier, it is difficult to account for this
effect through direct selection of the sequence of individual
VSGs. A reason for this preferential use of more homologous
tracts might lie in the need to introduce a region from the
corresponding donor VSG, so that, for example, the charac-
teristic cysteine pattern of the protein is conserved, rather
than being disrupted by random conversion from any region
of a donor gene. By using sequence “decoding” as a first step,
the most likely locations of conversions and point mutations
along each alignment can then be used to map these recom-
bination “hotspots” to the actual underlying genetic content.

To be able to transform our estimated point mutation and
conversion probabilities into actual rates, i.e., probabilities per
unit of time (or per generation), one would need information
on the precise time since duplication of the reference gene
pair at least. Once the real evolutionary age of the reference
gene pair (with Ai = 1) is established, its �begin and m

parameters could be scaled and subsequently the other
pair-specific observed probabilities updated. So far, the time
information has been missing but could become available
through longitudinal sequencing of field isolates, at which
time it could inform the proposed formalism and transform
the present estimates to dynamic parameters of evolutionary
processes, making them comparable with estimates derived
from other methods.

In our models, we assumed that the density of mismatches
in each conversion is the same and fixed. Such a rigid assump-
tion might not always hold, as gene conversion donors in the
rest of the archive may come from particular subfamilies, each
having had its own rate of divergence, thereby contributing a
distinct mismatch clustering density. A more general frame-
work in that case, to accommodate this phenomenon, could
be to model the mean density of mismatches per conversion,
�, through a probability distribution.

Another simplifying assumption in our study is the spatial
homogeneity in the occurrence of point mutations and con-
versions. It is possible that formulations and inference frame-
works accounting for spatial bias might bring additional
insight into the nature and constraints of gene diversification.
Finally, by considering conversion length distributions differ-
ent from the geometric distribution assumed here, one might
represent other mechanisms governing gene conversion. A
negative binomial distribution could, for example, allow
longer conversions to be more frequent, but the memoryless-
ness property would be lost. More flexible distributions would
require more sophisticated modeling and possibly a larger
data set, but such alternatives could be explored to better
disentangle the various spatial scales that characterize genetic
diversity in different settings. Nonetheless, the model pre-
sented here provides a framework that can easily be built
upon as more data become available, offering a valuable
tool for a more parametric understanding of genetic diversi-
fication processes at the level of a multigene family.

Supplementary Material
Supplementary materials SI1–SI6 are available at Molecular
Biology and Evolution online (http://www.mbe.oxford
journals.org/).
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