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Abstract

prediction accuracy of the computational methods.

Background: Essential proteins are distinctly important for an organism'’s survival and development and crucial to
disease analysis and drug design as well. Large-scale protein-protein interaction (PPI) data sets exist in
Saccharomyces cerevisiae, which provides us with a valuable opportunity to predict identify essential proteins from
PPI networks. Many network topology-based computational methods have been designed to detect essential
proteins. However, these methods are limited by the completeness of available PPI data. To break out of these
restraints, some computational methods have been proposed by integrating PPl networks and multi-source
biological data. Despite the progress in the research of multiple data fusion, it is still challenging to improve the

Results: In this paper, we design a novel iterative model for essential proteins prediction, named Randomly
Walking in the Heterogeneous Network (RWHN). In RWHN, a weighted protein-protein interaction network and a
domain-domain association network are constructed according to the original PPl network and the known protein-
domain association network, firstly. And then, we establish a new heterogeneous matrix by combining the two
constructed networks with the protein-domain association network. Based on the heterogeneous matrix, a
transition probability matrix is established by normalized operation. Finally, an improved PageRank algorithm is
adopted on the heterogeneous network for essential proteins prediction. In order to eliminate the influence of the
false negative, information on orthologous proteins and the subcellular localization information of proteins are
integrated to initialize the score vector of proteins. In RWHN, the topology, conservative and functional features of
essential proteins are all taken into account in the prediction process. The experimental results show that RWHN
obviously exceeds in predicting essential proteins ten other competing methods.

Conclusions: We demonstrated that integrating multi-source data into a heterogeneous network can preserve the
complex relationship among multiple biological data and improve the prediction accuracy of essential proteins.
RWHN, our proposed method, is effective for the prediction of essential proteins.

Keywords: Heterogeneous network, Protein-protein interaction, Essential proteins

Background

After being removing, the essential protein will cause
relevant protein complex losing its function and render
the organism being unable to survive or develop. Identi-
fying essential proteins helps us to understand the
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minimal requirement for cellular survival and develop-
ment, and plays a vital role in synthetic biology. The
study of essential proteins provides valuable information
for medicine and other related disciplines, especially in
the diagnosis and treatment of diseases, drug design. In
biology, essential proteins are primarily identified by bio-
medical experiments. These methods are expensive, inef-
ficient and time-consuming. Thus, it has become one of
the hot issue that proposing efficient computational
method for essential proteins identification. Most of cal-
culative methods of essential proteins identification are
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based on the PPI network. Jeong H et al. [1] proposed
the centrality-lethality rule and pointed out that the es-
sentiality of proteins is closely related to the network
topology. Inspired by the discovery, several classic net-
work topology-based centrality methods have been de-
veloped, such as Degree Centrality (DC) [2], Information
Centrality (IC) [3], Closeness Centrality (CC) [4], Be-
tweenness Centrality (BC) [5], Subgraph Centrality (SC)
[6] and Neighbor Centrality (NC) [7]. Ning K et al. [8]
proposed a measure of centrality based on inverse near-
est neighbour of protein networks. Estrada et al. [9]
found that less dichotomous proteins were more likely
to be essential proteins. Yu et al. [10] discovered the
bottleneck node in the network is often the essential
proteins. Additionally, the strategy based on node dele-
tion [11] is an effective way to measure the importance
of nodes. Most of these methods rarely analyse the in-
trinsic properties of other known essential proteins, but
solely use the topological features of the network. In
addition, there is noise in the interaction data due to the
restriction of experimental condition, which will affect
the accuracy of essential proteins identification. It is ur-
gent to improve fault-tolerance ability of the identifica-
tion algorithm to the false positive data in PPI networks.

To overcome the limitation of topology-based features,
researchers identified essential proteins by combining
topological features and other biological information. By
combining network topological properties and complex
information, Ren | et al. [12] proposed the complex cen-
trality method, named Edge Clustering Coefficient
(ECQC). Li M et al. [13] combined interaction data and
gene expression data to design a method called PeC for
predicting essential proteins. As an improved version of
the PeC approach, Co-Expression Weighted by Cluster-
ing coefficient (CoEWC) [14] was proposed a method of
essential protein detection, named, which combined the
features of network topology and co-expression property
of proteins based on gene expression profile. In our pre-
vious work, we proposed an overlapping module
mining-based method of essential protein identification,
named POEM [15]. In this method, gene expression data
and network topology attributes are integrated to con-
struct a reliable weighted network. Combined with hom-
ologous information and PPI networks, Peng W et al.
[16] proposed an iterative essential protein prediction
method, named ION.

In recent years, a variety of methods of essential protein
identification has been proposed by integrating multiple
biological information. Li M et al. [17] proposed the joint
complex centrality by combining the complex information
and network topology properties. Luo | et al. [18] adopted
the gene expression data, complex information for predic-
tion of essential proteins based on edge aggregation coeffi-
cient. Considering the conservation and modularity of
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essential proteins, we have developed a method named
PEMC [19] to identify essential proteins by combining do-
main information, homologous information and gene ex-
pression data. Based on the optimization by artificial fish
swarm, the AFSO_EP [20] method was proposed for es-
sential proteins identification, in which the PPI network,
gene expression, GO annotation and sub-cellular
localization information are integrated to establish a
weighted network.

From the above descriptions we can draw a conclusion
that existing essential proteins identification approaches
aim to improve the predicting accuracy by combining
multiple biological data to make up the defects of incom-
plete PPI data. Such data includes gene expression data,
protein domain data, and protein complex data and so on.
Generally, they constructed a single network by weighting
and summarizing PPI data and multiple biological data,
and employed graph-based methods, iterative approaches,
and so on to detect essential proteins. However, the way
of constructing a reliable single network is easy to ignore
the difference of biological feature and functional correl-
ation, coving up intrinsic attributes of heterogeneous data.
To overcome the limitation, we construct a heterogeneous
network based on the PPI network and protein domains,
and proposed a novel computational model called RWHN
to predict essential proteins. Firstly, we construct the
weighted protein-protein interaction network PN and
domain-domain association network DN according to the
original PPI network and the known protein-domain asso-
ciation network PDN. And then, we establish a new het-
erogeneous network by combining the above two
constructed networks with the protein-domain association
network. Finally, we adopt the improved random walk al-
gorithm to identify essential proteins from the heteroge-
neous network. To evaluate the performance of newly
proposed method, we employ our RWHN, as well as ten
state-of-the-art essential proteins prediction methods on
two yeast PPI networks and the E. coli PPI network. Ex-
perimental results demonstrate that our RWTH signifi-
cantly outperform ten other competitive methods.

Methods

Construct weighted protein-protein interaction network
PN

To reduce the negative impact of false positives, we con-
struct a weighted PPI network according to the analysis
of topology of PPI network. The weight of an interaction
represents its existence probability or reliability.

For a pair of proteins p; and p;, we use the improved
aggregation coefficient to calculate the weight of inter-
action between proteins in PPI networks. WP is used to
represent the relationship between protein pairs. So, the
weight of edge (p; p;) can be defined as:
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WP(p,p;) = (N -1) = (N, 1)
0 R otherwise

if [Ny |>1land [N, [>1

(1)

Where N,; and N,; is represented as the list of the dir-
ect neighbour nodes of protein p; and protein p;, re-
spectively, N, nN), is the common neighbour nodes set

of protein p; and protein p;.

Construct known protein- domain association network
PDN

Protein-domain association (PDN) is constructed dir-
ectly based on domain information. If protein p; con-
tains domain dj, p; connects domain d; with a edge in
the network PDN then Mpp (i,j) = 1, otherwise there is
no edge between them and Mpp (i,j) = 0. Mpp is the ad-
jacency matrix corresponding to the network PDN.

Construct domain-domain association network DN
Research [21] has verified the high correlation between
protein domains and the essentiality of proteins. Moti-
vated by it, protein domains data is adopted when estab-
lishing the heterogeneous network. The domain-domain
association network DN is constructed on the basis of
the above constructed PN network and the known
protein-domain association network PDN. Let d; and d;
be two different domains, we select the maximum from
WP(p,, p,) as the association between a given protein p,
and protein group P(d;), which can be calculated as
follows:

S(py,P(dj)> = max) (WP(px,py)) (2)

pxep(d,

Based on Eq. (2), for each pair of domain d; and domain
d;, the weight between them can be calculated as follows:

S, ertanS (2 P)) + 5, co(a)S(psr P(d)
WD(d;,d;) = @ |7 15(d) |

(3)

Where P(d;) and P(d;) are represented the protein set
of domain d; and domain d, respectively and S(p,, P(d}))
denotes the association between protein p, and the set
of protein P(d}).

Initializing the score vector of proteins and domains

In this paper, the functional feature derived from subcel-
lular localization information and conservative feature
obtained by homologous information are both taken into
account when scoring proteins. Firstly, we calculate the
important score of subcellular localization, which can be
expressed as:
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Where |P(i)| is the number of proteins associated with
i-th subcellular localization, 1 is the total number of dif-
ferent types of subcellular localization. For a given pro-
tein p,, its functional score can be computed as follows:

S_Score(p;) = max(Sub(j)) (5)
JjeS(p:)
Where S(p;) is a list of subcellular location list associ-
ated with the protein p;.
The conservative score for the protein p; is obtained
from homologous information and defined as follow:

1(p)
max (1(p,))

After getting the functional score and the conservative
score of a protein, its initial score is defined as:

ho(p;) = (S-Score(p;) + 1 -Score(p;))/2 (7)

As for domains, their initial scores are derived from
scores of their relevant proteins. Given a domain dj, its
initializing score is computed by using the following
formula:

ho(d;) =

I _Score(p;) =

max  (fo(p,)) (8)

pxesf(d/)

Where S_P(d)) is a list of proteins that contain the do-
main dj.

Random walk for the heterogeneous network

According to the three constructed network PN, PDN
and DN, our prediction model RWHN based on random
walk consists of the following three steps:

Step 1: Establishing the heterogeneous matrix HM

Networks PN, DN and PDN can be represent as the
n x n adjacency matrix Mp m x m adjacency matrix Mp
and # x m adjacency matrix Mpp, respectively, in which
n and m denotes the number of proteins and domains
separately. Thus, a heterogeneous matrix HM is con-
structed and formally expressed as follows:

Mp

= | e ) o)

Mp

Where, MTpp is a transport matrix of the matrix Mpp.
Figure 1 illustrates the process of establishing the het-
erogeneous matrix HM.
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Fig. 1 Schematic diagram of the heterogeneous matrix construction. This figure shows how to construct a heterogeneous matrix. The input files include
original protein-protein interaction network and protein domain information. Blue nodes and red nodes represent proteins and domains, respectively

Step 2: Establishing the transition probability matrix
HM_P as follow:

In this work, we construct the transition probability
matrix HM_P by normalized operation, which is calcu-
lated as follow:

PMp

10

HM_P = [ PM”D}

PMp

The transition probability from protein p; to protein p;
is defined as:

WP(i.j)/ Y WP(i. j)

. lfz Mpp(i, j) =0
PM . ) = p(p)lei) = { ) j

otherwise

(11)

The transition probability from domain d; to domain
d; is defined as:

WD, )/ WD), i Mep(jii) =0
(1-B)WD(i. j)/ Y WD(i.)) .

otherwise

(12)

PMgli, j) = pldjld;) = {

The transition probability from protein p; to domain d;
is defined as:

R otherwise

PMp(iyj)=p(d/|p,-)={ﬁMPD(i’j)/§:/MPD(i’j) o D Menlisj)=0
(13)

The transition probability from protein p; to protein p;
is defined as:

s otherwise

PMy (i, j) = p(pld:) = {ﬁMpD(/, VY Ml S Mo 0
(14)

The parameter S denotes the moving probability of
the movement from the weighted protein-protein inter-
action network PN to the domain-domain association
network DN.

Step 3: Randomly walking in the heterogeneous based
on the PageRank algorithm.

In this paper, we employ the RageRank algorithm in
the transition probability matrix HM_P to iteratively
score proteins. Assumed that the walker arrive at the
current position after experiencing i-th step. Then we
can update the walk probability vector /) for each
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node (proteins and domains) in the heterogeneous net-
work according to the transition probability matrix HM_
P. For sake of calculating the score vector /4 of protein
and domain, we use the equation as follow:
hi = (l—a)HMJJhi + ahy (15)
The parameter a is used to adjust the proportion of
initial score and last iteration score and 4, is jump prob-
ability. The overall framework of newly proposed predic-
tion model RWHN can be illustrated as the
Algorithm 1.

Algorithm 1: RWHN

Input: A PPI network G= (¥, E), orthologs and subcellular localization data sets,
domain data, stopping error ¢, parameter « , parameter 3

Output: Top K percent of proteins sorted by the vector / in descending order
Stepl: Generate the weighted network PN by Equation (1);

Step2: Generate the weighted network DN by Equation (2) and (3)

Step3: Calculate initial scores of proteins by Equation (4-7)

Step4: Calculate initial scores of domains by Equation (8)

Step5: Construct the transition matrix of the heterogeneous network by Equation
(10-13)

Step6: Compute A, by Equation (13), let i=i+1

h! - hi-l
Step8: Sort proteins by the value of / in the descending order.
Step9: Output top K percent of sorted proteins.

Step7: Repeat Step 6 until <&

Results

Experimental data

For evaluation of the prediction performance of RWHN,
we implemented our method and other ten state-of-the-
art methods: Degree Centrality (DC) [2], Information
Centrality (IC) [3], Closeness Centrality (CC) [4], Be-
tweenness Centrality (BC) [5], Subgraph Centrality (SC)
[6], Neighbor Centrality (NC) [7], PeC [13], CoEWC
[14], POEM [15] and ION [16]) on prediction of essen-
tial genes by using two Saccharomyces cerevisiae (yeast)
PPI networks: DIP dataset [22] and Gavin dataset [23].
We will represent the experimental results on DIP data
set in detail and the result on Gavin dataset briefly. In
both DIP and Gavin dataset, self-interactions and re-
peated interactions are filtered out. There are 5093 pro-
teins and 24,743 interactions in DIP dataset. The Gavin
dataset consists of 1855 proteins and 7669 interactions.
As the basis of the heterogeneous network, the domain
data is downloaded from Pfam database [24]. There are
1081 and 744 different types of domains contained in
the DIP and Gavin dataset, respectively. So, the hetero-
geneous matrix HM derived from DIP and Gavin is
(5093 + 1081) x (5093 + 1081) and (1855 + 744) x (1855 +
744) separately.

The subcellular localization information of proteins
used for scoring protein is derived from COMPART-
MENTS database [25] (Downloaded on Apr 20th 2014).
In this paper, we only reserve 11 categories subcellular lo-
calizations (or compartments) closely related to essential
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proteins in a eukaryotic cell of COMPARTMENTS data-
base: Endoplasmic, Cytoskeleton, Golgi, Cytosol, Vacuole,
Mitochondrion, Endosome, Plasma, Nucleus, Peroxisome
and Extracellular. Information on orthologous proteins
also used to initial score vectors of proteins and domains
comes from the InParanoid database (Version 7) [26],
which involving a collection of pair wise comparisons be-
tween 100 whole genomes.

A benchmark set of essential genes of Saccharomyces
cerevisiae consisting 1285 essential genes, are derived
from the following four databases: MIPS [27], SGD [28],
DEG [29], and SGDP [30]. Among all 5093 proteins in
the DIP network, 1167 proteins are essential and 3526
proteins are non-essential. There are 714 true essential
proteins among 1855 proteins in the Gavin PPI network.

Comparison with ten essential proteins prediction
methods

To evaluate the performance of newly proposed essential
proteins prediction method, RWHN, we compare the
number of essential proteins identified by RWHN (a =
0.3, B =0.2) and ten other competing essential proteins
prediction methods, when picking out various top per-
centages of ranked proteins as candidates for essential
proteins. Figure 2 indicates the comparison results be-
tween RWHN and ten methods.

As shown in Fig. 2, the prediction performance of
RWHN significantly outperforms other ten competitive
methods for the identification of essential proteins. With
top 1% of proteins selected, RWHN obtains a prediction
accurary of 90.19%. By selecting top 5% of protiens,
RWHN can detect 84.70% of true essential proteins. For
top 10% of selected proteins, RWHN is capable of acquir-
ing prediction accurary of 68.62%, which is 92.31% higher
than CC. In addition, Compared with NC which has the
best performance among six network topology-based
methods (DC, IC, BC, CC, SC and NC), in each top per-
centage, the prediction accuracy of RWHN is respectively
improved by 43.75, 35.85, 24.56, 25.74, 18.92 and 16.73%.
Especially, in top 1% of ranked proteins, RWHN is able to
identify twice or more as many essential proteins as DC.
Unfortunately, with more candicate proteins selected, the
advantage of RWHN in the prediction of essential pro-
teins becomes growing slowly. However, compared with
CoEWC, PeC, POEM and ION, which detect essential
proteins by integrating PPI networks topolgy and muitiple
biological data, our RWHN also outperforms these four
methods. From Fig. 2, we can draw a conclusion that
RWHN always gets the highest prediction accurary from
top 1% to top 25%.

Validation with jackknife methodology
For overall comparison, the jackknife methodology [31]
is used to examine the prediction performance of
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Fig. 2 a Top 1% ranked proteins. b Top 5% ranked proteins. ¢ Top 10% ranked proteins. d Top 15% ranked proteins. @ Top 20% ranked proteins.

f Top 25% ranked proteins. Comparison of the number of essential proteins predicted by RWHN and ten other competitive methods. The proteins in PPI
network are ranked in the descending order based on their ranking scores computed by RWHN, Degree Centrality (DC), Information Centrality (I0),
Closeness Centrality (CC), Betweenness Centrality (BC), Subgraph Centrality (SC), Neighbor Centrality (NO), PeC, CoEWC, POEM and ION. Then, top 1, 5, 10,
15, 20 and 25% of the ranked proteins are selected as candidates for essential proteins. According to the list of known essential proteins, the number of
true essential proteins is used to judge the performance of each method. The figure shows the number of true essential proteins identified by each
method in each top percentage of ranked proteins. Since the total number of ranked proteins is 5093. The digits in brackets denote the number of

The num of essential proteins
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RWHN and the ten other existing centrality methods.
The experimental results are described in Fig. 3. In Fig.
3, the X-axis represents identified essential proteins of
the descending order in PPI networks from the left to
the right. This order is according to their ranking scores

calculated by their corresponding method. And the Y-
axis means the cumulative count of true essential
proteins with respect to ranked proteins of all methods.
The areas under the curve (AUC) for RWHN and ten
other existing essential protein prediction methods are
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Fig. 3 Jackknife curves of RWHN and ten other existing centrality methods. The x-axis represents the proteins in PPl network ranked by RWHN and ten
other methods, ranked from left to right as strongest to weakest prediction of essentiality. The Y-axis is the cumulative count of essential proteins
encountered moving left to right through the ranked. The areas under the curve for RWHN and the ten other methods are used to compare their prediction
performance. In addition, the 10 random assortments are also plotted for comparison. a shows the comparison results of RWHN, DC, IC, SC and DC. b shows
the comparison results of RWHN, BC, CC and NC. ¢ shows the comparison results of RWHN and other four methods: PeC, CoEWC, POEM and ION
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used to compare their prediction performance. What is
more, the 10 random assortments are also plotted for
comparison. Figure 3a shows the comparison result of
RWHN and three centrality methods: DC, IC and SC.
From this figure we can see that, RWHN has consist-
ently excelled these three methods. Figure 3b illustrates
the comparison result of RWHN and three other cen-
trality methods: BC, CC and NC. RWHN still surpasses
that of any other method in terms of prediction accuracy
among these methods. Figure 3¢ shows the comparison
result of RWHN and other four multiple biological data
integrated methods: COEWC, PeC, POEM and ION. From
Fig. 3, we can see that the performance gap becomes small
between RWHN and these four essential proteins identifi-
cation methods. And when the number of ranked proteins
comes near to 1200, the curve of RWHN and the curve of

ION almost overlap. Even so, RWHN still gets the better
of CoEWC, PeC, POEM and ION. Furthermore, all of
these eleven methods achieve better prediction perform-
ance than the randomized sorting.

Analysis of the differences between RWHN and the ten
method

In order to analyze why and how RWHN gets better re-
sults than the ten other competitive centrality methods,
we compare identified proteins ranked top 200 by each
method (DC, IC, SC, BC, CC, NC, PeC, CoEWC,
POEM, ION and RWHN). The results of the compari-
son are to view how many common and different pro-
teins are identified by these methods. It is shown in
following table that the number of overlaps and different

Table 1 Common and different genes predicted by RWHN and other competing methods ranked in top 200 proteins

Centrality [RWHNAMI| [Mi— RWHN | Non-essential Percentage of non-essential
measures (Mi) proteins in proteins in {Mi — RWHN} with
{Mi — RWHN} low RWHN value

DC 27 173 118 83.90%

IC 26 174 118 84.75%

SC 24 176 120 87.50%

BC 23 177 118 89.83%

cC 23 177 110 89.09%

NC 44 156 73 86.30%

PeC 68 132 53 79.25%

CoEWC 69 131 51 76.47%

POEM 69 131 46 71.74%

ION 110 90 40 82.50%

This table shows the common and the difference between RWHN and the ten other competing methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM and ION)
when predicting top 200 proteins. |RWHNnMi | denotes the number of proteins identified by both RWHN and one of the ten other methods Mi. {Mi — RWHN}
represents the set of proteins detected by Mi while ignored by RWHN. [Mi — RWHN] is the number of proteins in set {Mi — RWHN}. The last column describes the
percentages of different nonessential proteins with low RWHN scores (less than 0.2) in top 200 proteins
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Fig. 4 Percentages of different essential proteins predicted by RWHN and ten other competing prediction methods. Different proteins between two
prediction methods are the proteins predicted by one method while neglected by the other method. The figure shows the percentages of the essential
proteins in the different proteins between RWHN and ten other competing methods (DC, IC, SC, BC, CC, NC, PeC, CoEWC, POEM and ION), respectively

proteins between RWHN and any of ten other competi-
tive essential proteins detection methods. |RWHNNMi|
denotes the number of overlaps proteins detected by
both RWHN and one of the ten other existing predic-
tion methods Mi. {Mi—-RWHN} represents the list of
proteins detected by Mi ignored by RWHN. |Mi-
RWHN] is the number of proteins in set {Mi — RWHN}.

As shown in the Table 1, among the top 200 proteins,
there exist wide difference between the proteins discov-
ered by both RWHN and other ten competing predic-
tion methods. From the second column of Table 1, we
can see that the proportion of overlapping proteins

detected by RWHN and DC, IC, SC, BC, CC are all less
than 15%, which means there are almost no overlapping
proteins identified by RWHN and them. For NC, the
proportion of overlapping proteins predicted by RWHN
and NC are not more than 25%. There are only few
overlapping protiens predicted by RWHN and NC. Be-
sides, the proportion of overlapping proteins predicted
by RWHN and PeC, CoEWC, POEM are less than 35%
and the proportion of overlapping proteins identified by
RWHN and ION is 55%. There are more than 40% of
these different proteins are non-essential proteins. The
maximun proportion of non-essential proteins is up to

Precision
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Recall

(a)

Fig. 5 PR curves of RWHN and ten other existing centrality methods. The proteins ranked in top K (cut-off value) by each method (RWHN, DC, IC, SC, BC,
CC, NG, PeC, CoEWC, POEM and ION) are selected as candidate essential proteins (positive data set) and the remaining proteins in PPl network are
regarded as candidate nonessential proteins (negative data set). With different values of K selected, the values of precision and recall are computed for
each method. The values of precision and recall are plotted in PR curves with different cut-off values. a shows the PR curves of RWHN, DC, IC, SC, BC, CC
and NC. b shows the PR curves of RWHN and other four methods: CoEWC, PeC, POEM and ION
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68%. Additionally, according to these non-essential pro-
teins predicted by other methods, we can find that more
than 70% of non-essential proteins in top 200 possess
quite low ranking scores computed by RWHN. For ex-
ample, we also can see that about 89% of non-essential
proteins among the top 200 of proteins predicted by BC
or CC have been marked low scores in RWHN. More-
over, there are also about 70% of non-essential proteins
in the result of the POEM method with low RWHN
scores. This implies that RWHN can reject a lot of non-
essential proteins which can not be overlook by other
prediction methods. The results indicates that RWHN is
a special and effective method comapred with ten other
competing essential proteins prediction methods.

For further comparsion, we make a statistical analysis
the percentages of different essential protiens detected
by RWHN and these competitive methods. Figure 4
shows the percentage of essential proteins all of different
proteins between RWHN and ten other competing pre-
diction methods. As illustrated in Fig. 4, RWHN always
can identify more different essential proteins than other
methods. Compared with POEM, there are 131 different
proteins detected by RWHN. About 86% of these pro-
teins are essential. On the contrary, there are only
64.88% of different proteins detected by POEM while
overlooked by RWHN are essential proteins. In fact,
among the top 200 of proteins, RWHN can discover
more different essential proteins which can not be pre-
dicted by anyone of the ten other essential proteins iden-
tification methods. From the above, RWHN can not
only detect more essential proteins ignored by ten other
competing prediction methods but also reject a mass of
non-essential proteins which can not be overlooked by
these methods. These statistical results are not difficult
to explain why the RWHN method can achieve high es-
sential proteins prediction performance.

Validated by precision-recall curves

Moreover, the precision-recall (PR) curve is adopted to
evaluate the overall performance of RWHN, as well as
other ten methods. Firstly, the proteins in PPI networks
are ranked in descending order based on scores obtained
from each method. After that, top K proteins are picked
out and put into the positive set (candidate essential
genes), the rest of proteins in PPI networks are stored in
the negative set (candidate non-essential genes). The
cut-off parameter of K went from 1 to 5093. With differ-
ent values of K picked out, the values of precision and
recall are calculated by each approach, respectively. Fi-
nally, the PR curves are plotted according to values of
precision and recall when K changes in the interval [1,
5093]. Figure 5a shows the PR curves of RWHN and six
topology-based centrality methods: DC, IC, BC, CC, SC
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and NC. Figure 5b illustrates the PR curves of RWHN,
as well as other four methods: PeC, CoEWC, POEM and
ION. Figure 5 indicates that the PR of RWHN is clearly
above those of all competitive centrality methods.

Effects of parameters a and

In RWHN, we employ two self-defined parameters a and
B. a is used to adjust the proportion of the functional
score and the conservative score for initial scores of pro-
teins. The parameter B represents the moving probability
from the weighted protein-protein interaction network
PN to the domain-domain association network DN. For
evaluating the effects of these two parameters on predic-
tion performance of RWHN, we set different values of «
and B ranging from O to 1. Figure 6 shows the detailed re-
sults with the two parameters changing in RWHN. Here,
we pick out from top 1% to top 25% proteins identified by
RWHN. The prediction accuracy is evaluated according to
the number of true essential proteins as candidates. When
the value of a is 0.6 or 0.7 and  is set as 0, among top 1%
proteins selected, the true essential proteins are up to 50
identified by RWHN and the prediction accuracy is near
100%, but the accuracy is declining in the top 5% to top
25% of proteins selected. On the whole, the closer a value
is to 1, the lower the prediction accuracy is. In addition,
when « is set as 0.3 and P is arbitrarily assigned between 0
and 1, the average number of true essential proteins pre-
dicted from top 1 to 25% is 45, 202, 351, 467, 553, and
634, respectively. And when a is equal to 0.3 and f is set
as 0.2, the number of true essential proteins is closest to
the average. As a result, we think the optimum « and 3 on
the DIP dataset is 0.3, 0.2, respectively. As for the Gavin
dataset, the optimum o and  is 0.3, 0.1, respectively.

Table 2 Number of essential proteins predicted by RWHN and ten
competing methods based on the Gavin dataset

Methods  1%(19) 5%(93) 10%(196) 15%(279) 20%(371) 25%(464)
DC 12 44 80 106 145 182
IC 11 42 79 108 147 189
SC 9 36 77 109 146 179
BC 10 40 76 103 134 163
CcC 9 38 77 113 141 175
NC 11 51 123 170 213 259
PeC 15 69 142 193 238 285
CoEWC 16 69 136 190 237 275
POEM 17 74 148 199 249 296
ION 17 73 150 207 263 312
RWHN 18 83 169 222 277 330

This table shows the comparison of the number of essential proteins identified
by RWHN and ten other competing methods (DC, IC, SC, BC, CC, NC, PeC,
CoEWC, POEM and ION) based on the Gavin dataset. The total number of
ranked proteins in Gavin dataset is 1855. The digits in brackets denote the
number of proteins ranked in each top percentage
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Fig. 7 a Shows the comparison results of RWHN, DC, IC, BC, CC, SC and NC. b Shows the comparison results of RWHN, CoEWC, PeC, POEM and ION.
Comparison results by a jackknife methodology using Gavin dataset. The prediction performance of RWHN and ten other competing methods (OC, IC, SC,
BC, CC, NG, PeC, CoEWC, POEM and ION) based on the Gavin dataset are validated by the jackknife methodology

Prediction performance of RWHN based on Gavin dataset
To further test the performance of RWHN, we perform
the prediction of essential proteins based on PPI data
from Gavin dataset. Table 2 shows the comparison of
the number of essential proteins identified by RWHN
and ten other essential proteins prediction methods.
From Table 2, we can see that the prediction accuracy of
RWHN among top 1% and top 5% proteins are more
than 89%. From top 1% to top 25% predicted proteins,
the RWHN method still outperforms ten other compet-
ing prediction methods in the Gavin dataset. The jack-
knife curves of each method and the 10 random
assortments are illustrated in Fig. 7. All of these experi-
mental results show that RWHN has better performance
in predicting essential proteins than the ten other com-
petitive methods on Gavin dataset.

Prediction performance of RWHN based on protein data
from E. coli

Moreover, we run our RWHN and other competing
methods on the species of E. coli. The PPI network of E.
coli is also downloaded from DIP database, which con-
sists of 2727 proteins and 11,803 interactions. Among
these 2727 proteins, there are 254 essential proteins and
2474 non-essential proteins. The proportion of essential
proteins on E. coli (254/2727 =9.31%) is much smaller
than that of yeast (DIP: 1167/5093 = 22.915, Gavin: 714/
1855 = 38.49%). The ranking scores of E. coli proteins
are calculated by using of RWHN (a=0.2, f=0.1) and
the other competing methods, respectively. The number
of essential proteins predicted by eleven methods in top
1%(27), 5%(136), 10%(273), 15%(409), 20%(545) and
25%(682) are list in Table 3. Figure 8 is the jackknife

curves of each method. Compared to the results in yeast
PPI networks, the prediction accuracy of all these
methods decreased obviously, due to the incomplete and
inconvincible experimental data. For example, the gene
expression profile of E. coli only contains 246 proteins,
which result in the sharply decline of the performance of
PeC, CoEWC and POEM. On the other hand, the PPI
network from E. coli is sparser than the yeast networks.
Even so, our RWHN method still get higher prediction
accuracy than DC, IC, SC, BC, CC, NC, PeC, CoEWC
and POEM, and comparable results with ION. Specially,
as selecting top 1% ranked proteins, RWHN archives

Table 3 Number of essential proteins predicted by RWHN and ten
competing methods based on the protein data from E. coli

Methods 1%(27) 5%(136) 10%(273) 15%(409) 209%(545) 25%(682)
DC 8 37 69 94 118 129
IC 7 36 68 95 112 127
SC 2 34 60 93 110 124
BC 9 40 65 84 103 120
CcC 7 36 67 92 113 130
NC 3 35 60 82 102 118
PeC 3 35 61 82 98 118
CoEWC 0 6 16 24 42 63
POEM 3 32 56 77 92 113
ION 10 52 82 103 125 153
RWHN 15 56 83 103 129 154

This table shows the comparison of the number of essential proteins identified
by RWHN and ten other competing methods (DC, IC, SC, BC, CC, NC, PeC,
CoEWC, POEM and ION) based on protein data from E. coli. The total number
of ranked proteins in E. coli is 2727. The digits in brackets denote the number
of proteins ranked in each top percentage
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87.50, 114.29, 650, 66.67, 114.29, 400, 400, 400 and 50%
improvement than DC, IC, SC, BC, CC, NC, PeC,
POEM and ION, respectively.

Discussions

Essential proteins play a vital role in synthetic biology,
the diagnosis and treatment of diseases, drug design,
and help us to understand the minimal requirement for
cellular survival and development. Computational
methods instead of biomedical experiments have been
proposed to predict essential proteins from PPI net-
works. However, PPI data obtained from high through-
put technique contains false positives and false
negatives. More and more researchers focus on integrat-
ing PPI networks and multiple biological data. Here we
design a new framework to identify essential proteins by
establishing heterogeneous networks based on PPI net-
work topological characteristics and protein domains in-
formation. And then, we apply an improved random
walk algorithm on the heterogeneous network to calcu-
late the importance scores for candidate essential pro-
teins. These new insights provide good starting points
for multiple biological information fusion.

Conclusions

In this paper, we propose a new essential proteins pre-
diction model named RWHN by combining PPI net-
works with protein domains, the subcellular localization
information and orthologous information. Different from
current multiple biological data fusion based methods,
we establish a heterogeneous network through integrat-
ing the weighted PPI network, domain-domain associ-
ation network and known protein-domain association

network. And then, based on the newly constructed het-
erogeneous network, a random walk algorithm is
adopted to identify essential proteins. Moreover, the
functional property and conservative property of essen-
tial proteins are both taken into account. Experimental
comparison results between RWHN and ten state-of-
the-art methods on two yeast PPI networks and the E.
coli PPI network shows that RWHN significantly outper-
forms other competing methods. The results also indi-
cate that RWHN is a special and effective method for
essential proteins prediction.

Abbreviations

BC: Betweenness Centrality; CC: Closeness Centrality; COEWC: Co-Expression
Weighted by Clustering coefficient; DC: Degree Centrality; ECC: Edge
Clustering Coefficient; IC: Information Centrality; NC: Neighbor Centrality;
PPI: Protein-Protein Interaction; RWHN: Randomly Walking in the
Heterogeneous Network; SC: Subgraph Centrality

Acknowledgements
Not applicable.

Authors’ contributions

BHZ, ZHZ and LW obtained the protein-protein interaction data, domain
data, information on orthologous proteins and the localization information
of proteins. BHZ, ZHZ and LW designed the new method, RWHN, and ana-
lysed the results. BHZ and YLZ drafted the manuscript together. XXZ and FZ
participated in revising the draft. All authors have read and approved the
manuscript.

Funding

This work was supported in part by the National Natural Science Foundation
of China (61772089, 61873221, 61672447), Natural Science Foundation of
Hunan Province (2019JJ40325, 2018JJ3566, 2018JJ3565, 2018JJ4058,
2017JJ5036), National Scientific Research Foundation of Hunan Province
(15C0124, 16C0137), Hunan Provincial Key Laboratory of Nutrition and
Quiality Control of Aquatic Animals (2018TP1027), and the Education
Scientific Planning Project of Hunan Province (XJKO16BGD078). Publication
costs were funded by the National Natural Science Foundation of China
(61772089, 61873221, 61672447).



Zhao et al. BMC Bioinformatics (2019) 20:355

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the first author or corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details

'College of Computer Engineering and Applied Mathematics, Changsha
University, Changsha, Hunan 410022, People’s Republic of China. “College of
Information Engineering, Xiangtan University, Xiangtan 411105, Hunan,
China. *Hunan Provincial Key Laboratory of Nutrition and Quality Control of
Aquatic Animals, Department of Biological and Environmental Engineering,
Changsha University, Changsha, Hunan 410022, China.

Received: 19 February 2019 Accepted: 4 June 2019
Published online: 24 June 2019

References

1. Jeong H, Mason S, Barabasi AL. Lethality and centrality in protein networks.
Nature. 2001;411(6833):41-2.

2. Hahn MW, Kern AD. Comparative genomics of centrality and essentiality
in three eukaryotic protein-interaction networks. Mol Biol Evol. 2004;
22(4):803-6.

3. Stephenson K, Zelen M. Rethinking centrality: methods and examples. Soc
Networks. 1989;11:1-37.

4. Stefan W, Stadler PF. Centers of complex networks. J Theor Biol. 2003;
223(1):45-53.

5. Maliackal PJ, Amy B, Donald El, Sui H. High-Betweenness proteins in the yeast
protein interaction network. J Biomed Biotechnol. 2005;2005(2):96-103.

6.  Ernesto E, Rodriguez-Veldzquez JA. Subgraph centrality in complex
networks. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;71(5):122-33.

7. Wang JX, Li M, Wang H, et al. Identification of essential proteins based on
edge clustering coefficient. [EEE/ACM Trans Comput Biol Bioinform. 2012;
9(4):1070-80.

8. Ning K, Ng HK; Srihari S, et al. Examination of the relationship between
essential genes in PPl network and hub proteins in reverse nearest
neighbor topology. BMC Bioinformatics. 2010;11(1):505.

9. Estrada E. Protein bipartivity and essentiality in the yeast protein-protein
interaction network. J Proteome Res. 2006;5(9):2177-84.

10. Yu H, Kim PM, Sprecher E, et al. The importance of bottlenecks in protein
networks: correlation with gene essentiality and expression dynamics. PLoS
Comput Biol. 2007;3(4):e59.

11, Chua HN, Sung WK, Wong L. Exploiting indirect neighbours and topological
weight to predict protein function from protein-protein interactions.
Bioinformatics. 2006;22(13):1623-30.

12. Ren J, Wang JX, Li M, et al. Prediction of essential proteins by
integration of PPl network topology and protein complexes
information. In: Bioinformatics research and applications. Berlin
Heidelberg: Springer; 2011. p. 12-24.

13. Li M, Zhang H, Wang JX, et al. A new essential protein discovery method
based on the integration of protein-protein interaction and gene expression
data. BMC Syst Biol. 2012,6(1):15.

14. Zhang X, Xu J, Xiao W. A new method for the discovery of essential
proteins. PLoS One. 2013;8(3):e58763.

15. Zhao BH, Wang JX, Li M, et al. Prediction of essential proteins based
on overlapping essential modules. IEEE Trans Nanobioscience. 2014;
13(4):415-24.

16. Peng W, Wang JX, Wang W, et al. Iteration method for predicting essential
proteins based on orthology and protein-protein interaction networks. BMC
Syst Biol. 2012,6(1):87.

17. LiM, LuY, Niu Z, et al. United complex centrality for identification of
essential proteins from PPI networks. IEEE/ACM Trans Comput Biol
Bioinform. 2017;14(2):370-80.

Page 13 of 13

18. Luo J, Wu J. A new algorithm for essential proteins identification based on
the integration of protein complex co-expression information and edge
clustering coefficient. Int J Data Min Bioinform. 2015;12(3):257-74.

19.  Zhao B, Wang J, Li X, et al. Essential protein discovery based on a
combination of modularity and conservatism. Methods. 2016;110:54-63.

20. Lei X, Yang X, Wu F. Artificial fish swarm optimization based method to
identify essential proteins. IEEE/ACM Trans Comput Biol Bioinform. 2018.
https://doi.org/10.1109/TCBB.2018.2865567.

21. Peng W, Wang J, Cheng Y, et al. UDoNC: an algorithm for identifying
essential proteins based on protein domains and protein-protein interaction
networks. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(2):276-88.

22, Xenarios |, Salwinski L, Duan XJ, et al. DIP, the database of interacting
proteins: a research tool for studying cellular networks of protein
interactions. Nucleic Acids Res. 2002;30(1):303-5.

23. Gavin AC, Aloy P, Grandi P, et al. Proteome survey reveals modularity of the
yeast cell machinery. Nature. 2006;440(7084):631.

24, Bateman A, Coin L, Durbin R, et al. The Pfam protein families database.
Nucleic Acids Res. 2004;32(suppl 1):D138-41.

25, Binder JX, Pletscher-Frankild S, Tsafou K, et al. COMPARTMENTS: unification
and visualization of protein subcellular localization evidence. Database.
2014;2014:bau012. https://doi.org/10.1093/database/bau012.

26.  Gabriel O, Thomas S, Kristoffer F, et al. InParanoid 7: new algorithms and
tools for eukaryotic orthology analysis. Nucleic Acids Res. 2010;38(Database
issue):D196-203.

27. Mewes HW, Frishman D, Mayer KFX, Munsterkotter M, Noubibou O, et al.
MIPS: analysis and annotation of proteins from whole genomes in 2005.
Nucleic Acids Res. 2006;34:D169-72.

28, Cherry JM. SGD: Saccharomyces genome database. Nucleic Acids Res. 1998,26:9.

29. Zhang R, Lin Y. DEG 5.0, a database of essential genes in both prokaryotes
and eukaryotes. Nucleic Acids Res. 2009;37:D455-8.

30. Saccharomyces Genome Deletion Project [http://yeastdeletion.stanford.edu/
]. Accessed 20 June 2012.

31. Holman AG, Davis PJ, Foster JM, et al. Computational prediction of essential
genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia
malayi. BMC Microbiol. 2009;9(1):243.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions



https://doi.org/10.1109/TCBB.2018.2865567
https://doi.org/10.1093/database/bau012
http://yeastdeletion.stanford.edu/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Construct weighted protein-protein interaction network PN
	Construct known protein- domain association network PDN
	Construct domain-domain association network DN
	Initializing the score vector of proteins and domains
	Random walk for the heterogeneous network

	Results
	Experimental data
	Comparison with ten essential proteins prediction methods
	Validation with jackknife methodology
	Analysis of the differences between RWHN and the ten method
	Validated by precision-recall curves
	Effects of parameters α and β
	Prediction performance of RWHN based on Gavin dataset
	Prediction performance of RWHN based on protein data from E. coli

	Discussions
	Conclusions
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

