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Purpose. We tried to investigate whether electroacupuncture (EA) can reduce inflammation of dry eye disease (DED) by regulating
α7nAChR and inhibiting the NF-κB signaling pathway. Methods. Healthy New Zealand white rabbits were treated with
scopolamine hydrobromide (Scop) for 21 consecutive days to establish the DED animal model. After 21 days, EA,
fluorometholone (Flu), and α7nAChR antagonist (α-BGT) treatments were performed, and the Scop injection was continued
until day 35. During treatment, the fluorescence staining of the corneal epithelium and the level of tear flow were observed. The
influence of EA on the LG pathology and inflammatory factors ACh, α7nAChR, and NF-κB was detected using the LG
histopathology, transmission electron microscopy (TEM), cytokine protein chip technology, enzyme-linked immunosorbent
assay (ELISA), and Western blot. Results. The EA stimulation can reduce the corneal epithelial damage and repair epithelial cell
ultrastructure, promote the tear secretion, relieve the LG atrophy and decrease lipid droplet accumulation in LG acinar cell, and
reduce the levels of inflammatory cytokines (i.e., IL-1, MIP-1b, TNF-α, and IL-8) in the LG. The protective effect of EA on the
inflammation and the ocular surface is similar to the corticosteroid Flu. EA and Flu can upregulate the expression of the
α7nAChR and downregulate the expression of NF-κB. The α7nAChR antagonist α-BGT can reverse the protective effect of EA
on the LG and the inhibitory effect on the NF-κB pathway and the expression of inflammatory factors but cannot affect the
expression of Flu on the NF-κB pathway and inflammatory factors. Conclusion. These results prove that EA can alleviate DEDs
by stimulating the acupoints around the eyes. These beneficial effects are related to the upregulation of α7nAChR and the
downregulation of NF-κB in the LG. The protective effect of LG is mediated through the anti-inflammatory pathway mediated
by α7nAChR. EA can reduce the NF-κB P65 nuclear transcription and reduce inflammatory factors by regulating α7nAChR.
This expression indicates that the α7nAChR/NF-κB signaling pathway may serve as a potential therapeutic target for EA to treat
DEDs.

1. Introduction

The dry eye disease (DED), a common disease in ophthal-
mology, includes the tear film homeostasis, ocular surface
inflammatory reaction, and damage as its main features and
is accompanied by ocular discomfort symptoms of the multi-
factor ocular surface disease [1]. According to the survey,

DED, which is a common disease worldwide, has a preva-
lence of 5%–50% [2] and affects the quality of human life.

Tears are secreted by lacrimal glands (LGs) to protect and
support the ocular surface, and the lack of tears can cause an
aqueous deficiency. The long-term chronic inflammatory acti-
vation of the LG leads to abnormal acinar and ductal cell death
and functional impairment [3]. Studies have found that [4] in
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all LG inflammatory diseases, proinflammatory cytokines,
such as IL-1β and TNF-α, commonly increase, continue to
attack the LG by stimulating the recruitment and the prolifer-
ation of lymphocytes, and interfere with the normal function
of the gland. This interference is also the main reason for the
decrease in the tear secretion. The LG, as a highly developed
innervated gland, is closely related to the parasympathetic
nerve and the neurotransmitter acetylcholine (ACh). The cho-
linergic stimulates the secretion of the lacrimal protein and the
tear fluid and the corneal sensory nerve to pass the parasym-
pathetic reflex of the trigeminal nerve. The activated parasym-
pathetic nerve stimulates the LG to secrete and release the
neurotransmitter ACh. The ACh and the cholinergic signal
receptor m3 muscarinic receptor (m3AChR) bind to control
the secretion of protein, electrolytes, and water, and the use of
muscarinic antagonists can prevent the tear secretion [5–8].
However, ACh can bind to mAChRs and nicotinic receptors
(nAChRs) and plays a key role in the cholinergic anti-
inflammatory pathway (CAP) [9].

Acupuncture, as a traditional Chinese medicine treatment,
is widely used in the treatment of many diseases, such as renal
interstitial fibrosis, allergic rhinitis, pain, cerebral ischemic
injury and neuroinflammation, and vascular dementia [10–
13]. These studies show that acupuncture has neuroprotective
and anti-inflammatory effects. Interestingly, some experi-
ments have found that the systemic anti-inflammatory effect
of acupuncture is directly or indirectly mediated by the effer-
ent vagus nerve activation and the macrophage inactivation.
As such, acupuncture may activate the CAP and the vagus
nerve to release ACh and bind to α7nAChRs onmacrophages,
thereby inhibiting the release of proinflammatory cytokines
[14, 15]. However, many other signal transduction pathways
are found in the anti-inflammatory effect of acupuncture in
animal models [16–20].

Among the local treatment methods for dry eye diseases of
aqueous deficiency, topical steroids (0.1% fluorometholone
(Flu) and 0.5% loteprednoate), 0.05% CSA, and autologous
serum eye drops are most commonly used clinically [21]. The
effect of inflammation in DEDs makes topical corticosteroids
a natural candidate for treatment, but the obvious side effects
of the long-term use of corticosteroids (including secondary
glaucoma, infection, and cataracts) limit their use. Many stud-
ies have found that although acupuncture is minimally inva-
sive, its effectiveness and safety have been unanimously
recognized. Acupuncture can promote the LG stimulation
and the tear secretion and provide continuous relief from dry
eyes [22–26]. Although research supports the use of acupunc-
ture to treat DEDs, the mechanism by which acupuncture
exerts its anti-inflammatory effect remains elusive, thereby
limiting our understanding of acupuncture and further clinical
treatment.

Electroacupuncture (EA) is a combination of acupunc-
ture and electrophysiological effects and can increase the
acupuncture sensation and reduce the workload of rotating
the needle. EA is more regular than the conventional
acupuncture technique and easy to repeat. Therefore, EA is
now widely used in research and clinical settings. The EA
waveform we have performed in this study is the dense wave.
The excitatory effect is dominant during treatment and can

increase metabolism, promote the blood circulation, improve
the tissue nutrition, and eliminate the inflammatory edema.

Therefore, in this study, we have used a rabbit model
treated with the muscarinic choline inhibitor scopolamine
hydrobromide (Scop) to explore the protective effect of EA
on the LG and its anti-inflammatory mechanism and provide
a theoretical basis for the acupuncture treatment of DEDs.

2. Materials and Methods

2.1. Experimental Animals. Healthy New Zealand rabbits
(male and female, 2–3 months old, weight = about 1.5 kg)
were purchased fromQinglong Mountain Experimental Ani-
mal Farm (Nanjing, China) and raised in the pharmacology
laboratory of Jiangsu Provincial Hospital of Traditional
Chinese Medicine. The experimental animals were housed
in ambient conditions (room temperature, 22°C ± 2°C;
relative humidity, 60% ± 5%; and alternating 12-hour light-
dark cycle). Water and standard feed were provided ad
libitum. Prior to the experiment, the anterior segment of
the eyes of all animals was examined and should have no
abnormality, and the tear flow strip should be greater than
10mm per 5min. The experimental protocol was approved
by the Animal Care and Use Committee of Nanjing University
of Traditional Chinese Medicine (Approval ID: 201809A018).
According to the Animal Experiment Guidelines of Nanjing
University of Traditional Chinese Medicine, rabbits received
humane care, and great efforts were made to reduce the num-
ber of animals.

2.2. Instruments and Reagents. The following instruments
and reagents were used in this study: Scop (Chengdu Pufeide
Biotech Co., LTD., JOT-10515, China); tear detection filter
paper strip (Tianjin Jingming New Technology Development
Co., LTD., China); corneal stain filter paper (Tianjin Jingm-
ing New Technology Development Co., LTD., China);
Huatuo brand disposable sterile acupuncture needles
(Suzhou Medical Device Factory, China); WQ1002 Han’s
electroacupuncture treatment device; Flu eye drops (0.1%,
Shentian Pharma, J20180068, China); α-BGT (promoter, cata-
log no. pk-ca707-00010-1, Germany); RM2135 slicer (LEICA,
Germany); DMLS2 optical microscope (LEICA, Germany);
rabbit cytokine quantification array QAL-CYT-1 kit (RayBio-
tech, Inc., Norcross, GA, USA); BCA method (Pierce, no.
23227); ACh ELISA kit (Nanjing Jinyibai Biotechnology Co.,
Ltd., catalog no. JEB14612, China); α7nAChR ELISA kit (Nan-
jing Jinyibai Biotechnology Co., Ltd., catalog no. JEB14612,
China), enzyme-labeled instrument (BioTek ELx800; BioTek
Instruments, USA); transmission electron microscope (H-7000;
Hitachi, Ltd., Tokyo, Japan), antibody phospho-NF-κB p65
(1 : 1000; catalog no. 3033S; Cell Signaling Technology), NK-κB
p65 (1 : 1000; catalog no. 08101524A; ENZO), β-actin (1 : 1000;
catalog no. sc-58679, Santa Cruz); HRP-conjugated goat anti-
rabbit IgG (1 : 5000; FMS-RB01; FcMACS, CA); and gel imager
(ChemiDoc XRS System; Bio-Rad Laboratories, Japan).

2.3. Experimental Procedures. The New Zealand white rabbits
were randomly divided into eight groups, namely, the Con,
Scop, sham acupuncture (Scop+Sham), EA (Scop+EA), Flu
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(Scop+Flu), α-BGT (Scop+α-BGT), Flu+α-BGT (Scop+Flu
+α-BGT), and EA+α-BGT (Scop+EA+α-BGT) groups. Each
group had six rabbits. The Con group received no treatment.
The remaining seven groups of animals were injected subcuta-
neously with 2.0mg/mL Scop four times a day (8:00, 11:00,
14:00, and 18:00) to induce dry eyes for 21 consecutive days
and given different treatments. The Scop injection was
maintained for 35 consecutive days until the end of the exper-
iment. The Scop+EA group was given acupuncture treatment
(Jingming BL1, Cuanzhu BL2, Sizhukong SJ23, Temple EX-
HN5, Tongzilian GB1) on day 22, and the needle was retained
for 15minutes once a day for 14 consecutive days. EA adopted
the density wave with frequency, pulse width, and intensity of
4Hz/20Hz, 0.5ms, and 1mA, respectively. The intensity was
based on the slight twitching of the muscle at the acupuncture
site. The acupoints in the Scop+Sham group were punctured
using blunt needles as in the EA group without penetrating
the acupuncture points once a day for 14 consecutive days.
The Scop+Flu group was administered with Flu eye drops
three times a day (8:00, 13:00, and 18:00) for 14 days after suc-
cessful modeling. The specific α7nAChR antagonist α-BGT
was injected into the rabbit ear vein at 4.0μg/kg daily for 14
consecutive days. The tear amount (Schirmer I test (SIt))
and the fluorescein staining score (FL) were measured on days
1, 7, 14, 21, 28, and 35, and experimental animals were eutha-
nized on day 35.

2.4. Schirmer I Test (SIt). The tear detection filter paper strip
was folded at one end and placed into the conjunctival sac of
the outer third of the rabbit’s lower eyelid. After 5min, the fil-
ter paper was collected, and the wetting length was measured
from the folding point.

2.5. Corneal Fluorescein Staining Score (FL). The corneal
staining filter paper strip was placed into the lower eyelid for-
nix of the rabbit and wetted, and the fluorescein was rapidly
and evenly distributed on the cornea though eye blink. The
corneal epithelial injury was graded with the cobalt blue filter.
The cornea was classified into four quadrants, and the score
was determined and shown as follows: absent, 0; less than five
spots, 1; more than five spots, 2; and large-area fluorescein
plaque, 3. Finally, the score of each grade was added, and
the full score was 12.

2.6. Optical Microscopy. After euthanasia, the LGs were
collected and fixed in 4% paraformaldehyde for 24 hours.
The LG size was 2mm × 2mm. Further dissection, paraffin
embedding, RM2135 slicer, H&E staining, and DMLS2 opti-
cal microscopy were performed.

2.7. Transmission Electron Microscopy (TEM) Examination.
Samples for TEM were fixed in 2.5% glutaraldehyde in
0.1mol/L phosphate buffer (pH 7.4) and then postfixed in
1% osmium acid. Subsequent to dehydration with an ascend-
ing alcohol series, the samples were embedded in epoxy resin.
Small sections (1mm3) were cut from the middle area of the
cornea. The sections were subjected to double staining with
lead acetate and uranyl acetate and were observed using a
transmission electron microscope.

2.8. Cytokine Quantification Array. Quantibody® Rabbit
Cytokine Arrays were performed using the Qal-CYT-1 kit.
The total protein was extracted from the LG by using the
tissue protein extraction kit, and the protein concentration
was determined using the BCA method. In accordance with
the instructions of the manufacturer’s kit, the expression
levels of eight cytokines in eight groups of LG (including
IL-1a, IL-1b, IL-8, IL-17A, IL-21, Leptin, MIP-1b, and
TNF-α) were detected using Quantibody® Rabbit Cytokine
Array and repeated thrice. The InnoScan 300 Microarray
Scanner (Innopsys, France) was applied to scan signals by
using the Cy3 excitation curves.

2.9. ELISA. The LG of rabbits was immediately collected after
euthanasia. After rinsing with normal saline, the LG was fully
homogenized in an ice bath, diluted with 300μ saline, and
centrifuged. The supernatant was collected and stored at
−80°C for further experiments. ACh and α7nAChR were
detected using the ELISA kit, and their contents were deter-
mined using a microplate reader.

2.10. Western Blot. Each group of LG protein was extracted
using the RIPA lysate. The supernatant was centrifuged,
and the total protein concentration in the supernatant was
determined using the BCA method. The calculated loading
amount was added to 10% SDS-PAGE gel for electrophoretic
separation. After the electrophoresis, the gel was cut and
transferred to the membrane according to the molecular
weight of the protein. After the membrane was completed,
5% milk was blocked for 1 hour, and the membrane was
incubated in phospho-NF-κB p65, NK-κB p65, β-actin, and
actin at 4°C overnight; washed three times with 0.05%
Tween-20 Tris buffer saline for 10 minutes each time next
day; and incubated in the HRP-conjugated goat anti-rabbit
IgG for 1 hour. The TBST was washed three times at 10
minutes each time. The membrane was covered with the
ECL liquid and detected using the imager.

3. Statistical Methods

Data were expressed as mean ± SEM. Comparisons between
means were carried out using one-way analysis of variance
followed by Tukey’s multiple comparison test. The statistical
analysis was performed using the GraphPad Prism 8.0 (San
Diego, CA, USA).

4. Results

4.1. EA Is Involved in the Protective Effect of the Corneal
Epithelium. Corneal fluorescence staining scores and corneal
fluorescence staining imaging (n = 6) on day 35 were observed
to detect whether EA was involved in the protective effect of
the corneal epithelium. Compared with that of the Con group,
the corneal fluorescence staining score of the Scop group
increased significantly on day 21 (P < 0:05, Figure 1(a)). After
seven days of treatment, the corneal fluorescence staining
score of the EA group had no statistical difference with that
of the Scop group (P > 0:05, Figure 1(a)). After 14 days of
treatment, compared with that of the Scop group, the corneal
fluorescence staining score of the EA group decreased
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Figure 1: Effect of the electroacupuncture treatment on the corneal fluorescence staining in DED induced by scopolamine hydrobromide: (a)
corneal fluorescence staining score; (b) corneal fluorescence staining on day 35. Quantitative data are expressed as mean ± SEM (n = 6). The
Scop group has increased corneal fluorescence staining score significantly on day 21 when compared with the Con group. After 14 days of
treatment, the EA and Scop+Flu groups have decreased corneal fluorescence staining score when compared with the Scop group,
indicating that the corneal epithelial damage has been improved. ∗P < 0:05 and ∗∗P < 0:01 vs. the Con group; #P < 0:05 and ##P < 0:01 vs.
the Scop group; &&P < 0:01 and &&P < 0:01 vs. the Scop+Sham group.
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(P < 0:05, Figure 1(a)), and the corneal staining score of the
Scop+Flu group was significantly reduced (P < 0:01,
Figure 1(a)), indicating that the corneal epithelial damage
has been improved. The corneal fluorescent staining on day
35 is shown in Figure 1(b). The corneal epithelium of the rab-
bits in the Con group had almost no staining. The Scop and
Scop+Sham groups were significantly stained. After treatment,
the ocular surface staining of the EA and Scop+Flu groups
decreased and scattered dotted dyeing. The above results
showed that EA was involved in the protection of the corneal
epithelium.

4.2. EA Treatment Leads to the Restoration of Corneal Epithelial
Structure. The number of epithelial layers in the cornea was
significantly increased in the Scop group compared with the
number in the Con group (P < 0:01, Figures 2(a) and 2(c)). A
significant increase in the number of corneal epithelium cells
was also observed in the Scop group compared with the num-
ber in the Con group (P < 0:01, Figure 2(d)). Compared with
that in the Scop group, the number of epithelial layers and cor-
neal epithelium cells in the Scop+EA and Scop+Flu groups
decreased significantly (P < 0:05, Figures 2(c) and 2(d)).

TEM evaluation of the corneal epithelial cells in the Con
group revealed no abnormalities. By contrast, in the Scop
group, the epithelial cells exhibited a loss of microvillus struc-
tures and epithelial cells, a widening of the intercellular space,
severe expansion of rough endoplasmic reticulum, desmosome
disintegration, and mitochondrial swelling (Figure 2(b)), this
means a form of inflammation and even cell death. After EA
stimulation, the epithelial cells exhibited sparse and short
microvillus structures, mild rough endoplasmic reticulum
expansion, and no obvious swelling of mitochondria, but the
microvilli were still missing and missing locally (Figure 2(b)).
The therapeutic effect of fluorometholone is similar to that of
EA observed under the electron microscope.

4.3. EA Is Involved in the Protective Effect of the Lacrimal
Glands. The tear flowmeasurement (n = 6) and theH&E stain-
ing on day 35 were performed to evaluate the area of the LG
atrophy (n = 3) and detect the involvement of α7nAChR on
the protective effect of EA on the LG. Compared with that in
the Con group, the tear flow in the Scop group decreasedmark-
edly on day 21 (P < 0:01, Figure 3(a)). After seven days of treat-
ment, compared with that in the Scop group, the tear flow in
the EA group was not statistically different (P > 0:05), whereas
compared with that in the Scop group, the tear flow in the Scop
+Flu group increased (P < 0:05, Figure 3(a)). After 14 days of
treatment, compared with that in the Scop group, the tear flow
in the EA group increased (P < 0:05, Figure 3(a)), which indi-
cated that the function of the LG improved.

The H&E staining on day 35 was performed to evaluate
the area of the LG atrophy (n = 3): compared with that in
the Con group, the LG atrophy area in the Scop group
increased significantly (P < 0:001, Figures 3(b) and 3(d)).
Compared with the Scop group, the EA group had decreased
LG atrophy area after the EA stimulation (P < 0:05,
Figures 3(b) and 3(d)), and the Scop+Flu group had decreased
lymphatic infiltration of the LG.

Ultrastructural analysis using TEM revealed the presence
of lipid droplet accumulation, which was located close to cell
nuclei and basal membranes in the Scop group (Figure 3(c)).
In the Con and EA groups, only a few lipid droplets were in
the LG acinar cell. These results indicated that EA treatment
resulted in a notable reduction in lipid accumulation.

4.4. EA Stimulation Regulates Proinflammatory Factors and
Chemokines. The protein chip technology was used to evalu-
ate the IL-1a, IL-1b, IL-8, IL-17A, IL-21, Leptin, MIP-1b, and
TNF-α expression levels in the LG tissue to study the inhibi-
tory effect of the EA stimulation on the inflammatory
response induced by proinflammatory factors and chemo-
kines. Compared with those in the Con group, the expression
levels of IL-1b and TNF-α in the Scop and Scop+Sham
groups were significantly upregulated (P < 0:01, Figure 4).
Compared with those in the Scop group, the IL-1a (P < 0:01),
IL-1b (P < 0:05), MIP-1b (P < 0:05), TNF-α (P < 0:01), and
IL-8 (P < 0:01) levels dropped significantly after the EA stimu-
lation (Figure 4). Compared with those in the Scop group, the
levels of IL-1a (P < 0:05), IL-1b (P < 0:01), IL-17A (P < 0:05),
IL-21 (P < 0:05), MIP-1b (P < 0:01), TNF-α (P < 0:01), and
IL-8 (P < 0:01) in the Scop+Flu group decreased significantly
(Figure 4). These results showed that EA had an anti-
inflammatory effect similar to Flu.

4.5. EA Inhibitory Effect on NF-κB Is Dependent on α7nAChR.
The α7nAChR antagonist α-BGT was subjected to ELISA to
detect the contents of ACh and α7nAChR and Western blot
to detect the expression levels of NF-κB p65 and p-NF-κB
p65 to verify whether EA regulated α7nAChR and participated
in the inhibitory effect of NF-κB. Compared with the Con
group, the Scop group significantly reduced the contents of
ACh (P < 0:01) and α7nAChR (P < 0:01, Figure 5(a)) but
increased the expression level of p-NF-κB p65 (P < 0:05,
Figure 5(b)). Compared with the Scop group, the EA stimula-
tion upregulated the expression levels of ACh (P < 0:05) and
α7nAChR (P < 0:05, Figure 5(a)). Compared with that in the
EA group, the expression of p-NF-κB p65 in the Scop+EA
+α-BGT group was upregulated (P < 0:05, Figure 5(b)). There-
fore, EA could increase the expression levels of ACh and
α7nAChR in the lacrimal tissue of dry eyes. The deficiency of
α7nAChR induced by α-BGT reversed the inhibition of the
NF-κB phosphorylation by the EA stimulus. Flu, a corticoste-
roid, mimicked the effect of the EA stimulus and inhibited
the NF-κB inflammation. These results suggested that the
inhibition of NF-κB by the EA stimulus was dependent on
α7nAChR.

4.6. EA Stimulation Regulates Proinflammatory Factors and
Chemokines through α7nAChR. After using the α7nAChR
antagonist α-BGT to observe whether EA regulated proin-
flammatory factors and chemokines by using α7nAChR,
the protein chip technology was used to continue the evalua-
tion of the expression levels of IL-1a, IL-1b, IL-8, IL-17A, IL-
21, Leptin, MIP-1b, and TNF-α in the lacrimal tissue. Results
showed that compared with the EA group, the Scop+EA+α-
BGT group had upregulated IL-1a (P < 0:05), IL-1b
(P < 0:05), IL-8 (P < 0:05), and TNF-α (P < 0:01) expression
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Figure 2: Alterations to the corneal epithelium following treatment. (a) Representative images demonstrating epithelial layers and epithelium
cells in the cornea (hematoxylin-eosin staining, 20). (b) Corneal epithelial cells under transmission electron microscopy. (c) The number of
epithelial layers. (d) The number of cells in the cornea epithelium was determined. ∗P < 0:05 and ∗∗P < 0:01 vs. the Con group; #P < 0:05 vs.
the Scop group; &P < 0:05 vs. the Scop+Sham group.
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Figure 3: Continued.
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Figure 3: Effect of the electroacupuncture treatment on the tear flow and the lacrimal glands in the DED induced by scopolamine
hydrobromide: (a) tear fluid flow (n = 6); (b) histopathological images of the cornea (hematoxylin-eosin staining, ×20) on day 35 (n = 3);
(c) lacrimal glands under transmission electron microscopy; (d) the percentage of lacrimal gland area/total area (%). Quantitative data are
expressed as mean ± SEM. ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001 vs. the Con group; #P < 0:05 and ##P < 0:01 vs. the Scop group;
&P < 0:05 and &&P < 0:01 vs. the Scop+Sham group. (c) Ultrastructural analysis under transmission electron microscopy revealed that EA
decreased lipid droplet accumulation in LG acinar cell. Lipid droplets (black arrows).
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Figure 4: Changes in the cytokines and the chemokines in rabbit LGs on day 35. Quantitative data are expressed asmean ± SEM (n = 4). EA
stimulus significantly decreased the levels of IL-1a, IL-1b, MIP-1b, TNF-α, and IL-8 when compared with the Scop group. The Scop+Flu
group significantly decreased the levels of IL-1a, IL-1b, IL-17A, IL-21, MIP-1b, TNF-α, and IL-8 when compared with the Scop group. ∗P
< 0:05 and ∗∗P < 0:01 vs. the Con group; #P < 0:05 and ##P < 0:01 vs. the Scop group; &P < 0:05 and &&P < 0:01 vs. the Scop+Sham group;
%P < 0:05 vs. the Scop+EA group. Clustering heat map: blue represents the Scop group.
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levels (Figure 6). Compared with the Scop+Flu group, the
Scop+Flu+α-BGT group had no significant change in the
effects of proinflammatory factors and chemokines (P > 0:05,
Figure 6). This result showed that the EA stimulation regu-
lated proinflammatory factors and chemokines through
α7nAChR, whereas the Flu regulation of proinflammatory
factors and chemokines did not depend on α7nAChR.

4.7. α7nAChR Is Involved in the Protective Effect of EA on the
LG. The tear flow measurement (n = 6) and the H&E staining
on day 35 were performed to evaluate the area of the LG atro-
phy (n = 3) and detect the involvement of α7nAChR on the
protective effect of EA on the LG. After 14 days of treatment,
compared with that in the Scop group, the tear flow in the

EA group increased (P < 0:05, Figure 7(a)), which indicated
that the function of the LG improved. At the same time, com-
pared with that in the EA group, the tear flow in the Scop+EA
+α-BGT group was reduced (P < 0:05, Figure 7(a)). Compared
with the Scop group, the EA group had decreased LG atrophy
area after the EA stimulation (P < 0:05, Figures 7(b) and 7(c)),
and the Scop+Flu group had decreased lymphatic infiltration of
the LG. Compared with that in the EA group, the area of the
LG atrophy in the Scop+EA+α-BGT group significantly
increased (P < 0:05, Figures 7(b) and 7(c)). These results
indicated that EA could reverse the damage of inflammation
to the LG. EA and Flu had similar protective effects on the
LG, and α7nAChR participated in the protective effect of EA
on the LG.
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of EA on the activation of NF-κB with β-actin as a load control. (b) Quantitative data are expressed as mean ± SEM (n = 3). ∗P < 0:05 and
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5. Discussion

In this study, the EA stimulation has shown a protective
effect on the corneal epithelium and the LGs of New Zealand
rabbits with hydrobromic acid-induced DEDs and can

reduce the level of inflammatory cytokines in LGs. The corti-
costeroid Flu is a commonly used clinical anti-inflammatory
drug for the treatment of DEDs. This study has found that
the protective and the anti-inflammatory effects of EA on
the ocular surface are similar to those of Flu. These beneficial
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Figure 6: Dependence of the regulation of the electroacupuncture stimulation on inflammatory factors and chemokines on α7nAChR. The
α7nAChR antagonist reverses the inhibitory effect of the EA stimulation on proinflammatory cytokines and chemokines. Quantitative data
are expressed as mean ± SEM (n = 4). #P < 0:05 and ##P < 0:01 vs. the Scop group; %P < 0:05 and %%P < 0:01 vs. the Scop+EA group.
Clustering heat map: blue represents the EA group.
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Figure 7: α7nAChR is involved in the protective effect of EA on the LG: (a) tear fluid flow (n = 6); (b) histopathological images of the cornea
(hematoxylin-eosin staining, ×20) on day 35 (n = 3); (c) the percentage of lacrimal gland area/total area (%). Quantitative data are expressed
as mean ± SEM. #P < 0:05 and ##P < 0:01 vs. the Scop group; %P < 0:05 vs. the Scop+EA group.
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effects are related to the upregulation of α7nAChR and the
downregulation of NF-κB in the LG. EA and Flu can upreg-
ulate the expression of α7nAChR and downregulate the
expression of NF-κB. The α7nAChR antagonist α-BGT can
reverse the inhibitory effect of EA on the NF-κB pathway
and the expression of inflammatory factors but cannot affect
the expression of Flu on the NF-κB pathway and inflamma-
tory factors.

Many mechanisms, such as increased tear osmotic
pressure, ocular surface inflammatory response and damage
[1, 27, 28], oxidative stress [29], and neurological abnormal-
ities [30], induce DEDs. Recently, many studies have men-
tioned that the inflammation is the main mechanism of the
pathogenesis of DEDs [31, 32]. The excessive exposure of
the ocular surface to a high-permeability environment and
stressful stimuli leads to the excessive production of proin-
flammatory cytokines and chemokines [33, 34] and further
causes the expansion of autoreactive T helper cells and infil-
trating the ocular surface and LGs [35, 36], leading to a cycle
of ocular surface damage and inflammation. The cholinergic
can inhibit inflammation. The cholinergic receptor on
lacrimal cells is m3AChR [37]. ACh is the first choice to be
combined with m3AChR [38]. Studies have found that [39,
40] after using cholinergic agonists, activating m3AChR pro-
motes the lacrimal protein secretion. However, another study
has found that [41] α7nAChR relieves the overproduction of
LG oxidants caused by radiotherapy and inhibits the inflam-
mation by inhibiting the p38/JNK signaling pathway to pro-
tect the tear gland and increase the tissue repair. α7nAChR
has a therapeutic effect. The therapeutic potential of DEDs
in the radiotherapy induced LG damage. The findings of this
study have found that α7nAChR is also closely related to the
pathogenesis of DEDs. As a receptor on macrophages,
α7nAChR can participate in the protection of LG cells during
inflammation and increase the tear secretion.

Inflammation stimulates the activation of the CAP, which
is defined as the efferent arm of the vagus nerve of the inflam-
matory reflex [9]. The efferent activity of the vagus nerve is
activated by the release of ACh from the organs of the reticu-
loendothelial system, and ACh is directly released from the
efferent terminal of the vagus nerve in other organs [42, 43].
The cholinergic binds to α7nAChR expressed on the surface
of activated macrophages and inhibits the NF-κB nuclear
translocation through the α7nAChR-mediated intracellular
signaling pathways to inhibit the production of proinflamma-
tory cytokines [5, 44, 45], ultimately preventing tissue damage.
EA can mediate α7nAChR to produce anti-inflammatory
effects. Wang et al. [46] used EA and acute lung injury rat
models to determine whether the former can improve lung
injury induced by cardiopulmonary bypass (CPB). Their
results show that the stimulating effect of EA can protect
against CPB-induced acute lung injury and inhibit the release
of HMGB1 through α7nAChR activation. Furthermore, it was
found that EA stimulation can significantly reduce the area of
cerebral infarction and improve neurological deficits, activat-
ing α7nAChR to reduce the expression of HMGB1, iNOS,
IL-1β, CD86, TNF-α, and IL-6 and increase expression of
Arg-1, TGF-β1, CD206, IL-4, and IL-10 [47, 48]. Jiang et al.
[12] found that EA stimulation attenuated the inflammatory

response mediated by the NLRP3 inflammasome after cerebral
ischemia/reperfusion (I/R), and the use of α7nAChR agonists
could induce neuroprotection effects similar to EA stimulation.
The above research findings suggest that the anti-inflammatory
effect of α7nAChR mediated by EA has therapeutic potential
for disease intervention. Moreover, EA can also inhibit the
expression of the NF-κB signaling pathway and inhibit inflam-
mation through the “cholinergic anti-inflammatory pathway.”
According to studies [49], the EA stimulation can upregulate
the cylindrical hyperplasia to reduce the inflammatory damage
after cerebral ischemia/reperfusion (I/R) and inhibit the NF-κB
signaling pathway. A previous study has also found [50] that
the EA stimulation of Zusanli (ST36) and the use of α7nAChR
agonists can alleviate the intestinal I/R injury and reduce NF-
κB p65 transcription levels and serum IL-6 and TNF-α levels.
These observations suggest that EA stimulates the Zusanli to
protect the intestinal I/R injury by activating the cholinergic
anti-inflammatory pathway. This result is consistent with the
results observed in this experiment. EA can relieve DEDs by
stimulating acupoints around the eyes. The protective effect
of EA on the LG is mediated through the anti-inflammatory
pathway, which is mediated by α7nAChR. EA can reduce the
NF-κB P65 nucleus by regulating α7nAChR. The transcription
and the reduction in the expression levels of IL-1, MIP-1b,
TNF-α, and IL-8 and the systemic use of α7nAChR antagonists
significantly eliminate the anti-inflammatory effects of EA.

This study has used the clinically commonly used anti-
inflammatory corticosteroid Flu as a positive control. The
potential limitation is the lack of the use of the α7nAChR
agonist group as a positive control. In future studies, the
effects of EA and α7nAChR agonists should be considered.
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