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ABSTRACT Listeria monocytogenes is a foodborne pathogen and a resilient environ-
mental saprophyte. Dairy farms are a reservoir of L. monocytogenes, and strains can per-
sist on farms for years. Here, we sequenced the genomes of 250 L. monocytogenes iso-
lates to investigate the persistence and mobile genetic elements (MGEs) of Listeria
strains inhabiting dairy farms. We performed a single-nucleotide polymorphism (SNP)-
based phylogenomic analysis to identify 14 monophyletic clades of L. monocytogenes
persistent on the farms for $6months. We found that prophages and other mobile
genetic elements were, on average, more numerous among isolates in persistent than
nonpersistent clades, and we demonstrated that resistance genes against bacitracin, ar-
senic, and cadmium were significantly more prevalent among isolates in persistent
than nonpersistent clades. We identified a diversity of mobile elements among the 250
farm isolates, including three novel plasmids, three novel transposons, and a novel pro-
phage harboring cadmium resistance genes. Several of the mobile elements we identi-
fied in Listeria were identical to the mobile elements of enterococci, which is indicative
of recent transfer between these genera. Through a genome-wide association study,
we discovered that three putative defense systems against invading prophages and
plasmids were negatively associated with persistence on farms. Our findings suggest
that mobile elements support the persistence of L. monocytogenes on dairy farms and
that L. monocytogenes inhabiting the agroecosystem is a potential reservoir of mobile
elements that may spread to the food industry.

IMPORTANCE Animal-derived raw materials are an important source of L. monocyto-
genes in the food industry. Knowledge of the factors contributing to the pathogen’s
transmission and persistence on farms is essential for designing effective strategies
against the spread of the pathogen from farm to fork. An increasing body of evi-
dence suggests that mobile genetic elements support the adaptation and persist-
ence of L. monocytogenes in the food industry, as these elements contribute to the
dissemination of genes encoding favorable phenotypes, such as resilience against
biocides. Understanding of the role of farms as a potential reservoir of these ele-
ments is needed for managing the transmission of mobile elements across the food
chain. Because L. monocytogenes coinhabits the farm ecosystem with a diversity of
other bacterial species, it is important to assess the degree to which genetic ele-
ments are exchanged between Listeria and other species, as such exchanges may
contribute to the rise of novel resistance phenotypes.
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L isteria monocytogenes leads a double life. In one, it is a potentially lethal, zoonotic
foodborne pathogen, and in the other, a ubiquitous environmental saprophyte (1).
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Agroecosystems provide a favorable habitat for L. monocytogenes, and the pathogen is
especially prevalent on dairy farms (2, 3). L. monocytogenes strains can inhabit dairy
farms for years and be widely distributed in the farm environment, leading to the fre-
quent contamination of milk (4, 5). Raw milk and animals destined for slaughter are a
major contamination source in the food industry (6–8). Knowledge of the pathogen’s
ecology on farms is essential for controlling the spread of L. monocytogenes from farms
to the food industry.

L. monocytogenes is extremely resilient and can tolerate various stresses used in the
food industry to control the pathogen (9, 10). These phenotypic traits enable L. mono-
cytogenes to survive in food processing environments for years, a phenomenon known
as persistence (11–15). Mobile genetic elements (MGEs) are common among L. mono-
cytogenes isolates from food processing environments (14–16) and may harbor genes
mediating tolerance to heat shock (17), salt and acid stress (18, 19), and biocides (20,
21). These findings led us to the hypothesis that mobile genetic elements play a key
role in the environmental adaptation and persistence of L. monocytogenes.

Although dairy farms are considered a reservoir of L. monocytogenes (2) and are
known to harbor hypervirulent strains (22), the era of next-generation sequencing has
witnessed very few efforts to illuminate the pathogen’s ecology in the farm environ-
ment. How L. monocytogenes adapts to life in the farm ecosystem, and to what extent
the farm environment acts as a source of mobile genetic elements for L. monocyto-
genes strains persisting in food processing environments, are key issues to explore.
Such insights would be instrumental in developing novel strategies to reduce contami-
nation on farms and in the raw materials delivered to the food industry.

Here, we sequenced the genomes of 250 L. monocytogenes isolates obtained from
three Finnish dairy farms during 2013 to 2016 (5) to investigate the persistence and
mobile genetic elements of L. monocytogenes in the farm environment. We performed
a single-nucleotide polymorphism (SNP)-based phylogenomic analysis to group the
isolates into persistent and nonpersistent clades and identified plasmids and chromo-
somal mobile elements among the 250 genomes. We found that prophages and other
mobile genetic elements were, on average, more abundant among isolates in persis-
tent clades than among those in nonpersistent clades, and that a significantly higher
portion of isolates in persistent clades harbored genes against bacitracin, arsenic, and
cadmium, compared to those in nonpersistent clades. Finally, we explored genome-
wide associations between clusters of orthologous genes and persistence. We found
that defense systems against invading prophages and plasmids, including the CRISPR-
cas IIA system (23) and the type II restriction modification system Lmo3J (24), were
negatively associated with persistence on farms. Taken together, our findings suggest
that prophages and mobile genetic elements confer an ecological advantage for per-
sistence on farms and that L. monocytogenes inhabiting the farm environment consti-
tutes a reservoir of diverse mobile genetic elements that may spread upstream in the
food chain.

RESULTS
Persisting clades of L. monocytogenes were detected on all three farms. Whole-

genome sequencing and subsequent in silico subtyping of 250 Listeria monocytogenes
isolates, collected from three Finnish dairy farms during 2013 to 2016 (5), yielded 25
unique multilocus sequence types (STs) (Fig. 1a; see also Data Set S1 in the supplemen-
tal material). The most frequently detected subtype was ST20, which represented 28%
of all sequenced isolates. In this study, persistent clades of L. monocytogenes were
defined as monophyletic clades of isolates with pairwise distances (PWDs) of fewer
than 20 SNPs (25) that were isolated from the same farm from $3 samples during
$6months. Clades that did not meet these criteria were classified as nonpersistent. In
total, we identified 14 persistent clades (Fig. 2 and Table 1). Persistent clades repre-
sented 71% of all sequenced isolates, and all persistent clades belonged to serogroup
1/2a. Clade C4 contained isolates from two different farms, suggesting that strains of L.
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monocytogenes can spread between farms more quickly than the rate of genomic
diversification.

Pathogenicity islands associated with hypervirulence (Listeria pathogenicity island 3
[LIPI-3] and LIPI-4) were detected in 5% of the 250 isolates, none of which belonged to
persistent clades. None of the 250 isolates harbored a premature stop codon within
the inlA gene, which is associated with hypovirulence and is a common finding in L.
monocytogenes from food processing environments (26). Indeed, the two STs most
stringently associated with the food processing environment, namely, ST9 and ST121
(26), were not detected in this study.

Mobile genetic elements were on average more numerous among isolates in
persistent than in nonpersistent clades of L. monocytogenes. Overall, prophages
and other mobile genetic elements were significantly more numerous among isolates
in persistent than among those in nonpersistent clades (P, 0.01; independent samples
median test) (Fig. 1b and c). Resistance cassettes against cadmium and arsenic were
detected in 20 and 15% of isolates, respectively. Mobile elements harboring resistance
genes against arsenic and cadmium were significantly more prevalent among isolates
in persistent clades than among those in nonpersistent clades (Fig. 3d). Surprisingly,
12% of all L. monocytogenes isolates harbored a putative bacitracin resistance cassette
(27), located on the transposon Tn5801_B23. Other antimicrobial or biocide resistance
genes were not detected in this study.

Dairy farm isolates of L. monocytogenes harbored plasmids that are common in
the food industry and three novel plasmids. Plasmids were detected among 10% of
L. monocytogenes isolates in persistent clades and 11% of isolates in nonpersistent
clades. We detected three previously identified plasmids (pCFSAN010068, pLM58, and
pLMR479a) and three novel plasmids, which were labeled pHC143, pHC192, and
pHC195-2 (Fig. 3a and Data Set S1). These plasmids were 55.5 to 86.7 kb in size, except
for pHC192, which was only 4.6 kb. A maximum-likelihood phylogenetic analysis based
on RepA grouped the five large plasmids into the plasmid groups G1, G2, and G4 (28,
29), which appear to be specific to the genus Listeria (Fig. 4a). Plasmid groups G1 and
G2 include well-characterized L. monocytogenes reference plasmids that are common
in food processing environments (18, 19, 28). G4 represents a novel group of Listeria
plasmids (29).

The G4 plasmid pHC143 was detected in five isolates of this study, belonging
to ST6 and ST149 (see Data Set S1). These STs are hypervirulent, based on the

FIG 1 L. monocytogenes isolates in persistent clades contained, on average, more prophages and other mobile genetic
elements (MGEs) than isolates in nonpersistent clades. (a) L. monocytogenes isolates in this study represented 25
unique sequence types (STs), and persistent clades were detected among the six most prevalent STs. Each circle
represents a unique ST, and the area of the circle corresponds to the number of isolates. For each ST in which
persistent clades were detected, doughnut charts illustrate the proportion of isolates in persistent (pink) and
nonpersistent (aquamarine) clades. (b, c) Distribution of isolates by numbers of nonphage MGEs (b) and prophages (c)
per genome among isolates in persistent and nonpersistent clades. The average number of the elements per genome
is also given.
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FIG 2 Phylogeny and genomic elements of 250 L. monocytogenes dairy farm isolates. The Lyve-SET 1.1.4f
single-nucleotide polymorphism (SNP)-calling pipeline was used to generate an alignment file of the 250
genomes using L. monocytogenes EGD-e (GenBank accession number NC_003210.1) as a reference.
Recombinant sites were removed from the alignment using Gubbins 3.0. Maximum-likelihood phylogeny was
inferred from concatenated SNP alignment files using PhyML 3.3. The tree was visualized using FigTree 1.4.4.
Pathogenicity islands, plasmids, chromosomally located mobile elements, and prophages were identified from
the assembled and annotated draft genomes. The heatmap is restricted to genomic elements that were
detected in this study. Persistent clade numbers corresponding to data in Table 1 are shown. Plasmids are
categorized by phylogenetic group and prophages by insertion site. L, lineage; ST, multilocus sequence type;
LIPI, Listeria pathogenicity island; IS3, Listeria IS3-like element; LGI-2, Listeria genomic island 2.
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presence of pathogenicity islands LIPI-3 (ST6) and LIPI-4 (ST149) (Fig. 2).
Visualization of assembly graphs indicated that pHC143 was successfully
assembled into a single 55.8-kb contig in all five isolates. pHC143 contained no
biocide or heavy metal resistance genes. However, we identified three variants of
pHC143 among short-read sequence assemblies deposited in GenBank, all of which
contain resistance genes against biocides (Fig. 4b; see also Fig. S1 in the supple-
mental material). The first variant contains a benzalkonium chloride resistance cas-
sette (bcrABC) and a mercuric resistance (mer) operon. The second variant contains
a multidrug exporter putatively conferring resistance against quaternary ammo-
nium compounds (qacC [qacH]; GenBank accession number WP_000121134.1).
The third variant contains the qacC/qacH gene and a Tn554 family transposon car-
rying an arsenic resistance operon (arsABCD). This Tn554 family transposon was
identified previously in the chromosomes of L. monocytogenes (30). All G4 plas-
mids contained a predicted fimbrial adhesin (GenBank accession number
WP_061691480.1), suggestive of a role associated with attachment and host colo-
nization (31).

Assembly graphs of the small plasmid pHC192 suggested that the plasmid was
closed successfully into a single 4.6-kb contig. pHC192 did not contain replication pro-
teins related to the RepA of Listeria plasmid groups G1 to G4, so the phylogeny of this
plasmid was analyzed using RepB (Fig. 5a). Phylogenetically, pHC192 clustered closely
with plasmids from Lactobacillus. Indeed, RepB of pHC192 (GenBank accession number
WP_035147907.1) was also detected in Lactobacillus and Brochothrix (100% amino acid
sequence identity), suggestive of a broad host range for this plasmid. The closest rela-
tive of pHC192 in Listeria was the plasmid of L. monocytogenes strain CFIAFB20130002,
which possesses the lincosamide resistance gene lnuA (GenBank accession number WP
_001829870.1). Notably, RepB of pHC192 bore no similarity to the replication proteins
of the small Listeria plasmids pIP823 (GenBank accession number WP_172694646.1)
and pDB2011 (accession number WP_020277964.1) and shared only 45% amino acid
identity with the RepB of pLMST6 (accession number WP_061092472.1). Like pHC192,
pLMST6 appears to also have a broad host range, as 100% identical homologues of
pLMST6 RepB (accession number WP_061092472.1) were detected in Listeria, Salmonella,
and Enterococcus. These findings suggest that several phylogenetically unrelated small
plasmids have been acquired by Listeria through distinct transfer events across host
species.

TABLE 1 Pairwise distances within persistent clusters of L. monocytogenes from dairy farms A
to C

Cluster CCa STb CTc Nd Farm(s)

Pairwise distance (no. of SNPs)

Mean Minimum Maximum
C1 8 8 9176 8 A 1.5 0 4
C2 14 14 9177 34 A 3.6 0 12
C3 14 91 9178 18 A 2.6 0 7
C4 14 91 9179 8 A, B 2 0 6
C5 18 18 9180 8 B 3.3 0 8
C6 18 18 9181 6 B 1.7 0 10
C7 20 20 9182 32 C 2.4 0 7
C8 20 20 9189 5 B 3.5 0 9
C9 20 20 9183 6 A 3.9 0 10
C10 20 20 9184 5 B 2.4 0 6
C11 20 20 9185 9 C 5.8 0 11
C12 20 20 9186 4 B 1.5 0 6
C13 37 37 9187 20 A 2.6 0 7
C14 37 37 9188, 9205 7 A 2.2 0 6
All clusters 2.8 0 8
aCC, clonal complex.
bST, multilocus sequence typing (MLST) profile.
cCT, core genome multilocus sequence typing (cgMLST) profile.
dNumber of isolates in the persistent cluster.
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The plasmid pHC192 contains a putative tauE (safE) family sulfite exporter gene
(GenBank accession number WP_016896343.1) (Fig. 5b) that is not typically present in
Listeria plasmids (19, 29). The sequencing depth of coverage for pHC192 was approxi-
mately five times that of the chromosome, suggesting that pHC192 is a high-copy-
number plasmid. This plasmid became increasingly prevalent among persistent clade
C7 isolates during the sampling period and was detected in all isolates at the end of
the study (Fig. 5c). An additional plasmid, pHC195-2, was detected in several isolates of
clade C7 in the latter part of the sampling period. The pHC195-2 plasmid belonged to
the phylogenetic group G2 (Fig. 4a) and closely resembled the reference plasmid

FIG 3 Occurrence of mobile genetic elements and heavy metal resistance genes among persistent
and nonpersistent clades. Occurrence of plasmids (a), chromosomally located mobile elements (b),
prophages (c), and cadmium and arsenic resistance genes (d) among isolates in persistent and
nonpersistent clades. Significant differences between persistent clade isolates and singleton isolates
are denoted by asterisks as follows: *, P, 0.05; **, P, 0.005; ***, P, 0.001. IS3, Listeria IS3-like
transposon; LGI-2: Listeria genomic island 2. Prophages are categorized by insertion site.
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FIG 4 Characterization of plasmids based on RepA. (a) Maximum-likelihood phylogenetic analysis of
the .50-kb plasmids detected in the present study, based on the repA amino acid sequences. The
analysis employed the Jones-Taylor-Thornton substitution model with 100 bootstraps and was
performed using MEGA7 software. Bootstrap support values above 70 are shown. Plasmids
represented three phylogenetic clades (plasmid groups G1, G2, and G4). Plasmid groups correspond
to the groups established by Kuenne et al. (28) and Schmitz-Esser et al. (29). Tip labels correspond to
plasmid names and host genera; plasmids from this study are labeled in blue. (b) G4 plasmids of the
L. monocytogenes strains HC193 (this study), HC374 (this study), and FDA550584-30 (BioSample
accession number SAMN02923676) aligned with .95% identity across the entire length of pHC143
from this study; plasmids of the L. monocytogenes strains 967535 (BioSample accession number
SAMN15680309) and YA00079283 (accession number SAMN08970420) aligned with .95% identity to
most of pHC143. Red arrows indicate the insertion sites of the biocide resistance loci qacC, present in
p967535 and pYA00079283, and bcrABC, present in pFDA550584-30. The alignment was generated
using BRIG 0.95. For pHC143, plasmid length in base pairs (bp) is given.
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FIG 5 Phylogeny, gene content, and epidemiology of the novel plasmid pHC192. (a) Maximum-
likelihood phylogenetic analysis of pHC192 and related plasmids, based on the repB amino acid
sequences. Plasmids other than pHC192 were identified and obtained from GenBank using BLASTp.
The analysis employed the Jones-Taylor-Thornton substitution model with 100 bootstraps and was
performed using the MEGA7 software. Node labels indicate bootstrap support values above 70. Tip
labels correspond to plasmid names and host genera; plasmids from this study are labeled in blue.
Tip shapes depict harborage of resistance genes against antimicrobials (antimicrobial resistance
[AMR]) and biocides (biocide resistance [BCR]). (b) The 4.5-kb plasmid pHC192, carrying a putative
SafE/TauE family sulfite exporter (GenBank accession number WP_016896343.1). The figure was
constructed using BRIG 0.95. Plasmid length in base pairs (bp) is given. (c) Numbers of samples
containing no plasmid, pHC192, or both pHC192 and pHC195-2 among persistent clade C7 isolates
during each month of sampling. Plasmid prevalence in C7 isolates increased over the 1-year sampling
period.
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pLMR479a (see Fig. S2 in the supplemental material). The acquisition of these plasmids
during the course of persistence suggests that they play a role in the adaption of the
pathogen to the farm ecosystem.

Dairy farm isolates of L. monocytogenes share common integrative mobile
elements with enterococci. Among the 250 dairy farm isolates, we identified the fol-
lowing six chromosomally located mobile elements: the L. monocytogenes IS3-like ele-
ment (30); Listeria genomic island 2 (LGI-2) (32); Tn5801_B23 (33); and three novel mobile
elements, which were submitted to the Transposon Registry (34) and assigned the labels
Tn7101, Tn7103, and Tn7104. The elements ICELm1 (30), LGI-1 (35), LGI-3 (36), Tn554 (30),
Tn6188 (20), Tn6198 (37), and chromosomally located Tn5422 (38) were not detected.

The IS3-like transposon was significantly more prevalent among isolates in persis-
tent than in nonpersistent clades (Fig. 3b). The IS3-like transposon consists of two
insertion sequences in lineage I (IS3-1 and IS3-2) and a single insertion sequence in lin-
eage II (IS3-1) (Fig. 2). These elements harbor multiple surface-associated lipoproteins,
which may facilitate attachment and invasion (30). The suggested role of the IS3-like
transposon in L. monocytogenes virulence remains to be determined.

The integrative and conjugative elements (ICEs) LGI-2 and Tn5801_B23 were signifi-
cantly more prevalent among isolates in persistent than in nonpersistent clades
(P, 0.01; Fisher’s exact test) (Fig. 3b). LGI-2 carries cadmium and arsenic resistance cas-
settes and two multidrug transporters (see Fig. S3 in the supplemental material).
Identical (100% nucleotide identity) LGI-2 elements were present among all ST14 and
ST145 isolates in this study (Fig. 2). Moreover, a BLASTn search identified identical LGI-
2 elements in 11 L. monocytogenes and two Enterococcus faecalis complete genomes,
suggestive of recent transfer between these species.

Tn5801_B23 was detected in a subset of ST20 isolates, including the persistent clades
C9 to C12 (Fig. 2 and Data Set S1). The Tn5801_B23 detected in this study shared 97% nu-
cleotide identity with the Tn5801_B23 of Enterococcus faecalis strain JH2-2 (see Fig. S4 in
the supplemental material). Tn5801_B23 contains putative resistance genes against the
antimicrobial bacitracin (bcrABD) and a two-component system (baeSR) potentially
involved in the regulation of the bcrABD operon (33). Unlike Tn5801_B23, other Tn5801-
like elements mediate tetracycline resistance in Enterococcus, Listeria, and several other
Firmicutes species (33). In L. monocytogenes ST20, Tn5801_B23 was inserted downstream
of guaA (lmo1096), which is also the insertion site of the related element ICELm1 of L.
monocytogenes strain EGD-e, harboring cadmium resistance genes (30).

The putative integrative and mobilizable element (IME) Tn7101 was detected in the
ST155 singleton isolate HC258, where it was inserted between homologues of lmo2596
and lmo2597 (see Fig. S3). Tn7101 contains resistance genes against cadmium (cadA
and cadC) and an arsenate reductase (arsC). Through a BLASTp search, we identified a
variant of Tn7101 containing a seven gene arsenic resistance cassette. This variant, la-
beled Tn7102, was detected in several L. monocytogenes and Enterococcus genomes de-
posited in GenBank (see Fig. S2). The Tn7101 and Tn7102 of Listeria and Enterococcus
were identical (100% nucleotide identity), suggestive of recent promiscuity between
the two genera. Arsenic resistance genes in Tn7102 were distantly related ($67% nu-
cleotide identity) to the arsenic resistance cassette of LGI-2 (see Fig. S3).

The putative IME Tn7103 was detected in the ST119 singleton isolate HC183, where it
was inserted between lmo0810 and lmo0811. This transposon contained putative viru-
lence genes encoding an InlJ-like internalin and a bacterial immunoglobulin (Big)-like pro-
tein (see Fig. S5 in the supplemental material). A BLAST search confirmed the presence of
Tn7103 in other L. monocytogenes strains, including N12-2532 (BioSample accession num-
ber SAMN09947958), but we did not identify this element in other species.

The putative ICE Tn7104 was detected in the ST391 singleton isolate HC187 and
was inserted between lmo1786 and lmo1787. This transposon contained a putative
type I restriction modification system (see Fig. S6 in the supplemental material).
Tn7104 was identified in several other L. monocytogenes strains deposited in GenBank,
including the L. monocytogenes ST391 strain SHL013 (BioSample accession number
SAMN03265960), but we did not identify this element in other species.
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A novel prophage harboring cadmium resistance genes was identified in a
persistent clade of L. monocytogenes. All 250 dairy farm isolates from this study con-
tained the L. monocytogenes monocin (39) and 0 to 3 additional prophages, which
were detected at eight insertion sites (Fig. 3c). Prophages inserted into tRNA-Arg(tct)
were significantly more prevalent among isolates in persistent clades, and prophages
inserted into tRNA-Lys(ctt) were significantly more prevalent among nonpersistent
clades (P, 0.05; Fisher’s exact test).

OPTSIL taxonomic clustering assigned prophages from this study into six genera.
Prophages inserted into comK and tRNA genes were assigned to genera of Siphoviridae
that are known to only infect Listeria. Surprisingly, in the isolate HC189, a 67-kb
Myovirus was inserted into comK, a site usually occupied by Siphoviridae (40).

Prophages inserted between the rlmCD (lmo1703) and fosX (lmo1702) genes were not
related to any of the Listeria-specific phage genera, but instead represented a separate
genus that infects several Firmicutes species (Fig. 6). Many of the phages in this genus har-
bor antimicrobial and heavy metal resistance cassettes (see Fig. S7 in the supplemental
material). In this study, phages inserted between rlmCD and fosX were detected among
all isolates of persistent clade C8 and among three singleton isolates (Fig. 2). Among iso-
lates of persistent clade C8, prophages inserted between rlmCD and fosX all harbored a
cadmium resistance cassette (see Fig. S7). In contrast, in the singleton isolates, prophages
inserted between rlmCD and fosX harbored no cadmium or antimicrobial resistance
genes. Within Listeria genomes deposited in GenBank, we identified prophages inserted

FIG 6 Prophages inserted between rlmCD and fosX belonged to the genus Siphovirus and have a
broad host species range and a tendency to harbor antimicrobial or heavy metal resistance genes.
Minimum evolutionary tree and taxonomic clustering of six Listeria-specific phages (genera 2 to 6),
prophages from the strains HC134 and HC258 from this study that were inserted between rlmCD and
fosX (genus 1, blue), and related prophages from Listeria and other Firmicutes species obtained from
GenBank (genus 1, black). Phylogenetic analyses and clustering were generated with the VICTOR
online tool (https://victor.dsmz.de), using model D6 and 100 bootstrap replicates. The tree was
visualized using FigTree 1.4.4. Bootstrap support values above 70 are shown.
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between rlmCD and fosX that carried resistance genes against cadmium (cadA), macro-
lides (mefA,msrD), tetracycline (tetM), and streptogramin (vatA).

Systems that protect against invading DNA were negatively associated with the
persistence of L. monocytogenes on dairy farms. A genome-wide association study
was conducted to assess which genes were associated with persistent versus nonper-
sistent clades. Because no persistent clades belonged to lineage I, the analysis was re-
stricted to lineage II. Notably, a gene involved in biofilm formation (bapL), which has
been implicated in the adaptation of L. monocytogenes to the food processing environ-
ment (22), was significantly associated with persistence on dairy farms (see Table S2 in
the supplemental material). In contrast, genes associated with the CRISPR-cas type IIA
system and the type II restriction-modification system LmoJ3 (24) were negatively
associated with nonpersistence (see Table S2). CRISPR-cas systems and restriction mod-
ification systems may act in synchrony to protect the host against invading prophages
and other mobile elements (41). Additionally, a putative recombination and DNA
strand exchange inhibitor protein (GenBank accession number WP_031664941.1) was
associated with nonpersistence. These findings agree with the lower prevalence of mo-
bile genetic elements and prophages among isolates in nonpersistent than those in
persistent clades and suggest that systems involved with inhibiting invading DNA are
detrimental for the persistence of L. monocytogenes in the dairy farm environment.

Curiously, the ESX-1-like type VII secretion system (T7SS) contained both genes
associated with persistence and genes associated with nonpersistence. The T7SS of L.
monocytogenes has a potential role in bacterial antagonism (42) and is located in L.
monocytogenes hypervariable hot spot 1 (30). Overall, many of the genes associated
with persistence or nonpersistence belonged to L. monocytogenes hypervariable hot
spots or prophages, suggesting that the role these components play in Listeria niche
adaptation deems further study.

DISCUSSION

Whole-genome sequencing and subsequent analyses of 250 L. monocytogenes iso-
lates from dairy farms illustrated that dairy farm isolates are hosts to a diversity of mo-
bile genetic elements that carry, or have the potential to carry, resistance genes against
antimicrobials, biocides, and heavy metals. Many of the mobile elements we identified
carried genes encoding phenotypes that promote the survival of L. monocytogenes on
farms, such as antimicrobial resistance genes or virulence factors. Moreover, genes re-
sponsible for the conjugation of mobile elements may have a dual role in promoting
biofilm formation and invasion of the mammalian host (31, 43), further enhancing the
survival of L. monocytogenes on farms. We found that prophages and other mobile
genetic elements were significantly more numerous among isolates belonging to per-
sistent than nonpersistent clades. Moreover, systems that provide immunity against
invading mobile genetic elements (23, 24, 41), namely, the CRISPR-cas IIA system, the
type II restriction modification system LmoJ3, and a putative recombination and DNA
strand exchange inhibitor protein, were associated with nonpersistence. Together,
these findings suggest that mobile elements may support the persistence of L. mono-
cytogenes inhabiting farms.

Most of the mobile genetic elements we uncovered appeared in a very limited
number of L. monocytogenes STs. The narrow distribution and wide diversity of the mo-
bile genetic elements we identified likely explain why very few mobilome-associated
genes were significantly associated with persistence in this study. As an exception, the
IS3-like element of L. monocytogenes (30) and prophages at certain insertion sites were
widely distributed across STs and harbored genes that were significantly associated
with either persistence or nonpersistence.

We identified a surprising diversity of mobile genetic elements encoding heavy metal
resistance genes among the dairy farm isolates. Moreover, acquired heavy metal resistance
genes were more common among isolates in persistent than nonpersistent clades. Heavy
metal resistance is also more common among persistent than nonpersistent L. monocyto-
genes subtypes from foods and food processing environments (14, 16). Whether heavy
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metal resistance genes contribute directly to persistence or merely cooccur with other
determinants that promote environmental survival remains unclear (44). Nevertheless,
heavy metal resistance genes may represent useful markers to aid the detection of L.
monocytogenes strains with enhanced resilience against environmental stressors.

In the present study, we found a novel plasmid (pHC143; plasmid group G4) that
infected hypervirulent subtypes of L. monocytogenes. Although pHC143 was devoid of
biocide and heavy metal resistance genes, such genes are common on other G4 plas-
mids infecting hypervirulent ST1 and ST6 strains (29). Indeed, we noted a G4 plasmid
harboring the biocide resistance gene qacC and the arsenic resistance cassette
arsABCD in the ST6 outbreak isolate YA00079283, associated with the largest listeriosis
outbreak known to date (45). It is plausible that harborage of biocide and heavy metal
resistance genes in G4 plasmids facilitates the adaptation of hypervirulent strains to
food processing environments.

We identified four transposons in Listeria, namely, LGI-2, Tn5801_B23, Tn7101, and
Tn7102, that closely resembled transposons in Enterococcus, suggestive of recent trans-
fer between the two genera. The cooccurrence of genomic elements in Enterococcus
and Listeria was unsurprising, as both genera are highly prevalent in animal feces and
farms (5, 8, 46). Transfer of conjugative elements has been demonstrated both from
Enterococcus to Listeria and vice versa (47, 48) indicating that both genera are potential
donors. The extent to which enterococci and other Firmicutes contribute to the hori-
zontal spread of mobile elements and their associated antimicrobial, biocide and heavy
metal resistance determinants in Listeria has implications for food safety and should be
explored through further study.

Bacitracin resistance genes, mediated by Tn5801_B23, were common among L.
monocytogenes isolates from all three farms investigated. Moreover, Tn5801_B23 was
significantly more prevalent among isolates in persistent clades than among those in
nonpersistent clades. The widespread use of bacitracin as a growth promoter in animal
feeds has facilitated the expansion of bacitracin resistance in Enterococcus (49, 50), and
probably also in L. monocytogenes, as animal feeds are frequently contaminated by
Listeria (5, 8). Nevertheless, the frequent detection of Tn5801_B23 in this study remains
curious, as feed supplementation with bacitracin subsided in Finland in the 1990s (49).

We found that prophages were more prevalent among isolates in persistent clades
than among those in nonpersistent clades. Whether prophages contribute to the persist-
ence of L. monocytogenes is an intriguing possibility. There is increasing evidence that
prophages can mediate beneficial phenotypes for their host. Phages mediate resistance
or virulence properties in numerous bacterial species (51), and in Listeria, siphoviruses
inserted into comK were found to regulate the gene in a symbiotic manner (40). Here, we
discovered phage-mediated carriage of cadmium resistance and various antimicrobials in
Listeria, suggesting that prophages contribute to the spread of phenotypes supporting
persistence. Moreover, we noted that these phages belonged to a genus of Siphovirus
with an apparently broad host species range that were introduced to Listeria through sev-
eral distinct transfer evets. Host species jumps have the potential accelerate the transfer
of novel resistance determinants between Listeria and other Firmicutes.

It is worth noting that not all persistent clades harbored mobile elements, suggesting
that other factors also contribute to the survival of L. monocytogenes on dairy farms. We
found that genes putatively involved in biofilm formation (bapL) and interbacterial com-
petition (T7SS), which are not located in mobile elements, were significantly associated
with persistence. In addition, the predominance of persistent L. monocytogenes strains in
the dairy farm environment is associated with inadequacies in production hygiene (5).
Therefore, the persistence of L. monocytogenes in the dairy farm environment is likely the
result of a multifactorial combination of bacterial and environmental factors.

In conclusion, our study indicates that L. monocytogenes strains inhabiting the dairy
farm environment are receptive to a diversity of prophages and mobile genetic ele-
ments. We suggest that mobile elements enable L. monocytogenes to adapt to the
stresses encountered in the farm ecosystem and in general improve the fitness of the
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pathogen on farms, thereby supporting persistence. Given the abundance of L. mono-
cytogenes on farms (2, 3, 5) and the apparent exchange of mobile genetic elements
between Listeria and other Firmicutes species, L. monocytogenes occurring in agroeco-
systems should be viewed as a potential reservoir of mobile genetic elements.
Importantly, many of these elements have the potential to carry and spread antimicro-
bial, biocide, and heavy metal resistance genes. The spread of mobile genetic elements
and resistance determinants from primary production to Listeria in food processing
environments has important food safety implications and should be explored further.
The present study represents a step forward in this effort and in our understanding of
listerial ecology in the agroecosystem.

MATERIALS ANDMETHODS
Whole-genome sequencing. In total, 250 L. monocytogenes isolates obtained from three Finnish

dairy cattle farms during 2013 to 2016 (5) were selected for whole-genome sequencing in the present
study (see Data Set S1 in the supplemental material). The isolates were obtained from samples of bulk
tank milk (31 isolates), used milk filters (46 isolates), feed (14 isolates), cow feces (21 isolates), and bed-
ding materials (9 isolates) and from surface swab samples of floors (54 isolates), feed and water troughs
(54 isolates), udders and udder cloths (10 isolates), milking systems and bulk tanks (8 isolates), stall mats
(2 isolates), and strip cups (1 isolate). DNA was extracted from overnight cultures using the guanidium
thiocyanate extraction method (52). DNA samples were standardized to a concentration of 10 ng/ml
using the double-stranded DNA (dsDNA) broad-range (BR) assay kit (Thermo Fisher Scientific, Waltham,
MA) using a Qubit fluorometer (Thermo Fisher Scientific). Genomic libraries were constructed from the
DNA samples using the Nextera XT DNA sample preparation kit (Illumina, San Diego, CA), and paired-
end sequencing (2� 250 bp) was performed using the Illumina HiSeq 2500 platform.

Genome assembly, pangenome construction, and subtyping. Following the removal of adapter
sequences and low-quality reads using Trimmomatic 0.36 (53), draft genomes were assembled using
SPAdes 3.9 with k-mer values of 55, 77, 99, 113, and 127 (54). Assembly quality was assessed using
QUAST 4.0 (55), and taxonomic assignment was performed using Kraken (56). The assemblies were
annotated using Prokka 1.12 (57). The pangenome of the sequenced isolates was constructed using
Roary 3.8.0 (58) with the protein identity cutoff value set at 90%. Multilocus sequence types (ST), corre-
sponding to the schema developed by Ragon et al. (59), and core genome sequence types (CT), corre-
sponding to the schema developed by Moura et al. (60), were determined in silico from the assembled
genomes using the BIGSdb-Lm database. The BIGSdb-Lm database was also used to identify pathogenic-
ity islands associated with hypervirulence (LIPI-3 and LIPI-4) and genes associated with antimicrobial
and biocide resistance among the assembled genomes. Genome assemblies were deposited in GenBank
under BioProject accession number PRJNA704814 (see Data Set S1).

Maximum-likelihood phylogenomic analysis. Phylogenomic reconstruction of the 250 L. monocy-
togenes isolates was performed using the Lyve-SET 1.1.4f pipeline (61), using the L. monocytogenes EGD-
e genome (GenBank accession number NC_003210.1) as a reference. The Lyve-SET pipeline was run
using Listeria monocytogenes presets (61), with the additional options “-mask-phages,” “-mask-cliffs,” and
“-read_cleaner CGP.” In brief, the pipeline generated genome alignments by mapping quality-filtered
reads to a reference genome. To improve the accuracy of phylogenomic inference, putative prophage
genes were removed from the reference genome prior to mapping. Mapping was followed by the detec-
tion of high-quality SNPs, defined as having$10� depth of coverage and$75% consensus among
reads. Recombinant sites within the genome alignments generated by Lyve-SET were identified and
removed using Gubbins 3.0 (62). PhyML 3.3 (63) was used to infer maximum-likelihood phylogeny of
each ST using a general time-reversible model (GTR) with 100 bootstrap replicates.

In addition, the phylogeny of each ST harboring putative persistent clades was inferred independ-
ently. Persistent clades of L. monocytogenes were defined as monophyletic clades of isolates with
PWDs of ,20 SNPs (25) that were isolated from the same farm from $3 samples during $6months. For
each ST, a draft assembly from the present study with the best quality statistics, i.e., the highest N50

value and lowest number of contigs (see Data Set S1), was used as a reference genome. The phyloge-
nomic analyses were executed as described above using the Lyve-SET pipeline, Gubbins, and PhyML.

Detection and analysis of plasmids. Plasmids were identified by aligning the whole-genome
assemblies against Listeria plasmids deposited in GenBank with the aid of BLASTn (http://www.ncbi.nlm
.nih.gov/blast). Alignments were inspected manually. Additionally, whole-genome assembly graphs gen-
erated by SPAdes were visualized using Bandage 0.8.1 (64), and extrachromosomal elements were
inspected manually. Maximum-likelihood phylogeny of the plasmids, based on the amino acid sequence
alignments of the repA gene, was generated with MEGA7 (65), using the Jones-Taylor-Thornton substitu-
tion model with 100 bootstraps. Alignments of the amino acid sequences of the repB gene were used to
compare plasmids in which repA was absent. Plasmid alignments were generated and visualized using
BRIG 0.95 (66) and EasyFig 1.2 (67).

Detection and analysis of chromosomal mobile genetic elements. Draft assemblies from this study
were screened for the presence of the mobile genetic elements ICELm1 (30), LGI-1 (35), LGI-2 (32), LGI-3
(36), Tn5422 (37), Tn6188 (20), and Tn6198 (38), and the IS3-like and Tn554-like transposons of L. monocyto-
genes (30) by aligning the integrases, transposases, and recombinases associated with these elements
against the pangenome (the “pan_genome_reference” file generated by Roary) with the aid of tBLASTn.
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Hits were inspected manually. Additionally, the pangenome was searched for annotations that included
“recombinase,” “integrase,” “transposase,” “transposon,” “cadmium,” “arsenic,” “mercuric,” “ardA,” “ftsK,”
“P60,” and “iap,” and hits were inspected manually. EasyFig 1.2 was used to align and visualize the identified
transposons, and their occurrence among genomes deposited in GenBank was assessed using BLAST.

Detection and analysis of prophages. Prophages inserted into the L. monocytogenes genomes
were identified using PHASTER (68), and the insertion sites were inspected manually. Phylogeny and tax-
onomic clustering of prophages classified by the PHASTER algorithm as “intact” were inferred using
VICTOR (69). Nineteen additional Listeria phage genomes and one streptococcal phage genome
obtained from GenBank were included in the analyses for reference (see Table S1). In brief, VICTOR
applies the genome BLAST distance phylogeny (GBDP) method (70) to obtain pairwise distances, from
which balanced minimum evolution trees are inferred. VICTOR utilizes OPTSIL (71) to obtain taxonomic
clustering. Duplicate phage genomes are removed from the analysis. Trees generated by VICTOR were
visualized using FigTree 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/). BLAST was used to identify
phages inserted between rlmCD and fosX in the genomes of Listeria and other bacterial species depos-
ited in GenBank, and hits were inspected manually. Phylogeny and taxonomic clustering of prophages
inserted between rlmCD and fosX were inferred using VICTOR.

Identification of genes associated with predominance. Scoary 1.6.16 (72) was used to identify
genes that are significantly associated with occurrence in persistent versus nonpersistent clades. Scoary
was executed using default options, using the “gene_presence_absence.csv” file generated by Roary as
the input. Associations with a Bonferroni-corrected P value of 0.05 were considered significant. As all per-
sistent clades belonged to lineage II, the analysis was limited to the 233 lineage II isolates of this study
to reduce noise arising from population structure bias.

Data availability. The 250 L. monocytogenes isolates sequenced and analyzed in this study have
been deposited in the NCBI BioSample database under accession numbers SAMN18056206 to
SAMN18056455 and in GenBank under BioProject accession number PRJNA704814 and are described
further in Data Set S1 in the supplemental material.
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