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The dopamine response to cues signals differences in reward value after extensive training. However, re-
cent studies suggest that this value encoding is not present during early sessions. We used fast-scan cyclic
voltammetry to record changes in dopamine release in rats throughout pavlovian learning. We demonstrate
that in the first six training sessions, cue-evoked dopamine release did not encode reward size, while re-
ward-evoked dopamine release did. With additional training, cue-evoked dopamine release signaled differ-
ences in reward size. We identified sex differences in behavior as females displayed augmented responding
during the cue and following reward delivery relative to males. Furthermore, we found sex differences in do-
\pamine release as females exhibited a smaller reward-evoked dopamine response compared with males. /
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Learning associations between cues and rewards require the mesolimbic dopamine system. The dopamine re-
sponse to cues signals differences in reward value in well trained animals. However, these value-related dopa-
mine responses are absent during early training sessions when cues signal differences in the reward rate.
These findings suggest cue-evoked dopamine release conveys differences between outcomes only after ex-
tensive training, though it is unclear whether this is unique to when cues signal differences in reward rate, or
whether this is also evident when cues signal differences in other value-related parameters such as reward
size. To address this, we used a Pavlovian conditioning task in which one audio cue was associated with a
small reward (one pellet) and another audio cue was associated with a large reward (three pellets). We per-
formed fast-scan cyclic voltammetry to record changes in dopamine release in the nucleus accumbens of
male and female rats throughout learning. While female rats exhibited higher levels of conditioned responding,
a faster latency to respond, and elevated post-reward head entries relative to male rats, there were no sex dif-
ferences in the dopamine response to cues. Multiple training sessions were required before cue-evoked dopa-
mine release signaled differences in reward size. Reward-evoked dopamine release scaled with reward size,
though females displayed lower reward-evoked dopamine responses relative to males. Conditioned respond-
ing related to the decrease in the peak reward-evoked dopamine response and not to cue-evoked dopamine
release. Collectively, these data illustrate sex differences in behavioral responding as well as in reward-evoked

dopamine release during Pavlovian learning.
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Introduction

Efficient reward seeking involves identifying cues that
predict rewards and discriminating between cues that sig-
nal different reward options. The mesolimbic dopamine
system plays an integral role in regulating behavioral re-
sponses toward reward-associated cues (Phillips et al.,
2007; Salamone and Correa, 2012). Cue-evoked dopa-
mine responses convey reward-related information such
as the relative reward size (Tobler et al., 2005; Roesch et
al., 2007; Gan et al., 2010), reward probability (Fiorillo et
al., 2003; Hart et al., 2015), and reward rate (Fonzi et al.,
2017). While this effect is evident in extensively trained
animals, the emergence of these signals during initial
training sessions has not been well characterized. We re-
cently used a Pavlovian conditioning task to demonstrate
that cue-evoked dopamine release encodes reward rate
(i.e., the time elapsed since the previous reward delivery)
after extensive training (>24 sessions; Fonzi et al., 2017),
but not during the first 6 training sessions (Stelly et al.,
2021). These findings suggest that cue-evoked dopamine
encodes reward rate through a multistep process, by first
signaling an upcoming reward independent of value
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during initial training sessions and, after additional train-
ing, conveying the relative difference in value between
cues. However, it remains unclear whether extensive
training is similarly required for cue-evoked dopamine sig-
nals to convey prospective value-related parameters,
such as reward size.

The aforementioned research was primarily performed in
male subjects; however, increasing evidence highlights sex
differences in behavioral responding. Across studies, female
subjects display augmented behavioral responses com-
pared with males, including higher locomotor activity, faster
latency, and elevated conditioned responding (Lynch and
Carroll, 1999; Dubroqua et al., 2011; Eubig et al., 2014;
Scholl et al., 2019; Stringfield et al., 2019; Zachry et al.,
2019; Kutlu et al., 2020; Bishnoi et al., 2021; Chen et al.,
2021; George et al., 2021; Knight et al., 2021). Furthermore,
prior research has identified sex differences in dopamine
neuron activity and release (Xiao and Becker, 1994; Walker
et al., 2000; McArthur et al., 2007; Becker and Chartoff,
2019; Brundage et al., 2021; Zachry et al., 2021). These dif-
ferences in dopamine transmission between males and fe-
males could account for the observed sex differences in
dopamine-dependent behaviors (Lynch and Carroll, 1999;
Dubroqua et al., 2011; Eubig et al., 2014; Pitchers et al.,
2015; Stringfield et al., 2019; Zachry et al., 2019; Kutlu et al.,
2020; Chen et al., 2021; George et al., 2021). However, it is
not known whether sex differences during Pavlovian learning
are accompanied by distinct patterns of dopamine signaling.

In this study, we trained male and female rats on a
Pavlovian task where one cue was associated with a
small reward (one pellet) and another cue was associated
with a large reward (three pellets). Female rats displayed
higher levels of conditioned responding, a faster latency
to the food port, and a higher number of post-reward
head entries compared with male rats. We used fast-scan
cyclic voltammetry to record changes in dopamine re-
lease in the nucleus accumbens (NAc) throughout learn-
ing. The cue-evoked dopamine response did not encode
differences in reward size during the first six training
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sessions but did signal differences in value during later
sessions. There were no differences in cue-evoked dopa-
mine release between males and females. In contrast, the
dynamics of reward-evoked dopamine release was influ-
enced by both reward size and sex. Both male and female
rats displayed higher reward-evoked dopamine release to
the larger reward option, though females exhibited lower
reward-evoked dopamine levels compared with males.
These data illustrate that sex differences in dopamine
transmission are stimulus specific.

Materials and Methods

Subjects and surgery

All procedures were approved by the Institutional
Animal Care and Use Committee at The University of
Texas at San Antonio. Male (weight range, 300-350 g)
and female (weight range, 200-250 g) Sprague Dawley
rats [Charles River; age range, postnatal day 60 (P60) to
P65] were pair housed on arrival, and were given ad libi-
tum access to water and chow and maintained on a 12 h
light/dark cycle (n=8 male rats/9 electrodes; 5 female
rats/5 electrodes). Carbon fiber voltammetry electrodes
consisted of a carbon fiber housed in silica tubing and cut
to a length of ~150 um (Clark et al., 2010). Voltammetry
electrodes were surgically implanted to target the NAc
(relative to bregma: 1.3 mm anterior; =1.3 mm lateral; 7.0
mm ventral) along with an Ag/AgCl reference electrode.
Rats were single housed following surgery and allowed to
recover for >3 weeks before beginning training.

Behavioral procedures

After recovering from surgery, rats were placed and
maintained on mild food restriction (standard laboratory
chow: ~8 g/d for females; ~15 g/d for males) to target
90% free-feeding weight, allowing for an increase of
1.5% per week. Behavioral sessions were performed in
chambers (Med Associates) that had grid floors, a house
light, a food tray, and auditory stimulus generators (2.5
and 4.5 kHz tones). The chamber floors were thoroughly
cleansed with a disinfectant, and the walls and food port
were cleaned with 70% ethanol solution between every
subject. To familiarize rats with the chamber and food re-
trieval, rats underwent a single magazine training session
in which 20 food pellets (45 mg; BioServ) were noncontin-
gently delivered at a 90 = 15 s variable interval. Rats then
underwent up to nine Pavlovian conditioning sessions (1/
d) that each consisted of 50 trials where the termination of
a 5 s audio cue [conditioned stimulus (CS); 2.5 or 4.5 kHz
tone, counterbalanced across animals] resulted in the de-
livery of a single food pellet (Small Reward trials) or three
food pellets (Large Reward trials) and illumination of the
food port light for 4.5 s. The three food pellets on Large
Reward trials were delivered within 0.4 s after the end of
the CS presentation. Each session contained 25 Small
Reward trials and 25 Large Reward trials delivered in a
pseudorandom order, with a 45 * 5 s intertrial interval be-
tween all trials. Conditioned responding was quantified as
the change in the rate of head entries during the 5 s CS
relative to the 5 s preceding the CS delivery (Fonzi et al.,
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2017; Stelly et al., 2021). We also quantified the latency to
initiate a head entry during the CS. For the post-uncondi-
tioned stimulus (US) analysis, we calculated the average
number of head entries made during a 9 s post-US deliv-
ery time window. For more detailed analysis, we also
broke the 9 s time window into two 4.5 s epochs that cor-
responded to when the food tray light was illuminated
(Early US; 0-4.5 s) and an equivalent period of time when
the food tray light was turned off (Late US; 4.5-9 s).

Voltammetry recordings and analysis

Chronically implanted electrodes were connected to a
head-mounted amplifier to monitor changes in dopamine
release in behaving rats using fast-scan cyclic voltamme-
try, as described previously (Clark et al., 2010; Fonzi et
al., 2017; Oliva and Wanat, 2019; Stelly et al., 2019, 2020,
2021; QOliva et al., 2021). The carbon fiber electrodes were
held at —0.4 V (vs Ag/AgCl) with voltammetric scans ap-
plied at 10 Hz in which the potential was ramped in a trian-
gular waveform to +1.3 V and back to —0.4 V at a rate of
400 V/s. A principal component regression analysis
(Heien et al., 2005) was performed on the voltammetry
signal using a standard training set that accounts for do-
pamine, pH, and drift. The average postimplantation sen-
sitivity of electrodes (34nA/uM) was used to estimate
dopamine concentration (Clark et al., 2010). Chemical verifi-
cation of dopamine was achieved by obtaining a high corre-
lation of the cyclic voltammogram during a reward-related
event to that of a dopamine standard (correlation coefficient
? > 0.75, by linear regression). Voltammetry data for a ses-
sion were excluded from analysis if the detected voltamme-
try signal did not satisfy these chemical verification criteria
(Fonzi et al., 2017; Stelly et al., 2021). Voltammetry data for a
given trial were excluded if the principal component regres-
sion analysis failed to extract dopamine current on >25% of
the data points for a given trial (i.e., the residual Q value for
the regression analysis exceeded the 95.5% confidence
limit for the training set; Heien et al., 2005; Rodeberg et al.,
2017; Stelly et al., 2020, 2021).

The CS-evoked dopamine response was quantified as
the average dopamine response during the 5 s CS relative
to the 5 s before the CS delivery (Fonzi et al., 2017; Stelly
et al.,, 2021). The peak US-evoked dopamine response
was quantified as the maximum dopamine response in
the 3 s following US delivery relative to the 0.5 s before
US delivery. The area under the curve (AUC) of the post-
US dopamine response was quantified as the average do-
pamine response in the 9 s following US delivery relative
to 0.5 s before US delivery. To determine potential differ-
ences in the decay of reward-evoked dopamine release
between males and females, we normalized and aligned
to the peak US dopamine response following the Small
Reward delivery of the first session. These data were then
fit to a single-phase decay curve to calculate the tau for
each electrode (Oliva and Wanat, 2019).

Data analysis
Statistical analyses were performed in GraphPad Prism
9 and RStudio. Behavioral responding and dopamine
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Figure 1. Sex differences in behavioral responding during CS presentation. A, Training schematic for the Pavlovian reward size
task. B, Conditioned responding for males (filled squares) and females (open circles) during Small Reward (teal) and Large Reward
(purple) trials. C, Conditioned responding averaged across the first three sessions of training. D, Conditioned responding averaged
across the latter three sessions of training. E, Latency to respond to the food port. F, Latency to respond averaged across the first
three sessions of training. G, Latency to respond averaged across the latter three sessions of training. *p < 0.05, **p < 0.01.

quantification were analyzed using a mixed-effects model
fit (restricted maximum likelihood method), repeated meas-
ures (rm) where appropriate, followed by a post hoc
Sidak’s test. The Geisser-Greenhouse correction was ap-
plied to address unequal variances between groups. A re-
peated-measures correlation was used to correlate
dopamine signals and behavioral outcomes across all sub-
jects, ftrial types, and training sessions (Bakdash and
Marusich, 2017; Stelly et al., 2021). The full list of statistical
analyses is presented in Extended Data Tables 1-1, 2-1, 3-
1,4-1,and 5-1.

Histology

Rats were deeply anesthetized, and electrical lesions
were applied to the voltammetry electrodes followed by
intracardial perfusion with 4% paraformaldehyde. Brains
were removed and postfixed for at least 24 h, then subse-
quently placed in 15% and 30% sucrose solutions in
PBS. Brains were then flash frozen on dry ice, coronally
sectioned, and stained with cresyl violet. Electrode loca-
tions were mapped onto a standardized rat brain atlas.
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Results

Rats were trained on a Pavlovian conditioning task in
which one audio cue (CS) signaled the delivery of a single
sucrose pellet (US; Small Reward trial) and another audio
cue signaled the delivery of three sucrose pellets (Large
Reward trial, Fig. 1A). Conditioned responding was quantified
as the change in the rate of head entries during the 5 s CS rel-
ative to the rate of head entries during the 5 s preceding the
CS (Fonzi et al., 2017; Stelly et al., 2020, 2021). Rats in-
creased conditioned responding across sessions, with no dif-
ference between Small and Large Reward cues (three-way
mixed-effects analysis; session effect: Fps0486 = 14.01,
p < 0.0001; reward size effect: F 11y = 0.03, p=0.86; n=13
rats; Fig. 1B, Extended Data Table 1-1). There was a trend for
enhanced conditioned responding in female rats (sex effect:
Fass = 3.90, p=0.05; session x sex interaction: Fgss =
2.34, p=0.05; Fig. 1B, Extended Data Table 1-1). Rats also
decreased the latency to the food port across training ses-
sions, with no difference between Small and Large reward tri-
als (three-way mixed-effects analysis; session effect:
F(2_94,32_33) = 626, p< 0.002; reward size effect: F(1,1 1) = 051,
p=0.49; Fig. 1E, Extended Data Table 1-1). Females
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Figure 2. Sex differences in behavioral responding during US presentation. A, Schematic for post-US epochs: Early US (0-4.5 s);
Late US (4.5-9 s). B, Average head entries made during the full 9 s post-US window for Small Reward and Large Reward trials. C,
Average head entries made during the Early US for Small Reward and Large Reward trials. D, Average head entries made during
the Late US for Small Reward and Large Reward trials. **p < 0.01, **p < 0.001.

displayed a faster latency to respond across sessions com-
pared with males (sex effect: F; 55 = 8.80, p =0.004; Fig. 1E,
Extended Data Table 1-1), consistent with prior findings
(Eubig et al., 2014; Stringfield et al., 2019). We further ana-
lyzed these behavioral responses when averaged into three-
session bins. During the first three sessions there were no
sex differences in conditioned responding (two-way mixed-
effects analysis; sex effect: 111y = 0.90, p=0.36; Fig. 1C,
Extended Data Table 1-1), though females exhibited a faster
latency to enter the food port (two-way mixed-effects analy-
sis; sex effect: F 11y = 14.56, p=0.003; Fig. 1F, Extended
Data Table 1-1). During the latter three sessions, female rats
displayed higher levels of conditioned responding (two-way
mixed-effects analysis; sex effect: F; 11 =5.11, p < 0.05; Fig.
1D, Extended Data Table 1-1), though there were no sex dif-
ferences in the latency to respond (two-way mixed-effects
analysis; sex effect: F4 11y = 2.71, p=0.13; Fig. 1G, Extended
Data Table 1-1). Collectively, these findings illustrate that fe-
male rats display augmented behavioral responding within
the CS presentation compared with male rats during the first
six training sessions of Pavlovian learming. However, these
behavioral responses during the cue presentation did not re-
flect differences in the upcoming reward size.

Given the sex differences in CS-evoked behavior, we
next examined whether male and female rats differed in
their behavioral responses following the reward delivery.
Female rats performed a higher number of non-CS head
entries relative to males (Extended Data Fig. 1-1), which
suggests that females performed more head entries fol-
lowing the US. To address this possibility, we examined
the head entries performed in the 9 s after the reward was
delivered (Fig. 2A). Female rats exhibited greater post-US
head entries compared with male rats (sex effect: F(4 55 =
17.44, p=0.0001; Fig. 2B, Extended Data Table 2-1).
Additionally, rats performed more head entries following
the delivery of the Large Reward (three-way mixed-effects
analysis; reward size effect: F4 11y = 10.15, p=0.009; Fig.
2B, Extended Data Fig. 2-1 and Table 2-1). We further
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examined the post-US head entries in two separate
epochs that corresponded to when the food tray light was
illuminated (Early US: 0-4.5 s) and an equivalent period of
time when the food tray light was turned off (Late US: 4.5-
9's; Fig. 2A). During the Early US epoch, female rats made
a greater number of head entries compared with male rats
(three-way mixed-effects analysis; sex effect: F(1s5 =
18.60, p=0.0005; Fig. 2C, Extended Data Fig. 2-1 and
Table 2-1). During the Late US epoch, rats performed
more head entries following the Large Reward delivery
(three-way mixed-effects analysis; reward size effect:
F1,11) = 24.65, p =0.0004; Fig. 2D, Extended Data Fig. 2-1
and Table 2-1). Furthermore, there was a sex x reward
size interaction effect as female rats continued to demon-
strate a greater number of head entries than males
throughout the Late US epoch (sex effect: F1 55 = 12.20,
p=0.001; sex x reward size effect: F(1 s5) = 5.94, p =0.02;
Fig. 2D, Extended Data Fig. 2-1 and Table 2-1). Together,
these results illustrate that sex and reward size influence
the number of post-US head entries.

The emergence of Pavlovian conditioned responses de-
pends on dopamine signaling within the ventral striatum
(Darvas et al., 2014). Here, we performed voltammetry re-
cordings in the NAc to examine how the CS- and US-
evoked dopamine responses progressed across training
(Fig. 3A,B). Both male and female subjects exhibited do-
pamine release to the CS presentation (Fig. 3C). We quan-
tified CS-evoked dopamine release as the average
response during the 5 s CS relative to the 5 s before the
CS, identical to the manner in which conditioned re-
sponding was calculated (Fig. 1). CS-evoked dopamine
release did not differ between sexes or trial type in the
first six training sessions (three-way mixed-effects analy-
sis; session effect: F4 g703.64) = 3.22, p=0.06; sex effect:
Fu,30 = 0.07, p=0.80; reward size effect: Fy 1 = 3.54,
p =0.09; Fig. 3D, Extended Data Table 3-1).

To determine whether reward-evoked dopamine release
scaled with reward size, we quantified the maximum
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Figure 3. Dopamine release in the NAc during early training sessions. A, Location of voltammetry electrodes in males (black) and fe-
males (gray). B, Representative two-dimensional pseudocolor plots of the resulting current from voltage sweeps (y-axis) as a func-
tion of time (x-axis) of voltammetry recordings in the NAc. C, Average dopamine signals across training sessions in males (left) and
females (right). D, Average CS-evoked dopamine release across sessions. E, Average Peak US-evoked dopamine release across

sessions. F, Average US AUC-evoked dopamine release across sessions.

dopamine response during the 3 s after the reward was deliv-
ered relative to the 0.5 s before the US delivery (peak US).
Both male and female rats display a higher peak US dopa-
mine response during Large Reward trials compared with
Small Reward trials (three-way mixed-effects analysis; reward
size effect: F1 15 = 17.40, p=0.001; Fig. 3C,E, Extended
Data Table 3-1). We additionally analyzed the area under the
curve for the average dopamine response during the 9 s after
the US delivery relative to 0.5 s at the end of the CS (US
AUC). Dopamine levels during this post-US period were high-
er following delivery of the Large Reward compared with the
Small Reward (three-way mixed-effects analysis; reward size
effect: F(1,15 = 17.98, p=0.001; Fig. 3F, Extended Data Table
3-1). Furthermore, female rats displayed a lower US AUC do-
pamine response compared with male rats (three-way

March/April 2022, 9(2) ENEURO.0050-22.2022

**p < 0.01.

mixed-effects analysis; sex effect: F(1 30 = 7.91, p=0.009;
Fig. 3F, Extended Data Table 3-1). This difference in dopa-
mine levels between trial types was also evident when exam-
ining the dopamine response during the Early and Late post-
US epochs (Extended Data Fig. 3-1).

We next examined whether the lower post-US dopa-
mine levels in female rats could be explained by a differ-
ence in dopamine clearance. To address this, the data
were normalized to the peak US dopamine response and
fit to a single-phase decay curve (Oliva and Wanat, 2019).
This analysis was performed on the first training session
when there was a robust US dopamine response and only
for the Small Reward trials to minimize the potential influ-
ence of multiple reward deliveries on the dynamics of the
dopamine response. Females exhibited a decreased
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Figure 4. Dopamine release in the NAc during late training sessions. A, Average of sessions 7-9 dopamine signals in males (left)
and females (right). B, Average CS-evoked dopamine release. C, Average Peak US-evoked dopamine release. D, Average US AUC-

evoked dopamine release. *p < 0.05, **p < 0.001.

plateau (i.e., lower dopamine levels) compared with males
(unpaired t test, tg) = 2.65, p =0.03; Extended Data Fig. 3-
2). However, there was no difference in the tau between
male and female rats (unpaired t test, tg) = 0.92, p=0.38;
Extended Data Fig. 3-2), which indicates that the rate of
the decay of the US-evoked dopamine response is not
influenced by sex. Collectively, these results suggest
that in contrast to CS-evoked dopamine release, US-
evoked dopamine release encodes differences in re-
ward size throughout the post-US period. Additionally,
female rats exhibited a smaller US-evoked dopamine
response relative to male rats.

CS-evoked dopamine release did not convey differen-
ces in reward size during early training sessions (Fig. 4).
However, many studies demonstrate that the dopamine
response to cues can convey differences in reward value
in well trained animals (Fiorillo et al., 2003; Tobler et al.,
2005; Roesch et al., 2007; Gan et al., 2010; Hart et al.,
2015; Fonzi et al., 2017). To determine whether differen-
ces in CS-evoked dopamine emerge with further training,
a subset of rats underwent three additional training ses-
sions. In contrast to the first six training sessions, CS-
evoked dopamine release signals differences in reward
size in the following three training sessions (two-way
mixed-effects analysis; reward size effect: F(1 1) = 5.78,
p=0.04; Fig. 4A,B, Extended Data Table 4-1). The peak
US dopamine response did not differ by trial type in later
sessions (two-way mixed-effects analysis; reward size ef-
fect: Fi1,10) = 2.83, p=0.12; Fig. 4C, Extended Data Table
4-1). However, the US AUC dopamine response remained
higher following delivery of the Large Reward compared
with the Small Reward (three-way mixed-effects analysis;
reward size effect: F(1 109) = 24.54, p=0.0006; Fig. 4D,
Extended Data Table 4-1), and lower in female rats
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compared with male rats (three-way mixed-effects analy-
sis; sex effect: F4 19 = 8.76, p=0.01; Fig. 4D, Extended
Data Fig. 4-2), which is consistent with the findings from
the first six training sessions. Furthermore, significant sex
differences in conditioned responding and the post-US
head entries were also evident during these later training
sessions (Extended Data Fig. 4-1).

Prior studies have linked CS- and US-evoked dopa-
mine release to conditioned responding (Darvas et al.,
2014; Fonzi et al., 2017; Coddington and Dudman,
2018; Heymann et al., 2020; Lee et al., 2020; Morrens
et al., 2020; Stelly et al., 2020, 2021). Here, we used a
repeated-measures correlation analysis to determine
how conditioned responding relates to dopamine trans-
mission across all subjects and training sessions. While
CS-evoked dopamine release was not correlated with
conditioned responding (repeated-measures correlation;
conditioned responding: r,, = —0.04, p=0.60; latency:
rm = 0.06, p=0.40; Fig. 5A, Extended Data Table 5-1),
there was an inverse relationship between conditioned
responding and the peak US dopamine response (re-
peated-measures correlation: r,,, = —0.15, p =0.04; Fig.
5B, Extended Data Table 5-1). Furthermore, the number
of head entries occurring in the 9 s following reward de-
livery was related to the US AUC dopamine response (re-
peated-measures correlation: r,, = 0.17, p=0.02;
Extended Data Table 5-1). These results highlight that
behavioral responding during early Pavlovian learning is
linked to US-evoked dopamine levels and unrelated to
CS-evoked dopamine levels.

Discussion
The dopamine response to cues can signal differences
in value-related information in well trained animals (Fiorillo
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Figure 5. Relationship between dopamine and behavioral responding. A, Relationship between CS-evoked dopamine release and
conditioned responding. B, Relationship between peak US-evoked dopamine release and conditioned responding.

et al., 2003; Tobler et al., 2005; Roesch et al., 2007; Gan
etal., 2010; Hart et al., 2015; Fonzi et al., 2017). For exam-
ple, cue-evoked dopamine release conveys differences in
the reward rate (i.e., the time elapsed since the previous
reward delivery) after extensive training (Fonzi et al,
2017). However, cue-evoked dopamine release does not
signal differences in reward rate during the first six
Pavlovian training sessions (Stelly et al., 2021). Our cur-
rent results extend on these findings and demonstrate
that during the first six training sessions, cue-evoked do-
pamine release did not signal differences in reward size.
However, with further training, we find that reward size is
encoded by the dopamine response to cues. Together,
this suggests that cue-evoked dopamine signals differen-
ces in reward value through a multistep process. First,
cue-evoked dopamine signals an upcoming reward inde-
pendent of value. Additional training is then required for
cue-evoked dopamine release to encode differences in
reward value.

Prior studies have identified sex differences in behav-
ioral responding, as females display elevated motor activ-
ity compared with males in locomotor and anxiety-like
assays (Scholl et al., 2019; Bishnoi et al., 2021; Knight et
al., 2021). Furthermore, sex differences have been ob-
served across a variety of dopamine-dependent behav-
iors in mice and rats (Zachry et al., 2019; Kutlu et al.,
2020; Chen et al., 2021). For example, female rats display
a faster acquisition rate and elevated responding during
drug self-administration (Lynch and Carroll, 1999; George
et al., 2021). Female mice also exhibit higher levels of con-
ditioned freezing relative to males during fear conditioning
(Dubroqua et al., 2011). Sex differences have additionally
been identified in Pavlovian conditioning tasks using food
rewards (Stringfield et al., 2019). Specifically, female rats
exhibited greater levels of sign-tracking behavior (e.g.,
physical interactions with a lever cue), but there were no
sex differences in goal-tracking behavior (e.g., head en-
tries to the food receptacle; Stringfield et al., 2019). By
using audio cues in our Pavlovian task, animals were not
able to engage in standard sign-tracking behaviors.
Regardless, we identified prominent sex differences in
this Pavlovian task as females exhibited a higher level of
goal-tracking compared with males. In addition to behav-
ioral responses occurring during the cue, we analyzed the
post-US head entries into the food port. Both males and
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females performed more head entries following the deliv-
ery of the large reward option. Furthermore, female rats
performed more head entries compared with males
throughout the post-US period. These findings illustrate
previously unappreciated sex differences in behavioral re-
sponding following the delivery of rewards. We note that
the sex differences observed across some of our behav-
ioral metrics (latency and post-US head entries) could be
explained by higher levels of motor activity in females
(Scholl et al., 2019; Bishnoi et al., 2021; Knight et al.,
2021). However, our measure of conditioned responding
is normalized to underlining differences in motor activity
as we calculate the change in the rate of the head entries
during the 5 s CS relative to the rate of head entries during
the preceding 5 s. As such the sex differences in condi-
tioned responding in our task cannot be explained solely
by increased activity.

We identified stimulus-specific sex differences in dopa-
mine release using fast-scan cyclic voltammetry. Cue-
evoked dopamine release did not differ between males
and females. In contrast, the reward-evoked dopamine
response was lower in females relative to males. Prior
research has identified lower levels of dopamine trans-
mission in ovariectomized female rats compared with
castrated male rats using microdialysis (Becker and
Ramirez, 1981; Castner et al., 1993; Xiao and Becker,
1994). However, one must exercise caution generalizing
the findings from ovariectomized females to intact fe-
males, as there are no sex differences in basal dopamine
levels, as measured by no net flux microdialysis within
intact subjects (Xiao and Becker, 1994). Furthermore, a
meta-analysis of microdialysis research concludes no
basal or drug-induced sex differences in striatal dopa-
mine in rats (Egenrieder et al., 2020). As such, it is un-
likely that any potential basal differences in dopamine
levels between sexes could account for the stimulus-
specific sex differences in rapid dopamine transmission.

Increasing evidence suggests that the estrous stage
may contribute to the observed sex differences in do-
pamine release in mice, rats, and nonhuman primates
(Becker and Ramirez, 1981; Castner et al., 1993; Xiao and
Becker, 1994; Kritzer and Kohama, 1998; Zhang et al.,
2008; Becker et al., 2012; Perez et al., 2014; Calipari et
al., 2017; Becker and Chartoff, 2019; Yoest et al., 2019;
Zachry et al., 2021). For example, in mice and rats the
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burst firing rate of dopamine neurons in the ventral teg-
mental area is elevated during estrus compared with
other stages of the cycle in females, as well as compared
with males (Perez et al., 2014; Calipari et al., 2017).
Additional research finds that female mice elicit higher
striatal dopamine release during estrus in response to
electrical stimulation and cocaine, as measured using
fast-scan cyclic voltammetry in anesthetized subjects
(Calipari et al., 2017). We did not monitor the stages of the
estrous cycle in the current study, so we cannot assess
whether these sex differences in reward-evoked dopa-
mine release are because of cycling hormones. However,
the observed sex differences were selective to the reward
delivery (and not the cue) and were observed across ses-
sions. Together, this evidence suggests that the sex dif-
ferences in dopamine transmission are not mediated by
the estrous cycle and could instead reflect intrinsic differ-
ences between males and females. Additionally, we found
no difference in the rate of decay of reward-evoked dopa-
mine release between males and females, which suggests
that the observed sex difference is likely not because of
differences in dopamine clearance. Future studies are
needed to identify the source of these sex differences
with in vivo dopamine transmission, which may result
from anatomic and/or functional differences in the afferent
input conveying reward-related information. Recent work
identified regional differences in stimulated dopamine re-
lease between males and females (Brundage et al., 2021),
so it is unclear whether the sex differences in reward-
evoked dopamine release are present throughout the
striatum and across species. One potential limitation of
our study is the lower number of female rats with voltam-
metry electrodes used. However, we observed robust be-
havioral effects and changes in dopamine release in
females. Regardless, the lower US-evoked dopamine re-
sponse in females could account for the results from
human studies where females exhibit a diminished sensi-
tivity to rewards relative to males (Dhingra et al., 2021).

The magnitude of the dopamine response to the cue
presentation and reward delivery have been linked to be-
havioral outcomes in a variety of Pavlovian conditioning
tasks (Darvas et al., 2014; Fonzi et al., 2017; Coddington
and Dudman, 2018; Heymann et al., 2020; Lee et al.,
2020; Morrens et al., 2020; Stelly et al., 2020, 2021). Our
findings demonstrate a positive relationship between
head entries and dopamine release following reward de-
livery, which is likely mediated by the increase in both
post-reward head entries and the post-reward dopamine
response across training in females. We also observed an
inverse correlation between conditioned responding and
reward-evoked dopamine release. While this relationship
accounts for a relatively small amount of variation in the
data, these results parallel our prior research and is con-
sistent with the findings from studies using optogenetic
manipulations of the dopamine system (Heymann et al.,
2020; Stelly et al., 2020, 2021).

Cue-evoked dopamine release did not encode differen-
ces in reward value during the first six training sessions in
the current study and in our prior work (Stelly et al., 2021).
Our task design used two audio cues, and the rewards
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were delivered in the same location between trials, which
together could dampen the ability of the subject to dis-
criminate between the cues and their corresponding out-
comes. It is possible that cue-evoked dopamine release
could reflect differences in reward value during earlier
training sessions if we had used cues with different sen-
sory modalities. We find that conditioned responding did
not differ by reward size and is not related to cue-evoked
dopamine release within the first nine training sessions.
However, in animals extensively trained under a similar
Pavlovian task, an update in cue-evoked dopamine re-
lease can elicit a cue-specific change in conditioned
responding (Fonzi et al., 2017). Together, these stud-
ies indicate that the initial emergence of conditioned
responding is linked to the decrease in reward-evoked
dopamine release, whereas updates to cue-evoked
dopamine release in well trained animals leads to a
corresponding update in conditioned responding.
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