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Abstract: This narrative review provides an update on the applied pharmacology of lidocaine, its
clinical scope in anaesthesia, novel concepts of analgesic and immune-modulatory effects as well
as the current controversy around its use in perioperative opioid-sparing multi-modal strategies.
Potential benefits of intravenous lidocaine in the context of cancer, inflammation and chronic pain are
discussed against concerns of safety, toxicity and medico-legal constraints.
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1. Introduction

Lidocaine is one of the most commonly used drugs in anaesthetics. It was first
synthesised in 1942 under the name Xylocaine® and subsequently approved for use in
1948 in Sweden [1]. Since 1977, it has been listed in the World Health Organisation’s
Model List of Essential Medicines as a local anaesthetic and also for the management
of ventricular tachyarrhythmia [2]. These essential medicines are known to have public
health relevance in terms of efficacy, safety and cost-effectiveness [3]. As a local anaesthetic,
lidocaine can be used for surface anaesthesia, infiltration anaesthesia, intravenous regional
analgesia and nerve block and dental anaesthesia [4]. Historically, lidocaine has been
used intravenously as an anti-arrhythmic agent [5]. First reports of lidocaine’s analgesic
properties date back to the 1950s and 60s [6–8]. However, research has recently come to
light suggesting intravenous lidocaine may have potential benefits in the perioperative
setting. It may have a role in reducing both pain and postoperative nausea and vomiting
(PONV), which are two of the most common complaints after surgery and anaesthesia.
Therefore, it may prove to be useful in the improvement of postoperative pain and recovery
outcomes. This review aims to explore the mechanism of action of intravenous lidocaine,
its potential use in the perioperative setting, alongside its safety profiles and efficacy for
different types of surgeries. In addition to its anaesthetic properties, lidocaine may also
have immune modulatory properties which may be beneficial for cancer treatment, which
this review also aims to briefly delve into.

2. Pharmacology and Mechanism of Action

Lidocaine is an amide type local anaesthetic with the molecular structure of C14H22N2O [5].
When administered intravenously it is 60–80% protein bound, mainly to the acute phase re-
actant alpha-1-glycoprotein [9]. Lidocaine crosses both the blood brain barrier and placenta
through simple passive diffusion. It is also excreted in breast milk; hence, in order to avoid
toxicity to the breast-fed infant, this needs to be taken into consideration in breastfeeding
mothers [5].

The main metabolism of lidocaine is by oxidative N-dealkylation. This occurs mainly
in the liver by the cytochrome p450 system, specifically the enzyme CYP3A4 [10]. Lido-
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caine is deethylated to its active metabolite monoethylglicinexylidide (MEGX), then to
glycinexylidide (GX), and various other metabolites. The latter is further hydrolysed to
other byproducts found in urine. Figure 1 below shows the chemical structure of lidocaine
and its metabolites.
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The MEGX concentration has been used to evaluate liver function after lidocaine
administration [11]. In terms of its anti-convulsant and anti-arrhythmic properties, MEGX
has around 80% potency compared to that of lidocaine [12]; it also decreases the clearance
of lidocaine [13]. Conversely, GX has much less activity and is metabolised and excreted
by the kidney. MEGX and GX can cause toxicity in patients with cardiac failure and renal
failure, respectively [13].

Lidocaine alongside its metabolites is renally excreted, with just under 10% excreted
unchanged in urine [14]. The elimination half-life of lidocaine generally ranges from 90 to
120 min in healthy patients, and it can be prolonged in patients with coexisting illness such
as hepatic or renal impairment or congestive cardiac failure. Additionally, its excretion is
influenced by urinary pH [15,16].

A study by De Martin et al. [17] showed that lidocaine clearance is affected linearly
with renal impairment, with a double elimination half-life when compared to patients with
normal renal function. Likewise, in older patients, the elimination half-life is significantly
longer compared to their younger counterparts; thus, elderly patients should be given a
lower continuous infusion rate [18]. Lidocaine is also protein bound; hence, hypoalbu-
minaemia may predispose to the risk of toxicity due to the increased amount of free drugs
available. Hepatic blood flow is another limiting factor in its metabolism, despite lidocaine
being predominantly renally excreted [19].

3. Intravenous Use

According to the Vaughan Williams classification, lidocaine is a class Ib anti-arrhythmic
drug [19]. Drugs in this class block sodium channels during phase 0 of the action potential.
It is used intravenously as an anti-arrhythmic agent for cardiopulmonary resuscitation if
amiodarone is unavailable or contraindicated [4]. Lidocaine has a distribution half-life of
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five to eight minutes, beginning at the vascular compartments, then into the peripheral
tissues [5]. It first passes into well-perfused areas such as the heart and lung, followed
by less-perfused areas such as muscle and adipose tissue [5]. The brain and heart have
been found to have the highest blood concentrations of lidocaine compared to other organs,
which likely explains the CNS and CVS toxicity associated with local anaesthetics such as
lidocaine [20,21].

The efficacy of lidocaine as an anti-arrhythmic drug depends on its plasma concen-
tration. An initial bolus of lidocaine can transiently suppress arrhythmia. However, to
sustain this effect, a continuous infusion is required in order to achieve the therapeutic
plasma concentration. Unfortunately, the longer the duration of infusion, the higher the
likelihood of toxicity, as enzymes become saturated and clearance rates are decreased.
This is seen in particular after 24 h, as confirmed by clinical trials [22]. Research suggests
avoiding infusions of longer than 24 h duration and to give infusions based on the patient’s
body weight.

As mentioned previously, lidocaine’s main mechanism of action is through the block-
age of voltage gated sodium channels. By reducing the permeability of cell membranes to
sodium, this in turn decreases membrane depolarisation, blocking the propagation of the
action potential, and hence decreases the neural conduction of pain stimuli. At therapeutic
concentrations during intravenous infusion, lidocaine blocks muscarinic M1 and M3 recep-
tors, as well as NMDA receptors. At higher concentrations, lidocaine exerts its effects on a
number of other receptors such as 5-hydroxytryptamine-3 (5HT-3), nicotinic cholinergic
receptors, voltage-gated calcium channels (VGCC) and many others [23].

4. Clinical Properties of Lidocaine

This section describes various clinical domains which define the spectrum in which
lidocaine is being considered as therapeutically beneficial.

4.1. Analgesic, Anti-Hyperalgesic and Anti-Nociceptive

Firstly, lidocaine exhibits analgesic, anti-hyperalgesic and anti-nociceptive properties.
Eipe et al. [13] stated that lidocaine reduces the sensitivity and activity of spinal cord
neurones, and also decreases NMDA receptor mediated postsynaptic depolarisation.

There is no definitive single molecular mechanism of intravenous lidocaine as an anal-
gesic; its perioperative analgesic effects are likely multi-factorial. It involves the inhibition
of sodium, potassium and calcium channels, Gαq-coupled protein receptors and NMDA
receptors, to name a few. The 5HT3 receptor may also be involved, as systemic ondansetron
has shown to antagonise the sensory block produced by intrathecal lidocaine [24].

Kawamata et al. demonstrated that the injection of lidocaine prior to surgical inci-
sion reduces primary hyperalgesia more effectively when compared to injection after the
incision [25]. Primary hyperalgesia is limited to the site of incision, with hyperalgesia
to mechanical and thermal stimuli; secondary hyperalgesia, on the contrary, is noticed
in intact skin surrounding the incision site, with hyperalgesia due to mechanical stimuli.
Holthusen et al. [26] found that lidocaine did not affect primary hyperalgesia. However,
in another study, researchers found that intravenous lidocaine can temporarily suppress
primary hyperalgesia by stabilising peripheral nerves. Nevertheless, the effects of both
primary and secondary hyperalgesia are thought to be due to peripheral and central
sensitisation [27].

Remifentanil is a common opioid analgesic used intraoperatively to treat nociceptive
pain. However, at high doses, it is associated with postoperative opioid-induced hyper-
algesia [28]. A study by Cui et al. demonstrated in rats that the use of systemic lidocaine
can reduce remifentanil-induced hyperalgesia through inhibiting conventional protein
kinase C gamma (cPKCγ) membrane translocation [29]. Thus, intravenous lidocaine may
be a good option to counteract this ‘opioid-induced’ hyperalgesia through its proposed
anti-hyperalgesic effects.
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Numerous ion channels may be implicated in lidocaine’s analgesic properties. Volt-
age gated sodium channels (VGSCs) play an important role in nociceptive signalling and
sensory transmission. Research has discovered nine different isotopes of VGSCs, of which
six are expressed in the dorsal root ganglion, which is involved in neuropathic and in-
flammatory pain pathways [30]. Potassium channels come in multiple types, of which
voltage gated (Kv) subunits and tandem pore domain (K2P) channels are involved in pain
modulation [9]. Further, lidocaine increases intracellular calcium concentration. Modu-
lation of calcium is involved in mechanisms underlying neuropathic pain [31,32]. Low
voltage-activated T type calcium channels, specifically the CaV3.2 subtype, are involved in
both somatic and visceral pain [33].

4.2. Anti-Arrhythmic

Lidocaine, administered intravenously, is mainly used as an anti-arrhythmic agent.
Lidocaine 100 mg IV is included as part of the latest European Resuscitation Council
Adult Advanced Life Support guidelines as an alternative to amiodarone for patients in
ventricular fibrillation or pulseless ventricular tachycardia; an additional 50 mg bolus may
also be given after five defibrillation attempts [34]. It decreases the slope of phase 4 in the
action potential and changes the excitability threshold, resulting in a decrease in action
potential length and duration of refractory period of Purkinje fibres [19]. Despite this, the
caveat to consider is that lidocaine itself can predispose patients to arrhythmias, especially
at high doses or concentrations. On the contrary, a recent case report in 2020 suggested
that intravenous lidocaine dampened QT prolongation when given with azithromycin and
chloroquine/hydroxychloroquine [35].

4.3. Anti-Inflammatory

Lidocaine is known to have anti-inflammatory effects; although, the exact mechanism
remains unclear. Lidocaine can inhibit leucocyte activation, adhesion and migration [36]. It
also protects cells from inflammation through the reduction of neutrophil adhesion and
inhibition of the release of superoxide anions [36,37]. It has also been documented to block
the release of inflammatory mediator interleukin-1B in in vitro studies [38]. Lidocaine’s
direct effects on macrophage and polymorphonuclear granulocyte functions may also con-
tribute to its anti-inflammatory effects in addition to the inhibition of release of interleukins
involved in the inflammatory cascade. Further, it also inhibits prostaglandin biosynthesis
and release, which is another possible explanation for its powerful anti-nociceptive and
anti-inflammatory actions [19].

In vivo studies have also shown lidocaine at high concentrations to inhibit histamine
release from human leucocytes, mast cells and basophils [39]. Studies on murine models
showed that the level of pro-inflammatory markers remained low in the group treated
with intravenous lidocaine [40]. Unfortunately, human studies demonstrating the anti-
inflammatory properties of lidocaine are limited. A number of studies investigating ab-
dominal and colorectal surgeries such as laparoscopic cholecystectomy, have shown that
lidocaine’s use in the perioperative setting has reduced the surgery-induced release of
pro-inflammatory cytokines, for example, IL-6 and IL-8 [41–43].

A recent study in 2022 [44] investigated the effect of local anaesthetics on tumour necro-
sis factor-alpha (TNF-α) secretion. TNF-α normally plays an important role in inflammation
and carcinogenesis. The study found that with the use of lidocaine, 61.5% of individuals
demonstrated an ≥85% reduction of TNF-α-production of lipopolysaccharide-activated
human leucocytes. Hence, lidocaine may possibly be an option for treating chronic inflam-
mation or conditions with overactive immune responses, for example, acute respiratory
distress syndrome (ARDS), though further studies are needed to explore this further.

5. Evidence on Postoperative Outcome

In terms of improving postoperative recovery outcomes, a number of studies have
investigated the effect of intravenous lidocaine on different surgeries. Relatively speaking,
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abdominal surgery has been studied most in comparison to other surgeries, and will be
discussed briefly below.

5.1. Colorectal Surgery

Around 40% of patients experience a delay in resumption of normal bowel function
after colorectal surgery. This delay leads to symptoms of nausea, vomiting, constipation
and abdominal distension, which then require unpleasant supportive interventions such
as intravenous fluids and nasogastric tube insertion. There is no remedy to address this
delay. ALLEGRO, “A placebo-controlled rAndomised trial of intravenous Lidocaine in
acceLErating Gastrointestinal Recovery after cOlorectal surgery,” is the latest ongoing multi-
centre research study across the United Kingdom, investigating the use of intravenous
lidocaine to improve recovery after colorectal surgery [45]. Evidence corroborated from
various meta-analyses in the past have shown that perioperative lidocaine infusion at doses
of 1.5 to 3 mg/kg/h consistently improved postoperative Visual Analogue Scale (VAS)
pain scores in patients undergoing either open or laparoscopic abdominal surgery [46–48].
However, it is important to note that the recommended dose of continuous lidocaine
infusion should be no more than 1.5 mg/kg/h [23]. Intraoperative and postoperative
opioid requirements were also decreased with the use of lidocaine as an inpatient [48].
Further, perioperative intravenous lidocaine may benefit bariatric patients more as they are
more sensitive to respiratory depression caused by opioids [49]. In addition to reducing
pain, another benefit is a reduction in the duration of postoperative ileus by an average
of eight hours [47,50]. Further, decreased postoperative nausea and vomiting of up to
20% were reported, likely because opioid consumption was decreased [47,51]. Intravenous
lidocaine also reduced the length of hospital stay by an average of eight hours and up
to 24 h at most [46,47,51]. Lidocaine’s use has been reported to have slightly lower pain
scores [52] at one to four hours after surgery, alongside a reduction in postoperative ileus
duration and time to return of gastrointestinal function-time to first flatus and first bowel
movement. From the limited evidence above, it may be easy to presume perioperative
lidocaine is a useful analgesic adjunct to general anaesthesia in colorectal surgery. However,
when lidocaine is compared to another intervention such as epidural analgesia, one study
reported that intravenous lidocaine was inferior to epidural analgesia in major abdominal
surgery with regards to total opioid consumption; although, it did improve other aspects
of recovery [53]. This demonstrates limitations in the evidence, with the main one being
publication bias, where positive results in favour of lidocaine are more likely to be published.
Further, in many papers, namely the Cochrane Systematic Review [52], the trials reviewed
mainly used placebo as the control, which naturally makes a clinical effect more likely to
be detected, as opposed to studies which compare lidocaine to an alternate therapy, such
as one compared to epidural analgesia. Whilst the review gathers numerous trials, the
evidence remains of low quality due to the heterogeneity of the results. In addition, the
mechanism of action of lidocaine is extremely complex and there is no single established
molecular mechanism. A long list of receptors may be implicated, and these individual
receptors themselves have different levels of sensitivity which are further influenced by
many factors such as inflammation, trauma and concomitant medications. Thus, all the
evidence needs to be considered with the utmost care.

5.2. Other Surgical Specialties

Perioperative lidocaine was also shown to improve pain and reduce opioid consump-
tion for patients undergoing radical retropubic prostatectomy [54]. However, there was
little benefit for patients undergoing laparoscopic renal surgery [55]. Likewise, with car-
diothoracic surgery, lidocaine has little benefit in patients undergoing cardiac surgery [56]
but may have value for patients undergoing thoracic surgery. One systematic review [57]
investigated lidocaine’s effects on postoperative pain and recovery after cardiac surgery.
Insler et al. [56] carried out a randomised double-blinded trial of continuous low-dose
lidocaine intravenous infusions in coronary artery bypass graft (CABG) patients. Patients
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in the trial were given an 8 mg/mL lidocaine infusion after induction with fentanyl and a
mixture of fentanyl and midazolam for maintenance. The study concluded that the lido-
caine infusion did not decrease the length of ICU and hospital stay or time to extubation,
and also did not significantly decrease the use of other opioid analgesics [56]. On the other
hand, the lidocaine infusion reduced pain scores up to six hours after thoracic surgery [58].

Evidence for obstetric and gynaecologic surgery is limited and outcomes are mixed [59].
Further, a randomised double-blind placebo-controlled study of perioperative lidocaine
infusion for patients undergoing bariatric surgery found no difference clinically in terms of
postoperative outcomes including pain, nausea and vomiting, length of stay and oxycodone
consumption [60]. On a different note, for breast surgery, lidocaine’s short-term benefit is
limited; however, it may prove to be more useful long term as it has been reported to reduce
the incidence of chronic postsurgical pain at three and six months after mastectomy [61].

6. Immuno-Modulatory and Anti-Cancer Properties

Recent research has explored the possibility of perioperative lidocaine in improving
cancer outcomes, in particular its role in reducing the recurrence of metastatic cancer [62].
Cancer is a major public health and economic burden worldwide. Many patients undergo
surgery as part of their cancer diagnosis or treatment. An unavoidable consequence of
surgery is that cancer cells are dislodged, which provokes a physiological stress response
comprised of inflammation and angiogenesis. The surgical stress response is essential
to promote wound healing. Sadly, cancer is ‘a wound that does not heal’ [63]. Growing
evidence suggests that the surgical stress response may paradoxically facilitate the survival
and replication of residual cancer cells postoperatively, potentially dislodging cancer cells;
the formation of circulating tumour cells later metastasise to distant organs [64]. Laboratory
research has demonstrated that common anaesthetic drugs, for example, lidocaine, may
have anti-neoplastic effects. Reports dating as far back as 1982 [65] first suggested procaine
and lidocaine combined with doxorubicin enhanced doxorubicin cytotoxicity against a hu-
man melanoma cell line derived from malignant ascites. Since then, much more laboratory
evidence has come to light, suggesting lidocaine may exert its potential anti-neoplastic
effects via multiple pathways, in addition to other anti-inflammatory effects.

A lot of research has gone into studying the effects of lidocaine on breast cancer.
D’Agostino et al. [66] showed that clinical concentrations of lidocaine inhibit CXCL12-
induced CXCR4 signalling, which inhibits calcium release and actin polymerisation. This
in turn impairs cytoskeleton remodelling, and hence reduces the migration of breast cancer
cells. Another study suggested that lidocaine only affected cell viability or migration at
high or toxic concentrations via the arrest of cancer cells in the S phase [67].

Li et al. suggested that lidocaine can act as a chemosensitiser for cancer treatment [68].
Lidocaine enhanced apoptosis and sensitised cisplatin to a highly aggressive triple negative
breast cancer. Further, treatment with lidocaine caused the suppression of Ras Association
Domain Family 1A (RASSF1A) and Retinoic acid receptor β (RARβ2) gene methylation,
which is the mechanism by which lidocaine sensitises cisplatin to breast cancer cells [68].
Another chemotherapeutic agent sensitised by lidocaine is 5-fluorouracil (5-FU). Its com-
bination with 5-FU sensitised melanoma cells to 5-FU via upregulation of “miR-493 and
the down-regulation of Sox4- mediated PI3K/AKT and Smad pathways” [69]. Another
paper reported that lidocaine acts as a chemo-sensitiser to 5-FU through decreasing viabil-
ity, increasing apoptosis and downregulating expression of ATP-binding cassette (ABC)
transport proteins [70].

A study in 2019 indicated lidocaine’s role in suppressing the metastasis of breast
cancer via the suppression of pro-inflammation factors [71]. The study compared the effect
of perioperative lidocaine, propofol and steroids in breast cancer surgery. Results of the
study showed that both lidocaine and propofol could reduce pulmonary metastasis from
breast cancer, whereas steroids actually increased metastasis. Another study found that
intravenous perioperative lidocaine for breast cancer surgery decreased the postoperative
expression of neutrophil extracellular trapping (NETosis), which is a mechanism linked
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to increased metastatic risk. This may support the hypothesis that the use of intravenous
lidocaine for cancer surgery may reduce recurrence [72].

Other mechanisms of metastasis inhibition may be attributed to lidocaine’s anti-
inflammatory and anti-angiogenic effects, according to a study in 4T1 breast cancer cell
line in vitro and in vivo [73]. Taking all the evidence into account, all these studies point
to lidocaine’s potential role as an “anti-cancer drug”, so to speak. Fraser et al. also
demonstrated that lidocaine was shown to inhibit VGSC in breast cancer cells [74]. VGSCs
are expressed in active breast, colon and prostate cancers [74]. By inhibiting VGSCs, this
reduces cellular activity, hence leading to reduced cell division.

In lung cancer, in vitro studies demonstrated that lidocaine reduces ICAM-1 and Src
phosphorylation after the stimulation of tumour necrosis factor (TNF) [75]. By reducing
ICAM-1 activity, this may inhibit tumour cell adhesion to vascular endothelium, hence
preventing migration. It also suppressed matrix metalloproteinase 9 (MMP-9) secretion
significantly; another pointer to its potential role in inhibition of cancer cell invasion and
metastasis [75]. In addition to its anti-tumour effects, postoperative atrial fibrillation is a
common finding post-lung cancer surgery, and lidocaine has shown activity in suppressing
this [76].

In human hepatocellular carcinoma cells, lidocaine arrested the growth of HepG2 cells
and also induced apoptosis, possibly through an increase in Bax protein and activated
caspase-3 and decreasing Bcl-2 protein via extracellular signal-regulated kinase 1/2 and
p38 pathways; it also enhanced the sensitivity of cisplatin [77]. On the other hand, another
study showed that lidocaine at concentrations of 1.25 to 5 mg/mL inhibited proliferation of
bladder cancer cells in a concentration-dependent manner. When lidocaine was combined
with other chemotherapy agents such as mitomycin C, it also enhanced actions of these
antiproliferative agents [78]. Both of the aforementioned studies included both in vitro and
in vivo animal studies.

To summarise, numerous mechanisms have been proposed in the research of how
local anaesthetics such as lidocaine are thought to reduce cancer recurrence [79]. Such
mechanisms include but are not limited to (Figure 2):
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Figure 3. Indirect versus direct effects of local anaesthetics on tumour progression.

Figure 4 below is a compilation of the vast array of mechanisms by which lidocaine
exerts its effects on cancer cells.
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Despite the many studies, limitations are present which preclude definitive conclusions
to be drawn regarding the effect of lidocaine in reducing cancer metastasis and recurrence.
The plethora of evidence and studies demonstrate a multitude of potential mechanisms
by which lidocaine may act as an immune-modulating drug. However, each cancer has
different cell types which are unique in their function; thus, no clear consensus can be
made regarding the exact mechanism by which lidocaine may demonstrate a therapeutic
effect. Further research is needed in order to fully translate laboratory findings into
clinical implications.

7. Clinical Recommendations and Safety

With regards to lidocaine being used intravenously in the perioperative setting, there
are multiple reasons it may be used. One such reason is its use in reducing pain from the
propofol injection. Propofol-induced injection pain is a common occurrence during the
induction of anaesthesia with propofol. Whilst the underlying mechanism for this pain is
unclear, it is likely due to a combination of nociceptor stimuli and release of pain mediators
such as bradykinin. Studies have shown that lidocaine given prior to propofol injection,
either mixed with propofol or given separately, with or without venous occlusion, reduced
post-injection pain. Its exact mechanism in reducing pain remains unclear [80].

An international consensus statement was published in 2021 regarding the use of
intravenous lidocaine [23]. Current recommendations, broadly speaking, err on the side
of caution, as intravenous lidocaine remains unlicensed for analgesia. Like most medical
decisions, explicit informed consent from patients should be obtained where possible
before its use, so as to minimise any potential for legal disputes should they arise in the
future. Doctors need to take into account any absolute or relative contraindications, such
as renal or hepatic impairment, cardiac disease or conduction block, seizure disorders,
electrolyte imbalances, pregnancy, breast feeding or neurological disorders [81,82]. The
British National Formulary (BNF) also lists the following contraindications for intravenous
use: atrioventricular blocks, severe myocardial depression and sino-atrial disorders. Other
cautions to be aware of include acute porphyria, congestive cardiac failure and postcardiac
surgery [4].
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The exact dose of intravenous lidocaine to be used is debatable. The calculation of
the maximum recommended dose is based on the patient’s ideal body weight; although,
this is just a guide [83]. One study demonstrated that dosing based on actual body weight
resulted in 20% higher than predicted plasma concentrations, thus resulting in an increased
potential for toxicity [84]. Systemic lidocaine should be avoided altogether in patients
weighing under 40 kg and the maximum dose for any patient should not exceed 120 mg/h.
The initial loading dose should be a maximum of 1.5 mg/kg initially over 10 min, followed
by a continuous infusion of 1.5 mg/kg/h, with continuous reassessment with ECG and
blood pressure monitoring and pulse oximetry [23], according to the consensus statement.
Conversely, others have suggested that when IV lidocaine is started in theatre or critical
care areas, therapeutic levels of 2.5–3.5 µg/mL may be maintained on regular wards with
no need for continuous ECG monitoring [13]. The consensus statement [23] adopts a safer
approach, which recommends patients receiving IV lidocaine to be managed in a monitored
bedspace such as a high dependency unit (level 2 care). Another guideline from Imperial
College Healthcare NHS Trust states that “ECG monitoring should be continuous while any
patient remains on an IV lidocaine infusion [85].” Postoperatively, the minimum frequency
of observations such as sedation score, BP, HR, RR and SpO2 should be carried out every
15 min in the first hour, then every half hourly for two hours, and hourly thereafter.

Lidocaine should not be infused for over 24 h due to the risk of toxicity. Most patients
will have recovered sufficiently after 24 h as systemic lidocaine is not the only analgesic
being used. As a safety measure, lipid emulsion 20% should be readily available for
emergencies. In patients with an increased risk for toxicity, plasma lidocaine levels may be
monitored as an extra safety precaution [23].

The most commonly reported clinically effective dose of lidocaine infusion ranges from
1 to 2 mg/kg/h. This is in keeping with the consensus statement mentioned previously. Con-
tinuous infusion requires four to eight hours to achieve steady state plasma concentration;
therefore, eight hours should be allowed to achieve steady state before dose adjustments are
made [85]. Generally, there is no accumulation of lidocaine in healthy individuals.

Lidocaine has a narrow therapeutic index, with a therapeutic plasma level of 2.5 to
3.5 µg/mL [13]. Central nervous system (CNS) toxicity occurs when plasma concentration
exceeds 5 µg/mL and is definite at 10 µg/mL [13]. Patients who are awake typically
have predictable symptoms. Early symptoms include perioral paraesthesia and metallic
taste [14], followed by light-headedness and tinnitus. This progresses to muscle twitching,
a reduced level of consciousness and seizures. Toxicity, if left untreated, may lead to
respiratory depression and apnoea, or even cardiovascular collapse and coma [13]. The
higher the lipid solubility of a drug, the higher the risk of cardiotoxicity. Signs of cardiac
toxicity include but are not limited to arrhythmias, hypertension, hypotension, bradycardia
and conduction block.

Lidocaine toxicity more commonly manifests as neurological symptoms rather than
cardiovascular signs. In general, the cardiovascular system appears to be more resistant to
local anaesthetic effects compared to the CNS. However, cardiovascular toxicity remains
a significant adverse effect of local anaesthetic systemic toxicity. Signs of cardiac toxicity
occur when serum levels exceed 10 µg/mL [13]. All signs and symptoms of toxicity are
potentiated by acidosis, hypercapnia and hypoxia. Acidosis increases the risk of toxicity
because lidocaine dissociates from plasma proteins; hence, hypoalbuminaemia may also
predispose to toxicity [19].

The exact doses or concentrations at which toxicity manifests are difficult to predict
in patients; thus, careful continuous monitoring is required. Intravenous lidocaine is also
contraindicated if other local anaesthetic interventions are used concurrently, for example,
in various neuraxial blocks. The exact timing of when it can be used remains unclear.
Foo et al. [23] recommended lidocaine not to be used specifically within four hours of
interventions. However, some authors believe this four-hour rule to be problematic [86]. It
is easy to assume a straightforward additive effect when multiple local anaesthetics are
combined. However, it is likely more complex, because each patient has a slightly different
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physiology, and different anatomical structures may have different anaesthetic require-
ments, alongside different pharmacokinetic variables. As clinicians, there is the tendency to
assume multiple interventions automatically translate to additional benefits; however, this
may in fact increase the risk of harm to patients. Therefore, multiple interventions of local
anaesthetics (MILANA) should be avoided in susceptible populations [86]. Some strategies
to minimise local anaesthetic systemic toxicity (LAST) are shown in Figure 5:
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Despite the lack of guidelines, intravenous lidocaine is widely used. A survey in 2020
of Australian and New Zealand anaesthetists found that more than 50% of respondents
used lidocaine intravenously [87]. In addition, a survey of 16 Scottish hospitals [88]
found that 12 hospitals (75%) either use or plan to use intravenous lidocaine for the
management of acute pain. These hospitals have some sort of established or provisional
guideline. One hospital stated that intravenous lidocaine is briefly mentioned in the
Enhanced Recovery After Surgery (ERAS) patient information leaflet, but there is no
further information. In total, 50% of hospitals only allowed consultants to prescribe
lidocaine infusions; a small number allowed specialty trainees or acute pain nurses to
prescribe; and one hospital allowed any member of the medical staff to prescribe the
infusions. Across the Scottish hospitals surveyed, there was considerable variability in the
maximum duration of intravenous lidocaine infusion, ranging from 4 h to 72 h. Regarding
the concurrent use of local anaesthetic infusion, 1 hospital used the four-hour waiting
rule, whereas 5 out of 12 hospitals had no specific rule. In the United States of America,
for example, the University of Virginia [89], IV lidocaine is routinely used for analgesia
for acute pain management and also intraoperatively for various types of surgery; the
decision for postoperative use is made on a case-by case-basis. They also do not require
additional monitoring other than the standard protocol. The huge variability in protocols
and guidelines across different countries emphasises the need for national guidelines to
ensure safety if intravenous lidocaine becomes a part of everyday practise.
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8. Medico-Legal Implications and Licensing

In response to the consensus statement published by Foo et al. [23], an editorial [90]
was published which highlighted the dangers of using intravenous lidocaine and the limited
evidence regarding its clinical efficacy. In the United Kingdom, the Safe Anaesthesia Liaison
Group (SALG), and its parent organisation the Royal College of Anaesthetists and its Faculty
of Pain Medicine, do not endorse the recommendations in the consensus statement [90].
The literature is sparse with regards to toxicity from intravenous lidocaine, whereas reports
of toxicity from local or topical injection is much more readily available in comparison.
Supporters of the use of intravenous lidocaine argue that paradoxically intravenous use
is safer, as practitioners are more alert to potential side effects. However, issues of using
intravenous lidocaine as an unlicensed medicine remain. For example, if a continuous
intravenous lidocaine infusion is used, there is concern that practitioners who did not
commence the drug may be held responsible if any untoward event occurred. In addition,
as there is no specific infusion pump designed for intravenous lidocaine, using existing
medical devices to administer lidocaine would be considered “off-label”, and hence the
Hospital Trust would assume full legal liability for any malfunction or misuse [90].

From the clinical evidence, the Cochrane Review of 68 trials with 4525 patients [52]
ruled out any beneficial effect of lidocaine infusion at 24 h and 48 h post-surgery, despite a
bias in favour of the “drug of interest”, that is, lidocaine. Only at 1 to 4 h post-operatively
might there be some benefit, but this is still uncertain. Similarly, Weibel et al. [91] also
recognised that the evidence for intravenous lidocaine in improving abdominal surgery
outcomes is limited, and the best dose to be used remains uncertain. The clinical evidence,
legal implications alongside the fine therapeutic-toxic index of lidocaine, causes one to
seriously consider whether the use of this drug is appropriate. The Medical Devices,
Medicines and Healthcare Products Regulatory Agency (MHRA) does not support the
use of intravenous lidocaine for analgesia; manufacturers do not approve of its off-label
use [90].

9. Summary and Conclusions

Having gathered a multitude of evidence on this contentious topic, the verdict remains
unclear. Studies have shown that the use of intravenous lidocaine in the perioperative
setting may be beneficial depending on the surgical procedure. Current limited evidence
demonstrates a very small benefit for patients undergoing abdominal surgeries. “Primum
non nocere” remains the central tenet of medicine. Prior to any medical decisions, it is
essential for the risks and benefits to be weighed by the physician. Ultimately, it is at
the individual physician’s discretion whether or not to use intravenous lidocaine. The
physician must take responsibility for any possible harm which may befall a patient. To
mitigate potential harm to the patient, screening for comorbidities, careful monitoring,
correct dosing and having emergency drugs available: these are all crucial steps to be
undertaken if intravenous lidocaine is used.

In conclusion, intravenous lidocaine has the potential to play a pivotal role as a non-
opioid analgesic adjunct in perioperative medicine. As the concept of multi-modal analgesia
continues to evolve in the future, lidocaine is a cost-effective and readily available option to
minimise the excessive use of opioids in the management of postoperative pain. However,
at present, it is important to recognise that lidocaine itself is not a panacea. Current
evidence for both its clinical efficacy and safety profile still remains weak. Given the risks,
it is unclear if there is a clinically significant benefit for its use. Most important of all,
our decisions should be patient-specific and procedure-specific. In addition to lidocaine’s
analgesic role, there is limited evidence for using lidocaine as an “anti-cancer” drug, but
there is room to explore this further in the future. At present, it is unlikely lidocaine will be
used as a stand-alone “anti-cancer” drug, but it may serve as “chemotherapy synergists,”
so to speak. More studies are needed to substantiate the use of intravenous lidocaine in
clinical settings, especially with regards to its anti-inflammatory and potential immune
modulating properties.
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