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Aspergillus oryzae is a filamentous fungus that has historically been utilized in the
fermentation of food products. In recent times, it has also been introduced as a
component in the industrial biosynthesis of consumable compounds, including free
fatty acids (FFAs), which are valuable and versatile products that can be utilized as
feedstocks in the production of other commodities, such as pharmaceuticals and dietary
supplements. To improve the FFA secretory productivity of A. oryzae in the presence
of Triton X-100, we analyzed the gene expression of a wild-type control strain and a
disruptant strain of an acyl-CoA synthetase gene, faaA, in a time-series experiment. We
employed a comprehensive analysis strategy using the baySeq, DESeq2, and edgeR
algorithms to clarify the vital pathways for FFA secretory productivity and select genes
for gene modification. We found that the transport and metabolism of inorganic ions are
crucial in the initial stages of FFA production and revealed 16 candidate genes to be
modified in conjunction with the faaA disruption. These genes were verified through the
construction of overexpression strains, and showed that the manipulation of reactions
closer to the FFA biosynthesis step led to a higher increase in FFA secretory productivity.
This resulted in the most successful overexpression strains to have an FFA secretory
productivity more than two folds higher than that of the original faaA disruptant. Our
study provides guidance for further gene modification for FFA biosynthesis in A. oryzae
and for enhancing the productivity of other metabolites in other microorganisms through
metabolic engineering.

Keywords: Aspergillus oryzae, free fatty acid, secretory productivity, acyl-CoA synthetase mutant, Triton X-100,
RNA-seq, time-series gene expression

INTRODUCTION

Free fatty acids (FFAs) are lipid compounds that have a carboxyl group in a free form within the
molecule. FFAs are valuable, because their derivatives can be used as source materials for biofuels,
various pharmaceuticals, and dietary supplements (Lennen and Pfleger, 2013; Tamano, 2014). For
example, FFAs can be chemically combined with methanol in an acidic environment to generate
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fatty acid methyl esters (FAMEs) that are generally used as
biodiesel fuel (Ichihara and Fukubayashi, 2010). In particular,
FAMEs derived from biologically produced fatty acid precursors
have been used as additives in petroleum-derived diesel fuel
(Peralta-Yahya et al., 2012). FFAs can also act as feedstocks for the
production of pharmaceutical compounds [e.g., prostaglandin
E1 (PGE1)] and functional lipids [e.g., eicosapentaenoic acid
(EPA) and docosahexaenoic acid (DHA)] (Lennen and Pfleger,
2013; Zhou et al., 2016). PGE1 inhibits platelet aggregation
and vasodilation and has thus been used as a pharmaceutical
for patients with ischemic or myocardial reperfusion injury
(Zhu et al., 2017). EPA and DHA are possibly beneficial in the
normal aging processes of the brain and are thus used as dietary
supplements (Dyall, 2015).

Microbial free fatty acid production has been researched in
the bacterium Escherichia coli (Youngquist et al., 2013; Cao
et al., 2014; Wu et al., 2014; Shin et al., 2016; Li et al.,
2018), the yeast Saccharomyces cerevisiae (Chen et al., 2014;
Leber et al., 2015), the filamentous fungus Aspergillus oryzae
(Tamano et al., 2013, 2015; Tamano and Miura, 2016), and
photosynthetic microorganisms, such as microalgae (Ruffing,
2013, 2014; Eungrasamee et al., 2020).

Among them, A. oryzae is a food-safe filamentous fungus
that has been used in the production of fermented foods,
such as rice wine (sake), soy sauce (shoyu), and soybean paste
(miso), since ancient times, in Japan, where its characteristic
fermentation processes were used for converting starch, proteins,
and lipids into a range of small molecules, such as glucose,
amino acids, and fatty acids (Abe et al., 2006), to give
the fermented foods an enhanced flavor. More recently, the
metabolic pathways that drive fermentation in A. oryzae have
been directed to meet the requirements of the industrial-scale
production of compounds that have industrial applications,
such as amylase, protease, and lipase (Goldman and Osmani,
2007). Even though producing valuable compounds and
enzymes using other microorganisms has been attempted,
A. oryzae has an advantage in this industry. Owing to its
long history of use in the fermentation of food products, the
compounds produced by A. oryzae are generally regarded as
safe for human consumption. In this study, we attempted
to improve the secretory productivity of FFAs in A. oryzae,
as this organism already possesses the ability to produce
these compounds.

Typically, FFAs are produced via glycolysis, tricarboxylic acid
(TCA) cycle, and lipid biosynthesis pathways, such as by fatty
acid synthase (FAS). However, FFAs also act as intermediates
in the recycling of lipids by degradation and are subjected to
acylation by acyl-CoA synthetase and degradation by subsequent
beta-oxidation. Therefore, to control the amount of FFA being
produced, the function and expression of all genes involved in
the relevant metabolic pathways are being investigated using
the A. oryzae RIB40 genome as the representative genome of
the wild-type strain (Machida et al., 2005). Initial verified and
predicted gene annotations revealed the FAS gene (Tamano
et al., 2013) and the acyl-CoA synthetase gene (Tamano et al.,
2015) (faaA) in A. oryzae. Overexpression of FAS resulted in
a 2.1-fold increase in FFA productivity, and the disruption

of faaA resulted in a 9.2-fold increase in FFA productivity.
Combined FAS overexpression and faaA disruption did not
result in an increase in FFA productivity above that achieved by
faaA disruption (1faaA strain) alone and subsequent research
has thus prioritized the development of FFA production in the
1faaA strain.

Because the 1faaA strain is considered to contain no acyl-
CoA synthetase activity responsible for the degradation of FFA to
fatty acyl-CoA (Tamano et al., 2015), any further enhancement
of FFA production needs to support and complement the
changes brought about by the disruption of faaA. Absence of the
FFA degradation process results in dysfunctional beta-oxidation
metabolic activity, as fatty acyl-CoA is a beta-oxidation initiator
and leads to drastic increases in FFA production in wild-type
strains. Additionally, FFA production is confirmed to start in
the logarithmic growth phase, specifically in the second day of
a 5-day culture period (Tamano et al., 2013). Therefore, the
secretion of accumulated FFA was examined to provide more
intracellular space to accommodate continued FFA production
that would lead to further improvement in the overall FFA
yield from the 1faaA strain. As a result, when a non-ionic
surfactant, Triton X-100, was supplemented to a liquid culture
of the 1faaA strain, it was found that Triton X-100 caused
a spontaneous extracellular release of FFA into the culture
medium at more than 80% efficiency without causing any growth
inhibitory effects (Tamano et al., 2017). The mechanism by
which this occurs is deduced to be related to an increase in
membrane permeability which causes the secretion of FFA by
diffusion. Although this combination of genetic modification
and Triton X-100 supplementation increased the extracellular
release of FFA, it did not significantly increase FFA yield. Instead,
it resulted in a modest increase of approximately 1.1 folds
that was insufficient for large-scale production. Thus, further
investigation was necessary to uncover the unknown mechanisms
that restricted the combined effects of the faaA disruption and
Triton X-100 supplementation and to remove them to further
improve FFA yield.

Here, we devised and implemented a comprehensive
methodology that utilized several differential expression
algorithms to uncover the unknown mechanisms obstructing
the faaA disruption effect to further increase FFA secretory
productivity. Because we anticipated the effect of the faaA
disruption to vary with time, we applied our methodology
to RNA-seq data obtained in the presence of Triton X-100
over a duration of 120 h. We started a cursory search with
a selection of differential expression algorithms (Robinson
et al., 2009; Hardcastle and Kelly, 2010; McCarthy et al.,
2012; Love et al., 2014) and then examined the biological
functions of the selected genes to identify the processes
obstructing FFA productivity. We obtained an initial list of
differentially expressed genes (DEGs), which were associated
with FFA metabolism, and then, in combination with a list
of manually curated genes, used it to isolate the candidate
genes for modification. Finally, we verified those genes
by overexpressing each of them in the 1faaA strain to
successfully show an increase in FFA secretory productivity by
metabolic engineering.
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MATERIALS AND METHODS

Fungal Strains and Culture
We used an A. oryzae wild-type RIB40 strain distributed
by the National Research Institute of Brewing (NRIB,
Hiroshima, Japan) and its derivative faaA disruptant strain
named 1faaA (RIB40 1ligD:ptrA 1niaD:niaD of Aspergillus
nidulans 1pyrG:sC of A. nidulans 1faaA:pyrG of A. nidulans)
or the uracil-auxotrophic 1faaA strain named 1faaA_pyrG-
(RIB40 1ligD:ptrA1niaD:niaD of A. nidulans1pyrG:sC of
A. nidulans 1faaA). Both 1faaA and 1faaA_pyrG- strains
were constructed in our previous study (Tamano et al., 2015;
Tamano and Miura, 2016). We also used an A. nidulans wild-type
A851 strain distributed by the Fungal Genetics Stock Center
(Kansas City, MO, United States) in the preparation of DNA
fragments of both an orotidine-5′-phosphate decarboxylase
gene, named AnpyrG, as a uracil-auxotrophic selectable
marker, and a promoter of the constitutive gene Antef1, named
AnPtef1. Each strain was maintained on Czapek-Dox (CD)
agar medium with or without 5 mM uridine and 10 mM
uracil at 30◦C (Tamano et al., 2007). The CD agar medium
contained 2% glucose, and the glucose concentration was
increased to 10% for the CD liquid medium. Cultures were
prepared by inoculating 2.5 × 107 spores of each A. oryzae
strain in 50 mL of CD liquid medium supplemented with
1% (w/v) Triton X-100 (Code No. 648466, Merck Millipore,
Billerica, MA, United States) in a 250 mL flask, followed by
incubation at 30◦C with shaking at 200 rpm for 48, 72, 96,
120, 144, or 168 h.

RNA Isolation
Hyphae harvested after liquid culture were washed in 100 mL
of autoclaved Milli-Q water and ground using a mortar and a
pestle in liquid nitrogen. Frozen powders of ground hyphae were
transferred to 10 mL of the ISOGEN reagent (Nippon Gene,
Toyama, Japan), and total RNA was then extracted using a spin
column attached to the ISOGEN, according to the manufacturer’s
manual. Contaminating chromosomal DNA was removed from
total RNA by treatment with RNase-free DNase I (New England
Biolabs, Ipswich, MA, United States). DNase I-treated total
RNA was then purified with an RNeasy R© mini kit (QIAGEN,
Hilden, Germany), following the manufacturer’s instructions.
RNA was eluted with 100 µL of nuclease-free water and stored
at−80◦C.

RNA Sequencing
RNA samples were subjected to RNA sequencing (RNA-seq) in an
Illumina HiSeq 2500, and the sequence reads were trimmed using
cutadapt (Martin, 2011) and trimmomatic (Bolger et al., 2014).
Reads were mapped using TopHat (Trapnell et al., 2009), Bowtie
1 (Langmead et al., 2009), and the A. oryzae RIB40 ASM18445v3
reference genome (BioProject: PRJNA20809). The expression
data are publicly available at GenBank1 of the National Center
for Biotechnology Information (accession number: PRJDB8293).

1www.ncbi.nlm.nih.gov/

Differential Gene Expression Analysis
A flow chart of the multi-step comprehensive data analysis
performed in this study is shown in Figure 1. In preparation
for the analysis, the RNA-seq data were normalized and tested
for differential expression with the baySeq (Hardcastle and
Kelly, 2010), DESeq2 (Love et al., 2014), and edgeR (Robinson
et al., 2009; McCarthy et al., 2012) algorithms implemented
with their respective Bioconductor packages in the R statistical
programming environment (R Core Team, 2019) and the TCC
library (Sun et al., 2013). Genes with zero counts across all
samples were removed before the data were normalized. The
normalization method for contrasts with pseudoreplicates was
trimmed mean of M-values (TMM), and the normalization
method for contrasts without pseudoreplicates was DESeq2’s size
factor estimation. The DEGs were selected with a false discovery
rate (FDR) threshold of 0.05 for all algorithms, and a sample size
of 10,000 iterations was used in the baySeq tests. The normalized
data were comparatively analyzed using each algorithm described
in section “Contrast Categories Applied to the RNA-Seq Data
Analysis.”

Contrast Categories Applied to the RNA-Seq Data
Analysis
The following five contrasts were used to isolate the sources of
variation in the differential expression between strains.

Strain
Comparison between the RIB40 and 1faaA strains using time
point data as pseudoreplicates to identify prevailing genes
affected by faaA disruption.

Strain× Time
Comparison between the RIB40 and 1faaA strains with the time
variable to identify genes affected by faaA disruption with an
interaction term for strain and time.

Single time point (STPT)
Individual comparisons between the RIB40 and 1faaA strains at
48, 72, 96, 120, 144, and 168 h to identify genes affected by the
faaA disruption at specific time points.

Strain impact (SIT)
Comparisons between the RIB40 and 1faaA strains in the early
(48–96 h) and late (144–168 h) intervals, with the samples within
an interval acting as pseudoreplicates, to identify genes affected
by the faaA disruption during the logarithmic and stationary
growth phases. The DEGs selected by these comparisons in
the early and late intervals were referred to as S(early) and
S(late), respectively.

Time impact (TIT)
Comparisons between early (48–96 h) and late (144–168 h)
intervals for the RIB40 and 1faaA strains, such that the samples
within an interval acted as pseudoreplicates, to identify genes
affected by chronological changes in both strains. The DEGs
selected by these comparisons were referred to as T(control) and
T(faaA) for the RIB40 and 1faaA strains, respectively.
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Examination of Algorithm Performance
The lists of DEGs from each algorithm and contrast (Strain,
Strain× Time, STPT, SIT, and TIT) were compared using Mann–
Whitney tests, based on their fold-change rank. Because the
fold-change ranks of the DEGs were expected to be higher than
average, one-sided Mann–Whitney test was used, with a p-value
threshold of 0.05, and FDR was used to adjust for multiple testing.

Examination of Contrasts in baySeq Results
To confirm that there were functional differences between the
baySeq results and the full data set and between the results
themselves, the ratios of clusters of orthologous groups (COG)
of proteins was inspected in each gene list. A COG ratio was
the number of genes with a certain COG divided by the total
number of genes with COG annotations. The COG ratios were
verified by Chi-square test for goodness of fit, proportion test,
and hypergeometric test. The COG annotations for A. oryzae
were downloaded from the Comprehensive Aspergillus oryzae
Genome Database2. Combination COGs were created for genes
annotated with multiple COGs by concatenating the COG codes
and separating them by “|”. COGs annotated in fewer than
15 genes in the full data set were merged into an “Other”
combination COG, and genes without COG were labeled “NC.”
COG “S” corresponds to “function unknown.”

The Chi-square goodness of fit test was performed first to
compare the observed number of COGs in a DEG list with
the expected number found in the full data set using a p-value
threshold of 0.05 and FDR adjustment for multiple testing. As
the DEG lists from the Strain, Strain × Time, SIT, and TIT tests
were small, COGs with counts fewer than five were removed. In
addition, proportion tests were carried out to test for differences
in COG ratios between a DEG list and the full data set. In an
effort to select target genes for modification, the results from
the baySeq, Chi-square, and proportion tests were first used
to determine a list of DEGs that were affected by the faaA
disruption. Then, the FFA biosynthesis and degradation gene lists
were used to selectively filter DEGs affected by faaA disruption
from those that were specific to FFA metabolism. The filtered
DEGs were then tested using one-sided hypergeometric tests to
confirm that the number of filtered DEGs was greater than the
number of FFA genes in the full data set.

Manual Curation of Fatty Acid
Biosynthesis or Degradation Gene Lists
in A. oryzae
Lists of A. oryzae genes considered to play a role in FFA
biosynthesis or degradation were manually identified via their
COG annotations (Machida et al., 2005), followed by further
reference to improved annotation (Vongsangnak et al., 2008)
and functional analysis (Tamano et al., 2013, 2015) literature.
Initially, 516 genes were selected using version 9 of an
A. oryzae COG annotation list. The 516 genes were refined
to 38 fatty acid synthesis genes and 25 fatty acid degradation
genes by consulting with the Aspergillus Genome Database

2https://nribf21.nrib.go.jp/CAoGD/

(AspGD). The lists are available in the Supplementary Materials
(Supplementary Table 1).

Overexpression of Individual Genes in
the A. oryzae faaA Disruptant
Introduction of individual genes for overexpression into the
1faaA strain was performed by replacing its native promoter
with the A. oryzae tef1 (AO090120000080) promoter named
Ptef1 or the A. nidulans tef1 (AN4218) promoter named
AnPtef1. The Ptef1 and AnPtef1 promoters have constitutively
high transcriptional activities and have also been used in the
overexpression of other genes in A. oryzae (Kitamoto et al., 1998).
The primers used in this study are listed in Supplementary
Table 2. Each overexpressed 1faaA strain was constructed
using the following steps. The 1faaA_pyrG- strain (Tamano
and Miura, 2016) was transformed with the DNA fragment of
each gene to be overexpressed. Two 1-kb DNA fragments of
the promoter and the coding region, starting from the start
codon of each gene, were amplified with LU/LL and RU/RL
primer pairs from the A. oryzae RIB40 genomic DNA template
(Supplementary Figures 1A–N). These DNA fragments were
mixed with a 1.8-kb fragment of AnpyrG, and a 1-kb Ptef1
or AnPtef1 DNA fragment and were then subjected to fusion
PCR with primers LU and RL and an extension time of 5–
6 min (1 min/kb). The resultant fragment harboring a portion
of each gene with the promoter replaced with Ptef1 or AnPtef1
was introduced into the 1faaA_pyrG- strain by transformation.
The transformants selected on CD agar medium were subjected
to a clone check by PCR with the LU (or cU) and LL
(or cL) primers.

Quantification of Extracellular FFA
For the quantification of extracellular FFAs with the Free
Fatty Acids Half-micro Test Kit (Roche Applied Science,
Mannheim, Germany) following the manufacturer’s protocol,
5 µL of each culture supernatant was used. In detail, the
secretory productivity was calculated by dividing the FFA
concentration in the culture supernatant by the dry cell
weight, which was obtained by separation of hyphae from the
culture supernatant with Miracloth (EMD Chemicals, San Diego,
CA, United States) followed by washing and lyophilization.
The secretory production yield of FFAs was calculated by
converting the FFA concentration in the culture supernatant
to equivalent weight of free PA per liter of culture medium.
The quantity of FFAs from the overexpressed 1faaA strains
was compared to that from the 1faaA strain using Student’s
t-test. Strains were considered to have a significant difference in
FFA quantity compared to that of the 1faaA strain when then
p-value was <0.01.

Composition Analysis of Extracellular
FFAs
To analyze the composition of extracellular FFAs, 1 mL of
A. oryzae culture supernatant was transferred to a 2 mL screw-
cap microtube. After 1 mL of chloroform was added, the
mixture was agitated by vigorous shaking. After centrifugation
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at 13,000 × g at room temperature for 10 min, the upper
aqueous layer was removed with a 1 mL tip. Then, a 450 µL
aliquot of the lower chloroform fraction was transferred to
a 10 mL screw-cap glass centrifuge tube. The transferred
chloroform fractions containing the intracellular lipids were
evaporated in a centrifugal vacuum concentrator. The resulting
precipitates were dissolved in 300 µL of ethanol. The FFA
molecules in each lipid sample were specifically labeled with
2-nitrophenylhydrazine at the carboxyl group using an FFA
analysis kit from YMC (Kyoto, Japan). After the reaction was
completed, the labeled FFAs were extracted with 5 mL of
hexane, and 2 mL of the hexane fraction was evaporated in a
centrifugal vacuum concentrator. The labeled FFA precipitates
were dissolved in 300 µL of methanol and stored at 4◦C prior
to measurement by high performance liquid chromatography
(HPLC) using Chromaster (Hitachi, Ibaraki, Japan). Similarly
to the aforementioned samples, 100 µL of each FFA standard
solution at three concentrations (1.67, 3.33, and 5 mM) dissolved
in ethanol was used to construct standard curves with linear
regression. Four FFA standards (PA, SA, OA, and LA) were
used. The labeling reaction and successive treatments were
performed using the same protocols as those used for sample
preparation. Ten microliters of each labeled FFA sample or
standard dissolved in methanol was applied to HPLC equipped
with a YMC-Pack FA column (YMC; 0.46 × 25 cm) using
an acetonitrile-water (85:15) mixture as the mobile phase at a
flow rate of 0.7 mL/min and a column temperature of 35◦C.
Labeled FFAs were detected by monitoring absorbance at 400 nm.
FFA composition and quantity for each sample were calculated
based on the peak area using the corresponding labeled FFA
standard curves.

RESULTS

Certification of Algorithms for DEG
Identification
RNA-Seq expression data were obtained from the A. oryzae
RIB40 control strain and the 1faaA strain cultured in the
presence of 1% Triton X-100 and sampled at 48, 72, 96, 120,
144, and 168 h, as described in section “Materials and Methods.”
Data were processed from 12,682 predicted and transcribed
genes to select 12,137 genes after removing genes with no
sequence reads. Three differential expression algorithms were
used to identify the genes affected by the faaA disruption so
that FFA secretory productivity could be increased by gene
modification: baySeq (Hardcastle and Kelly, 2010), DESeq2 (Love
et al., 2014), and edgeR (Robinson et al., 2009; McCarthy
et al., 2012; Figure 1). These algorithms were applied to five
contrast categories, and the DEG lists were then compared
to identify the algorithm with the most robust performance
(Supplementary Table 3).

To compile the list of candidate genes for modification, the
most robust algorithm was determined by comparing the fold-
change ranks between the DEG lists and the full data set. This
was performed by Mann–Whitney test, and nine baySeq DEG

lists were found to contain genes of significantly higher fold-
change ranks than a randomly sampled list of the same size
(p-value < 0.05). In comparison, the lists from edgeR and
DESeq2 were only significant for six and one list, respectively
(Supplementary Table 4). Because the majority of baySeq DEG
lists contained genes with a high fold change, they were used in
the subsequent steps of selecting genes for modification.

Validating the baySeq Results for
Bottleneck Gene Selection
To confirm that the differential expression in the baySeq results
was associated with the faaA disruption and to select genes for
modification, the DEGs within each DEG list were investigated
using COG functional gene annotation. First, all the genes in
the full data set were annotated with COGs. There were initially
132 unique COGs that were reduced to 35 for clarity. This was
done by introducing the “NC” and “Other” combination COG
terms for genes with no COG and genes with rare combinations
of COGs, respectively. COGs were annotated in a large number
of genes, ranging from 8,492 genes annotated with “NC” and 15
genes annotated with “J|K|L|R.” The top ten annotated COGs
were single-term COGs (Supplementary Table 5). Some of
the absent COGs were “N” (cell motility), “W” (extracellular
structures), “Y” (nuclear structure), “A” (RNA processing and
modification), and “B” (chromatin structure and dynamics), as
expected for FFA accumulation. The COGs in each baySeq DEG
list were used to calculate COG ratios to represent their respective
list. The COG ratios were then compared between DEG lists
using the Chi-square test for goodness of fit, proportion test, and
hypergeometric test.

To confirm that the observed COG counts in the DEG
lists were significantly shifted toward specific metabolic activity
compared to the expected counts in the full data set, the COG
counts between the baySeq DEG lists and the full data set were
compared using the Chi-square goodness of fit test. The Chi-
square test showed significant differences in COG counts except
in the S(late) DEG list (Supplementary Table 6). This strongly
indicates an absence of any particular shift in metabolic activity
in the 144–168 h period.

Subsequently, proportion tests were performed to test for
significant differences in COG ratios between the baySeq DEG
lists in the STPT, SIT, and TIT contrast categories. This was
followed by a test for significant differences in COG ratios
between the DEG lists of S(early) and S(late), and T(control) and
T(faaA) separately, which confirmed that the contrasts isolated
the faaA disruption effect on strain and time (Supplementary
Table 7). First, there was a significantly higher ratio for “P”
(inorganic ion transport and metabolism) in the DEG lists of
the SIT contrast category than in the full data set. The ratio
for “P” was also significantly higher in the DEG lists of S(early)
than those of S(late) (Supplementary Table 8). Further, the
average fold change between the RIB40 control strain and the
1faaA strain in genes annotated with “P” in the SIT DEG lists
concurred with the COG ratio results. These results showed that
the genes annotated with “P” in the DEG list of S(early) were
more highly expressed than those in the DEG list of S(late)
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FIGURE 1 | Flow chart of the methodology used to select candidate genes for genetic modification for increasing FFA secretory productivity. Genome-scale RNA
samples were prepared in 24 h intervals, from 48 to 168 h, from the RIB40 control and 1faaA strains. RNA samples were subjected to RNA-Seq and processed into
normalized gene expression data for analysis. Analysis started with the extraction of differentially expressed genes by three algorithms (DESeq2, edgeR, and
baySeq), followed by their comparison after being separated into five contrast categories: Strain, Strain × Time, Single Time Point (STPT), Strain Impact (SIT), and
Time Impact (TIT). The resulting gene lists were analyzed by the Mann–Whitney test, and the results from the most robust method were further analyzed using
clusters of orthologous groups (COG). Finally, the results were refined using functional gene lists (Supplementary Table 1) to reduce the number of final candidates
that were then verified by genetic modification.
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(Figure 2). This observed decrease in the faaA disruption effect
in “P” may be the reason for the lack of overlap between S(early)
and S(late) (Supplementary Table 9). In terms of theorized
gene ontologies (GO), the DEG list of S(early) containing “P”
included three genes related to oxidation-reduction process and
three genes related to cation transport, whereas the DEG list
of S(late) with COG “P” included genes related to processes,
such as sulfite, copper ion, phosphate ion transport, hyphal and
filamentous growth, and cellular response to biotic and abiotic
stimulus. In contrast, there were no significantly different COG
ratios between the DEG lists of T(control) and T(faaA). Overall,
these results reveal a strong faaA disruption effect until 120 h,
when the increased FFA production initiated a metabolic change
that aligned gene expression in the faaA disruptant to be more
similar to that in the control strain. These findings confirm that
120 h is a suitable divider between the early and late stages
of FFA production.

Similarly, the COG ratios in the DEG lists of the STPT contrast
category were analyzed with proportion tests. When those COG
ratios were compared to those in the full data set, the COG
ratios were very different for the COGs “J” (translation, ribosomal
structure, and biogenesis), “O” (posttranslational modification,
protein turnover, chaperones), and “NC” (Supplementary
Table 7). However, no difference was observed in COG ratios
between time points.

As the proportion tests verified that the COG ratios were
similar among all DEG lists in the STPT contrast category,
the lists were considered combinable by intersection for the
subsequent selection of genes for modification. In addition to the
proportion test results, the DEG lists contained genes with high
fold changes between the RIB40 and 1faaA strains in general,
and their COG ratios were significantly different from those of the
full data set. Collectively, these findings suggested the intersection

of the DEG lists in the STPT contrast category to be the most
appropriate for selecting genes for modification.

Bottleneck Gene Selection and
Verification for Increasing FFA Secretory
Productivity in the A. oryzae faaA
Disruptant
To confirm increased FFA secretory productivity by gene
modification, genes were selected by a strict criterion. As
described above, the initial group of candidates was selected
by the intersection of the DEG lists in the STPT contrast
category and contained 1,450 genes (Supplementary Table 3).
These genes were then reduced to those suspected of being
associated with FFA metabolism using the manually curated
biological knowledge of gene functions in the FFA biosynthesis
and degradation lists (Supplementary Table 1). The resulting list
of candidates contained 16 biosynthesis genes (Table 1) and nine
degradation genes. These genes were verified for representation
of biosynthesis and degradation genes by comparison to the full
data set using hypergeometric tests (Supplementary Table 10).
Because additional gene disruption in conjunction with faaA
disruption was deemed unnecessary, only the overexpression of
biosynthesis genes was performed.

The selected genes were then individually overexpressed along
with the disruption of faaA to confirm that their overexpression
would further increase FFA secretory productivity. To
overexpress a target gene, the original promoter was replaced
by Ptef1 or AnPtef1. As a result, 1–5 positive homokaryon
clones for every overexpressed gene were obtained by PCR
(Supplementary Figure 2). FFA secretory productivity was
quantified using the amount of FFA secreted from one gram
of dried cell, and the productivity values were then compared

FIGURE 2 | Gene expression and ratios of differentially expressed genes from the S(early) and S(late) results with the COG function “P” compared to those in the full
data set. (A) Ratio of genes with the COG “P” (inorganic ion transport and metabolism) in the full data set and the DEG lists of S(early) and S(late). (B) Average log
fold-change between the RIB40 control and 1faaA strains in the DEG lists of S(early) and S(late) with the COG “P” with standard error bars. There were nine genes in
the S(early) results and ten genes in the S(late) results (Supplementary Table 9).
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TABLE 1 | The FFA biosynthesis genes that were selected for gene modification.

Gene ID BLASTP NR Annotation

AO090023000205 Probable ATP citrate lyase
subunit 2 (Neurospora
crassa)

ATP citrate lyase

AO090023000206 Hypothetical protein
(Neurospora crassa)

ATP-citrate lyase

AO090011000838 Acetyl-CoA carboxylase
(EC 6.4.1.2) – Emericella
nidulans

Acetyl-CoA carboxylase

AO090124000083 Fatty acid synthase, alpha
subunit (Emericella
nidulans)

3-oxoacyl-[acyl-carrier-
protein]
reductase

AO090124000084 Fatty acid synthase, beta
subunit (Emericella
nidulans)

Enoyl reductase domain of
yeast-type FAS1

AO090012000721 Hypothetical protein
(Neurospora crassa)

Palmitoyl protein
thioesterase

AO090005001021 Long chain polyunsaturated
fatty acid elongation
enzyme (Isochrysis
galbana)

Long chain fatty acid
Elongase

AO090102000393 Hypothetical protein
(Neurospora crassa)

Fatty acyl-CoA Elongase

AO090026000492 Microsomal
beta-keto-reductase;
Ybr159wp (Saccharomyces
cerevisiae)

17 beta-hydroxysteroid
dehydrogenase III

AO090005000456 Stearic acid desaturase
(Emericella nidulans)

Stearic acid desaturase

AO090023000893 Hypothetical protein
(Neurospora crassa)

Fatty acid desaturase

AO090011000488 Unnamed protein product
(Podospora anserina)

Delta 6-fatty acid
desaturase

AO090001000224 Oleate delta-12 desaturase
(Aspergillus flavus)

Oleate delta-12 desaturase

AO090102000339 Fatty acid desaturase
(Aspergillus oryzae)

AO090011000863 Hypothetical protein
(Neurospora crassa)

Diacylglycerol
O-acyltransferase

AO090701000644 Lipase (Aspergillus
parasiticus)

Diacylglycerol lipase

Using the Chi-square test, proportion test, and hypergeometric test along with
metabolic function filters, the 1,450 candidates, which were differentially expressed
between the RIB40 control and 1faaA strains in the intersection of the DEG lists of
the STPT contrast category from the baySeq results, were narrowed down to 16
genes for gene overexpression.

between the 1faaA strain and the derivative overexpressed
mutants. The results showed that, in 10 of the 16 overexpressed
genes, the FFA secretory productivity was increased by more
than two folds (Figure 3A). More specifically, genes of single-
subunit enzymes showed a higher yield than genes of subunits
of enzyme complexes. Strains overexpressing subunit genes
did not show a significantly different yield from that of the
1faaA strain. The overexpressed gene that caused the highest
increase in yield was AO090011000863, which encodes a
diacylglycerol O-acyltransferase (DGAT), and the overexpressed
gene that caused the second highest increase in yield was
AO090701000644, which encodes a lipase. FFAs are speculated

to be synthesized via triacylglycerol, and the enzymes encoded
by these genes are thus a part of the reactions occurring just
before FFA production (Figure 4). That is, a diacylglycerol
O-acyltransferase produces triacylglycerol from diacylglycerol,
and a lipase then produces FFA from triacylglycerol by
hydrolysis. These findings corresponded to an improvement of
FFA secretory productivity, as expected.

When inspecting the secretory production yield of FFA
specifically, the AO090011000863 overexpression mutant also
showed the highest yield at 2.33 g/L of culture volume
(Figure 3B). In contrast, the AO090701000644 overexpression
mutant only showed the 5th highest yield. That is, there
were three overexpression mutants showing higher yields
than this mutant.

The composition of the FFAs that were secreted by each
mutant strain was also analyzed using HPLC (Supplementary
Table 11). The results show that the AO090011000863
overexpression mutant had the highest secretory productivity
and production yield of FFA. This mutant also had the highest
content ratio in free SA, at 32.9%, while it had the lowest content
ratio in free LA, at 4.7%. The AO090701000644 overexpression
mutant had the second lowest content ratio in free LA, at 7.4%.

DISCUSSION

Free fatty acids are important in many industries so it is
important to be able to manufacture them at a large scale in
an environmentally friendly and renewable way. A. oryzae can
be engineered to produce FFAs and our comprehensive analysis
has allowed us to identify genes that can increase FFA secretory
productivity in the 1faaA strain. We also focused on some of the
upstream and downstream reactions of the FFA biosynthesis step
and determined which metabolic functions were affected by the
faaA disruption that increased FFA productivity.

Detecting differential expression with high confidence in
time series data can be difficult owing to factors that are
absent in non-time series experiments involving a similar
sample size, such as sampling rates and synchronization (Bar-
Joseph, 2004; Androulakis et al., 2007). However, the analysis of
time series expression was necessary when a clear relationship
between gene expression and time was observed in former
studies. In our endeavor to select genes for modification, we
maximized true positive results using a consensus between
multiple algorithms and contrasts by fold-change ranks (Shi
et al., 2008) and supplementation by manual verification in
the final step. The increase in FFA secretory productivity in
the overexpression mutants was mostly as expected, as outlined
in another study (Garber et al., 2011; Seyednasrollah et al.,
2013). We also introduced a pre- and post-120 h block into
the analysis when a clear change in metabolism was evident
between those time periods. As shown in a previous study,
the pooling of samples to improve dispersion estimation can
improve test performance (Oh et al., 2014), particularly in
DESeq2. Although pooling was valuable in the identification
of genes with the “P” annotation (inorganic ion transport
and metabolism) due to being significantly affected by the
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FIGURE 3 | FFA secretory productivity and yield of the 16 overexpression mutants relative to those of the 1faaA strain. Each gene overexpression mutant derived
from the 1faaA strain was tested for both FFA secretory productivity (A) and FFA secretory production yield (B) in conjunction with the 1faaA strain. The
overexpression mutants containing two overexpressed genes were named with the two gene IDs along with “&.” This also indicated that they are subunits of the
same enzyme complex and were modified together. The productivities of the 16 overexpressed mutants and the parental 1faaA strain were tested using Student’s
t-test and those with p-value < 0.01 are marked with “**”. The actual yield of each mutant is shown above each bar in italics.

FIGURE 4 | Predicted reactions of the overexpressed genes in the general metabolic pathway for FFA production in the 1faaA strain. The 16 genes that were
subjected to overexpression modification in addition to faaA disruption were designated with numbers from 1 to 16. These numbers are overlaid on the metabolic
pathway map and marked by a corresponding color to indicate the FFA secretory productivity change as a ratio compared to the 1faaA strain. Increasing FFA
secretory productivity is shown by the color of the gene number, shifting from yellow to red. The degree is based on the color key in the top right of the figure.

faaA disruption, it was not helpful in selecting genes for
modification. Overall, we found that the decision to conduct
time series expression analysis is still highly dependent on

the individual study. The reason is that the application of
multiple algorithms is necessary to account for expected and
unexpected factors, such as the strength of the relationship
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between expression and time and the biological causes underlying
detectable differential expression.

The effect of the faaA disruption was limited to the increased
expression of genes with the COG “P.” This increase was
considered reasonable, particularly during the 48–96 h period.
In one of the steps of FFA biosynthesis, there is a conversion
of palmitoyl-CoA to stearoyl-CoA by an elongase, where
cytochrome b5 acts as a cofactor. For cytochrome b5 to function,
a ferric ion needs to be chelated to form the heme core of the
molecule. Therefore, when faaA is disrupted to increase FFA
productivity, the processes that facilitate the incorporation of the
ferric ion should also increase in a coordinated manner, and this
was observed in the gene expression analysis, as expected.

In A. oryzae, FFA is considered to be produced from the
synthesis of triacylglycerol (i.e., triglyceride) (Figure 4; Tamano
et al., 2015). As in most organisms, its metabolic pathway begins
with the degradation of glucose to pyruvate by glycolysis. The
pyruvate is then transferred to the mitochondria, where it can be
further metabolized in the TCA cycle. When there is a sufficient
amount of glucose in the cell, this process allows citrate to
accumulate in the mitochondria, and some of the excess citrate
is secreted into the cytosol. There, the citrate is converted to
palmitic acid, which is a C16-saturated FFA, via a four-step
biosynthesis reaction. The palmitic acid is then transferred to
the endoplasmic reticulum via acylation, where it is subjected to
elongation and desaturation processes that produce the various
types of fatty acyl-CoA. Triacylglycerol is formed once the
fatty acyl-CoA is combined with glycerol and is released to the
cytosol as a lipid droplet. When the time comes for A. oryzae
to recycle triacylglycerol, it is hydrolyzed by lipase to produce
FFAs. However, FFAs generated in this way are subject to further
degradation by beta-oxidation until finally degraded to acetyl-
CoA.

In general, overexpression of genes downstream of palmitic
acid biosynthesis contributed more to the increase in FFA
production compared to genes upstream, with the exception
of AO090005001021. In particular, the overexpression of
AO090011000863 and AO090701000644, which are predicted to
encode DGAT and lipase, respectively, resulted in the highest two
increases in FFA productivity. These two genes are involved in
reactions that are immediately upstream of the FFA biosynthesis
step in the overall metabolic pathway (Figure 4), suggesting
that increased FFA secretory productivity can be achieved
by increasing the enzymatic reactions that are closer to FFA
biosynthesis steps. This understanding may be utilized in future
gene modifications for FFA biosynthesis in A. oryzae. This would
also be useful information for enhancing the productivity of
other metabolites in other microorganisms, by serving as a
guide for metabolic engineering. The relationship between FFA
productivity and manipulation of the reactions close to the
target synthesis step was further confirmed in overexpression
of ATP-citrate lyase, acetyl-CoA carboxylase, and FAS genes,
which resulted in low or no increase in FFA productivity in
this study. This may result from a feedback inhibition effect
by fatty acyl-CoA in the case of FAS (Tamano et al., 2013)
or the activity of a negative regulator known to be present

in A. oryzae, SnfA (Kan et al., 2019), in the case of acetyl-
CoA carboxylase. For ATP-citrate lyase, it maybe result from a
competing metabolic function for the product, acetyl-CoA, as it
is also used in the biosynthesis of sterol and other metabolites.
Thus, their overexpression seemed to result in no appreciable
effects on the overall FFA secretory productivity.

The secretory production yield was the highest for the
AO090011000863 overexpression mutant, at 2.33 g/L, whereas
it was the fifth highest for the AO090701000644 overexpression
mutant, at 2.01 g/L. The fifth rank for the latter is considered to
result from the reduced biomass compared to that of the other
three overexpression mutants in the second to fourth ranks.

As for the FFA composition, the AO090011000863
overexpression mutant showed the highest content ratio, at
32.9%, in free SA and the lowest content ratio, at 4.7%, in free
LA. The mutant also showed the highest content ratio, at 56.1%,
in free PA, together with the AO090023000893 overexpression
mutant. Therefore, overexpression of AO090011000863 is
considered ideal when saturated FFA, such as free PA and free
SA, are the target secreted products. In addition, a similar
pattern of FFA content ratio was seen to a lesser extent by
overexpression of AO090701000644. Hence, the effect on the
FFA composition of A. oryzae cells by the overexpression of
these genes was considered similar. In contrast, when free LA, a
desaturated FFA, is the targeted secreted product, overexpression
of either AO090011000488 or AO090001000224 is considered
most important, because their overexpression mutants showed
content ratios of free LA at more than 20% as well as relatively
high secretory productivities of FFA. Both genes are predicted to
encode desaturases, and it is thus considered reasonable to see
such characteristics resulting from their overexpression.
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