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Tissue pathology in multiple sclerosis (MS) is highly complex, requiring multi-dimensional
analysis. In this study, our goal was to test the feasibility of obtaining high angular
resolution diffusion imaging (HARDI) metrics through single-shell modeling of diffusion
tensor imaging (DTI) data, and investigate how advanced measures from single-shell
HARDI and DTI tractography perform relative to classical DTI metrics in assessing MS
pathology. We examined 52 relapsing-remitting MS patients who had 3T anatomical
brain MRI and DTI. Single-shell HARDI modeling yielded 5 sub-voxel-based metrics,
totalling 11 diffusion measures including 4 DTI and 2 tractography metrics. Based on
machine learning of 3-dimensional regions of interest, we evaluated the importance of
the measures through several tissue classification tasks. These included two within-
subject comparisons: lesion versus normal appearing white matter (NAWM); and lesion
core versus shell. Further, by stratifying patients as having high (above 75%ile) and low
(below 25%ile) number of MS lesions, we also performed 2 classifications between
subjects for lesions and NAWM respectively. Results showed that in lesion-NAWM
analysis, HARDI orientation distribution function (ODF) energy, DTI fractional anisotropy
(FA), and HARDI orientation dispersion index were the top three metrics, which together
achieved 65.2% accuracy and 0.71 area under the receiver operating characteristic
curve (AUROC). In core-shell analysis, DTI mean diffusivity (MD), radial diffusivity, and
FA were the top three metrics, and MD dominated the classification, which achieved
59.3% accuracy and 0.59 AUROC alone. Between patients, FA was the leading feature
in lesion comparisons, while ODF energy was the best in NAWM separation. Collectively,
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single-shell modeling of common diffusion data can provide robust orientation measures
of lesion and NAWM pathology, and DTI metrics are most sensitive to intra-lesion
abnormality. Combined analysis of both advanced and classical diffusion measures may
be critical for improved understanding of MS pathology.

Keywords: single-shell high angular resolution diffusion imaging, diffusion tensor imaging, tractography, support
vector machine, lesions, intra-lesion pathology

INTRODUCTION

Multiple sclerosis (MS) is a severe central nervous system disease
impacting > 2.8 million people worldwide (Msif Tmsif., 2020).
Focal lesions are the hallmark of MS pathology, characterized
by several changes, including demyelination, axonal injury, and
inflammation (Reich et al., 2018). In addition, MS pathology
alters tissue integrity not only in the normal-appearing tissue,
but also within the territory of established lesions, leading to
heterogeneous damage as seen in chronic active lesions. Ongoing
tissue damage in the latter is believed to play a major role
in the relentless progression of patient disability in MS (Reich
et al., 2018). However, robust measurements of the complex
types of MS pathology are still missing. Diffusion magnetic
resonance imaging (dMRI) serves as a promising tool for in vivo
assessment of tissue microstructure (Inglese and Bester, 2010).
Moreover, with advances in dMRI techniques, multi-dimensional
analysis of tissue properties becomes possible, including localized
analysis of lesion activities concerning specific white matter tracts
(Inglese and Bester, 2010).

Diffusion tensor imaging (DTI) is a common dMRI method
that reflects the orientational dependence of diffusion associated
with individual image voxels (Tournier, 2019). Diffusion tensor
imaging uses a tensor model, which defines diffusion anisotropy
according to three perpendicular diffusion axes originating
from a voxel (Tournier, 2019). Several studies have shown
that the mean diffusivity (MD) and fractional anisotropy (FA)
of DTI detect demyelination and axonal loss in MS, which
differentiates lesions from the normal-appearing white matter
(NAWM) (Schmierer et al., 2007). Within the lesion context,
there is evidence showing increased MD in the lesion core versus
perilesional white matter (Klistorner et al., 2018). However,
there are no systemic studies of core versus periphery of
lesions in MS, and use of a single tensor model in DTI,
which does not provide compartmental information, limits
its ability to detect specific processes of neuronal pathology.
High angular resolution diffusion imaging (HARDI) tackles
this problem by using advanced models which enable intra-
voxel analysis through increased angular sampling of diffusion
signals acquired typically with different diffusion weightings
(multi-shell HARDI) (Descoteaux, 2015). A range of multi-shell
HARDI models exist, divided mainly by the approach used to
model the properties of nerve fibers, such as the cylinder model
used in ActiveAx (Alexander et al., 2010), and the stick model
in neurite orientation dispersion and density index (NODDI)
(Zhang et al., 2012). But acquiring multi-shell HARDI data is
not always practical due to time constraints, particularly in a
clinical setting.

An alternative approach to multi-shell HARDI is modeling
densely sampled data acquired using one diffusion weighting,
namely, single-shell HARDI (ssHARDI) (Taquet et al., 2013). In
general, dMRI acquired with gradient sampling orientations≥ 45
is sufficient for this approach (Descoteaux, 2015). Current
investigations of ssHARDI mainly focus on its neurite orientation
characterization potential (Taquet et al., 2013). While some
work has explored the possibility of generating additional
compartmental metrics (Grussu et al., 2014; Magnollay et al.,
2014), the ability of ssHARDI for advanced intra-voxel analysis
of tissue properties remains unclear, particularly based on
typical DTI data.

In addition to advances in diffusion modelling, there have also
been considerable improvements in tractography investigations
based on dMRI (Tournier, 2019). Traditionally, individual white
matter tracts (e.g., corticospinal tract) traced by streamlines
of tractography form the mainstay for localized analysis of
diffusion metrics. However, the local orientation information
represented directly by the streamlines may be also critical
indicators of tissue properties, including streamline counts and
streamline termination frequency, providing a new dimension of
microstructural measurements (Ukmar et al., 2012).

The purpose of this study was to test the feasibility of
ssHARDI using clinically available dMRI, and investigate how
advanced metrics from ssHARDI and DTI tractography compare
to traditional DTI measures in assessing MS pathology. The
investigations used a machine learning technique, support vector
machine (SVM), to evaluate feature importance through several
tissue classification tasks. Specifically, based on 3D regions of
interest (ROIs), there were two classifications within individual
patients: (1) lesion versus the corresponding contralateral
NAWM, to obtain a basic understanding of the sensitivity of
the features to MS pathology; and (2) lesion core versus shell,
to evaluate the detectability of intra-lesion pathology by the
features. Between patients, there were also two analyses: lesion
comparisons, between patients having high (top 25%) and low
(bottom 25%) lesion counts as a surrogate for disease activity; and
NAWM comparisons, between the same subject groups.

MATERIALS AND METHODS

Sample
This study evaluated brain magnetic resonance imaging
(MRI) scans from a convenience sample of 52 participants
with relapsing-remitting multiple sclerosis (RRMS) who were
screened for participation in a clinical trial of domperidone as
a potential myelin repair agent (ClinicalTrials.gov Identifier:
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NCT02493049). Participants required at least one gadolinium-
enhancing lesion on a screening brain MRI to be eligible for
randomization to treatment in the clinical trial. In the present
study, we utilized the screening brain MRI scans of participants
who were not eligible to continue in the trial as they did not
contain any enhancing lesions. In addition, all MRI pulse
sequences used in this study were conducted before gadolinium
use, and therefore no contrast interference. Written informed
consent was obtained from all participants following study
approval by the Conjoint Health Research Ethics Board of the
University of Calgary.

Imaging Protocol
All participants had brain anatomical and diffusion MRI
undertaken at a 3T scanner (GE Healthcare, Discovery
MR750, Milwaukee, United States). Anatomical MRI
included T2-weighted and FLAIR images with repetition
time (TR) = 6000/7000, echo time (TE) = 100/126 ms,
matrix = 512 × 512, and slice thickness = 3 mm without
gap; and T1-weighted images with TR/TE = 8.2/3.2 ms,
matrix= 256× 256, field of view (FOV)= 25× 25 cm, and slice
thickness = 1 mm. The dMRI acquisition used an echo planar
sequence where b = 1000, 3 b0 volumes, and 45 directions;
TR/TE = 8000/61 ms; matrix = 120 × 120, with 2 mm (Inglese
and Bester, 2010) isotropic voxels; and FOV= 24× 24 cm.

3D ROI Development
To improve the analysis of contextual information, we derived
3D ROIs for all tissue regions, done initially using anatomical
MRI (Figure 1).

Lesion ROIs
Using the FSL library (Oxford, United Kingdom), all MRI
volumes were skull-extracted, and the T2 and FLAIR images were
then rigid-body co-registered to T1 images to optimize quality
and alignment (Jenkinson and Smith, 2001; Jenkinson et al., 2002;
Jenkinson et al., 2012). Lesion segmentation focused on brain
white matter, using an automatic toolbox (LST, v3.0.0, SPM12)
(Schmidt et al., 2012). Initially, the LST generated a whole-brain
lesion map per subject based on co-registered FLAIR and T1
volumes. The lesion map then underwent manual correction
using ImageJ (NIH, v1.52j) by referencing the co-registered
FLAIR and T2 images. Any area that contained a confluent
lesion, showing signal inhomogeneity but with pixels staying
connected, was considered a single ROI. Subsequently, lesion
ROIs were colocalized across slices using the ‘cluster’ command in
FSL with 26-connectivity to obtain 3D ROIs, which were further
sorted by ROI size.

Contralateral NAWM ROIs
The NAWM ROIs were essentially the mirror image of the
lesion ROIs established above. To ensure validity, we applied
several quality-control steps. The first step was lesion-filling
(Battaglini et al., 2012) in the referencing T1 MRI, followed
by creation of a left-right flipped mirror image of the volume.
The accuracy of volume flipping was ensured through a cross-
correlation-based nonlinear co-registration process between the

reference and mirror T1 volumes, using the “SyN” option in
the ANTs software (Avants et al., 2008), from which a left-right
transformation was obtained. Applying the transformation to the
generated lesion masks made the latter geometrically matched to
the mirror volume of the reference T1. After left-right flipping,
the transformed lesion masks became the “raw” contralateral
NAWM ROIs. The next step was refinement of the NAWM ROIs,
including eliminating areas overlapping with any lesion region.
This step ensured that each 3D NAWM ROI corresponded to
each unique 3D lesion ROI with no contamination by tissues of
the other type (see Figure 1).

Lesion Core and Shell ROIs
The core-shell segmentation focused on lesion ROIs that were
large enough to encapsulate a 3 × 3 × 3 cube of voxels.
Specifically, defining a lesion core ROI used a 3D volumetric
erosion process applied to an eligible lesion mask, which allowed
to retain only the central voxels not in contact with any
non-lesion background area. Then, subtracting the core from
the full lesion ROI produced the single-voxel-thick shell ROI
for each lesion.

dMRI Analysis
Pre-processing and DTI Analysis
The dMRI data first underwent eddy current correction
(Andersson and Sotiropoulos, 2016). To limit variations, we
averaged the 3 b0 volumes and then co-registered the mean
volume to the T1 structural space. The resulting mean b0 volume
acted as a reference in transforming all calculated diffusion maps
to the same T1 space prior to quantitative evaluations. DTI
calculation used the FDT procedure in FSL, which provided 4
classical outcomes: MD, FA, axial diffusivity (AD), and radial
diffusivity (RD).

ssHARDI Analysis
Given the relatively high angular nature of our dMRI
acquisitions, we also explored ssHARDI modeling. In particular,
to improve computing efficiency, we used a new modeling
method: Accelerated Microstructure Imaging via Convex
Optimization (AMICO), which generated equivalent measures
to ActiveAx and NODDI (Daducci et al., 2015). Our AMICO
outcomes included axonal diameter, axonal density, and
intracellular volume fraction (ICVF) from ActiveAx, and
orientation dispersion index (ODI) from NODDI (Alexander
et al., 2010; Zhang et al., 2012). In addition, to further probe
intravoxel orientation information beyond ODI, we calculated
the orientation distribution function (ODF) of diffusion
(Descoteaux et al., 2007). This in turn enabled us to generate a
new parameter termed ODF energy (Figure 2), which referred
to the energy of diffusion oriented at individual directions.
The energy was calculated as log (pˆ2), where p represented
a collection of probabilities of diffusion magnitude observed
at all possible directions. The probabilities were obtained by
fitting the diffusion magnitude values from each direction to a
normal distribution.

In addition, to test the feasibility of using AMICO to
evaluate ssHARDI, we performed an additional experiment to
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FIGURE 1 | Regions of interest development. (A) An example lesion region of interest (ROI) in the T1- FLAIR MRI space (purple mask); (B) A mirror-image of the
T1-weighted MRI for developing the contralateral normal appearing white matter (NAWM) ROI (green mask) of the lesion shown in panel A; (C) the finalized
contralateral NAWM ROI of the lesion produced using (panel A,B), along with converse co-registration between the corresponding image volumes; the blue and
purple areas within the lesion represents the core and shell ROIs, respectively; and (D) 3D whole brain lesion masks produced by grouping adjacent ROI voxels
within and between slices.

FIGURE 2 | Sample diffusion metrics based on DTI, ssHARDI, and DTI tractography models. Shown are measures from DTI: (A) axial diffusivity, (B) radial diffusivity,
(C) mean diffusivity, and (D) fractional anisotropy; ssHARDI: (E) orientation dispersion index, (F) density, (G) diameter, (H) intracellular volume fraction, and (I)
orientation distribution function (ODF) energy; and DTI tractography: (J) fiber density index and (K) fiber termination index. Shown in (L) is an example b0 image from
DTI for reference.

compare outcomes from different datasets. This included: (1)
single-shell, 2-shell, and 3-shell HARDI data freely available
online from the Human Connectome Project (HCP) (Van Essen
et al., 2012); and (2) single-shell data from our own study.

The comparisons were done both visually and quantitatively
with a concentration on 3 ssHARDI measures out of AMICO
ActiveAX: axonal diameter, axonal density, and ICVF. NODDI
ODI had been shown to be similar between calculations of
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single- and multi-shell data (Zhang et al., 2012). In quantitative
assessment, we computed the variance of the aforementioned
measures at a regional level in 10 example white matter
structures bihemispherically: forceps minor, forceps major, genu
and splenium of the corpus callosum, and posterior limb of
the internal capsule. Each ROI was sized 4 × 4 pixels, which
was the maximal uniform dimension that could be fitted within
these structures. Statistical analyses were conducted using one-
way ANOVA followed by correction for multiple comparisons
where applicable.

DTI Tractography Analysis
We performed tractography based on DTI using the Diffusion
Toolkit (MGH GCRC, United States) (Wang and Wedeen,
2007), which applied a deterministic algorithm, fiber
assignment by continuous tracking (FACT) (Wang and
Wedeen, 2007). Streamline propagation followed a 35◦ angular
threshold as recommended.

Using the rigid-body transformation matrix derived above
from FSL, we also aligned the tractography to the T1 structural
space. Based on the TrackVis method (v0.6.1) (Wang and
Wedeen, 2007), we evaluated two main tractography measures
(see Figure 2): streamline density index (FDi) and streamline
endpoint index (FTi), indicating the counts of streamlines
passing through or terminating in each voxel, respectively. Our
in-house experiment showed that tractography features based on
DTI were similar to ssHARDI, so we focused on DTI only here.

SVM Analysis
In feature ranking, we split the whole dataset randomly into 10
folds (portions), using 9 folds at a time, and repeated 10 times.
In classifications, 10-fold cross-validation was performed, with 9
folds for training, and the 10th held-out fold for testing, in each
iteration. As a standard practice, we also normalized all feature
outcomes to the range 0–1.

We applied a linear SVM to rank the diffusion features
through recursive feature elimination (SVM -RFE) (Guyon et al.,
2002), with the regularization term fixed to one for optimal
model generalization. The squared weights of each attribute of
the SVM served as the ranking criteria such that a feature with
the smallest weight ranked the lowest. The average ranking of a
feature from all model constructions (100 in total) represented
the final ranking of the feature.

To assess the contribution of each feature to model
classifications, we developed another linear SVM with iterative
construction (SVM-IC), achieved by adding features to the
model one-by-one from the highest to the lowest rankings.
With each feature added, the model is reconstructed through
10-fold cross validation. This provided data to build the rank
aggregated receiver operating characteristic (ROC) curves for
each combination of successively ranked features, and compute
evaluation metrics including the area under the ROC (AUROC)
and accuracy, averaged from all tests.

Patient Stratification
To explore how the imaging features could differentiate patient
groups, we stratified the participants as having high and low

number of MS lesions as a surrogate of disease activity. The lesion
numbers from individual patients were ranked by percentiles. To
maximize the likelihood of detecting potential differences, our
analysis focused on two patient groups that had highly different
lesion numbers: one with the most lesions (≥35) that ranked
above the 75%ile, and the other with the least lesions (≤15) that
ranked below the 25%ile. Group comparisons were done for both
lesion tissue (whole lesion ROIs) and NAWM regions, using
similar SVM strategies as described above for feature ranking and
tissue classification.

Statistical Analysis
Assessment of all outcomes used the Scikit-Learn package in
Python (v0.22.1) and R (v3.6.3). Comparing model performance
used the McNemar’s test (Agresti, 1990) for accuracy, and
DeLong’s test (DeLong et al., 1988) for AUROC, including model
against chance, and between models successively generated.

RESULTS

Sample Characteristics
Of the 52 participants, the age range was 18–60 years, Expanded
Disability Status Scale was 0–5.5; 36 were women. In total, we
identified 2139 lesion ROIs, 4 to 169 per subject; 1560/2139
lesions had matching contralateral NAWM ROIs, 1 to 119 per
subject. Among the 1560 lesions, 243 had core-shell analysis
(Table 1). In addition, 13 participants had ≥ 35 lesions,
totaling 818 lesions, and 12 participants had ≤ 15 lesions,
totaling 119 lesions. Similarly, there were 818 and 119 matching
contralateral NAWM ROIs in each patient group respectively.
Further, example outcomes from ssHARDI modeling appeared
similar to that from multi-shell data, including the measures
from our own DTI scans (Figure 3). Quantitatively, there were
no significant differences in variance for diameter, density, or
ICVF (p= 0.75, 0.18, and 0.11, respectively) between the different
shell calculations using HCP data or data from our own study
(Table 2). Further exploration using paired Student’s t-tests
showed that there were also no significant differences (p > 0.05)
between the 1-shell measures from HCP and our DTI data in
variance of any of the assessed variables following ssHARDI
modeling. In total, there were 11 features calculated from all
diffusion models.

TABLE 1 | Lesion counts and volumes by group.

Lesion ROIs Number Lesion volume (mm3)

Mean Standard error Min Max

All 2139 256.21 25.65 3.81 16443.64

NAWM-paired 1560 45.41 1.86 3.81 929.88

Core-shell 243 158.14 8.34 35.29 929.88

Shell – 144.89 6.93 34.33 735.35

Core – 13.25 1.79 0.95 243.20

ROI, regions of interest; NAWM, normal appearing white matter.
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FIGURE 3 | Outcome comparison between single-shell and multi-shell acquisitions. Shown are sample HARDI outcomes based on the ActiveAx model implemented
in AMICO using the online Human Connectome Project data (left columns): b = 1000, b = 1000 and 2000, and b = 1000, 2000, and 3000 for the 1-, 2-, and
3-shell, respectively; and using our own diffusion data in this study based on ssHARDI (right column), with b = 1000. All represent in vivo datasets.

TABLE 2 | Comparison of variance between measures from different shells and datasets computations.

HCP1 HCP2 HCP3 In-house ANOVA p-value ssHARDI p-value

Diameter 1.416713 1.313007 1.449823 0.939283 0.749132 0.131976

Density 3.62E-06 2.94E-06 3.69E-06 8.1E-06 0.175857 0.192801

ICVF 0.006766 0.006788 0.006341 0.001743 0.114337 0.050831

HCP1-3, Human connectome project data from 1 to 3 shell acquisitions; In-house, our own “1-shell” DTI data; ssHARDI p-value, Student’s t-tests for variances between
HCP1 and In-house data.

Lesion-NAWM Analysis
Tissue alignment metrics ranked higher than magnitude metrics.
Specifically, the top three rankings were: HARDI ODF energy,
DTI FA, and HARDI ODI (Figure 4). Tractography FDi (fourth),
DTI AD (fifth), and tractography FTi (sixth) all ranked within the
top half of the 11 features, relatively higher than the other DTI
and ssHARDI features.

Further assessments using the classification model revealed
similar trends. Essentially, combining all top three features (ODF
energy, FA, and ODI) in the SVM-IC model achieved a 0.65
accuracy and 0.71 AUROC (Figures 5 and 6). McNemar tests
showed that model accuracy with ODF energy alone significantly

outperformed chance (p < 2.2e-16) and improved further with
addition of FA (p< 2.2e-16). ROC analysis mirrored these results.
The AUROC was significantly better using ODF energy alone
(p = 2.95e-6) than chance and improved with FA (p < 2.2e-
16). Further, the AUROC peaked at 0.71 with both ODI and FDi
added, but did not change significantly with further inclusion of
the remaining features (Table 3). Model accuracy peaked at 0.66
with all but the lowest-ranked feature (DTI RD) included.

Core-Shell Analysis
Feature ranking in this assessment used 9 of the 11 diffusion
features, with tractography FDi and FTi excluded due to their
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FIGURE 4 | Example lesion regions and top diffusion metrics identified in the tissue separation processes. Shown are diagrams for a whole lesion (black, top) and a
core-shell lesion (white and black, bottom) used for the lesion versus NAWM and core versus shell classifications, as well as corresponding appearances in the
T1-weighted and FLAIR MRI (columns 1–3). The other columns (4–6) demonstrate the top three diffusion features selected by the recursive feature elimination
algorithm (SVM-RFE) in respective classification tasks, which are orientation distribution function energy, fractional anisotropy, and orientation dispersion index (top);
and mean diffusivity, radial diffusivity, and fractional anisotropy (bottom).

FIGURE 5 | Feature ranks and classification accuracy in lesion-NAWM analysis. Top panel: The mean (standard deviation) rankings of the 11 diffusion features
based on the linear recursive feature elimination (RFE) algorithm in SVM. Bottom panel: Accuracy of the classification models (SVM-IC) obtained by adding features
one at a time, starting from the highest to the lowest rankings. The stars indicate features that contribute to significant improvement in classification accuracy
(∗∗∗∗p < 0.0001).
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TABLE 3 | The AUROC outcome of the linear SVM classification models.

Features Lesion vs. NAWM Features Core vs. Shell

AUROC stdev AUROC stdev

ODF energy 0.568 0.030 MD 0.594 0.080

FA 0.707 0.023 RD 0.597 0.088

ODI 0.710 0.026 FA 0.598 0.092

FDi 0.713 0.026 ODF energy 0.600 0.083

AD 0.710 0.029 AD 0.594 0.081

FTi 0.711 0.028 ICVF 0.595 0.081

Density 0.710 0.028 Density 0.598 0.082

ICVF 0.711 0.028 ODI 0.595 0.086

MD 0.710 0.028 Diameter 0.593 0.086

Diameter 0.710 0.028

RD 0.710 0.028

AUROC, area under the receiver operating characteristic curve; stdev,
standard deviation.

sparse representation in relatively small ROIs. The top three
ranked metrics were: DTI MD, RD, and FA. HARDI ODF energy
and DTI AD followed in ranking, slightly better than the other
HARDI measures, which ranked at 6th–9th (ICVF, Density,
ODI, and Diameter).

Classification analysis further revealed the importance of
top-ranked metrics in core-shell analysis. The highest-ranked
feature, MD, alone accounted for a classification accuracy of
0.59, significantly greater than chance (p = 4.98e-5; Figures 7
and 8). Adding features up to the fifth one (AD), the classification
accuracy peaked, at 0.60 (p = 3.86e-6). In addition, the model
with MD alone achieved an AUROC of 0.59, which improved
to the peak at 0.60 when combining with the top 2nd to 4th
features (RD, FA, ODF energy), but the AUROC values were not
significantly different from chance (p= 0.088; Table 3).

Lesions and NAWM Analyses Between
Subjects
These analyses used all of the 11 diffusion features as applied in
assessing whole lesion pathology. In comparing the lesion tissue
between subjects who had 75%ile high versus 25%ile low lesion
load, FA ranked the highest, which alone had an accuracy of
0.589 and AUROC of 0.620. Combining FA with the 2nd–4th

features, AD, ICVF, and Diameter, slightly increased the accuracy,
which reached the peak at 0.605; further addition of FTi as the
fifth feature led to the peak AUROC of 0.638, but no models
performed significantly better than chance (p = 0.200) in this
analysis. In contrast, ODF energy ranked the best in classifying
the matching NAWM regions between the same patient groups.
Specifically, ODF energy alone achieved a near-peak accuracy
of 0.616 and AUROC of 0.662, considerably better than chance
(p = 0.020). Adding the second best parameter, neurite density,
achieved the peak values for accuracy at 0.617 and for AUROC at
0.662, almost identical to the ODF energy alone results. There was
no further improvement with addition of any other parameters
(Figures 9 and 10).

DISCUSSION

Using commonly available dMRI data, we showed the feasibility
of conducting ssHARDI analysis and the complementary value of
parameters from relatively simple and complex diffusion models
for assessing MS pathology. It appears that tissue alignment and
orientation measures from ssHARDI and DTI are particularly
sensitive to the existence of lesions in a patient, and to subtle
structural differences between NAWM areas (specifically the
ODF energy metric) between patients with high versus low
disease activity. In contrast, tissue diffusivity and alignment
metrics from DTI are the best in distinguishing intra-lesion
pathology, and in separating lesion activity between high and low
disease patients, especially MD and FA.

The ability to evaluate sub-voxel-based tissue properties
through ssHARDI modeling would be important in a clinical
setting. However, ssHARDI studies often face the challenge of
not obtaining enough diversity of measures for evaluation, unlike
multi-shell models. To compensate, a prior study applied a
partial, 2-compartment model and showed that both neurite
density and dispersion indices from ssHARDI decreased in the
NAWM of MS patients, and the reduction in the right internal
capsule correlated with MS duration (Magnollay et al., 2014).
In the present study, we undertook an alternative approach
with the assistance of an efficient modeling method, AMICO.
This provided several sub-voxel measures of neurite diameter,
density, and dispersion. Both visual and quantitative analyses
show that the variances at a ROI level are equivalent between

FIGURE 6 | Performance comparison of the classification models in lesion versus NAWM analysis. Shown are the ROC curves for models constructed from the top
three ranked diffusion features: (A) orientation distribution function (ODF) energy alone, (B) ODF energy + fractional anisotropy (FA), and (C) ODF energy + FA +
orientation dispersion index. ROC, receiver operating characteristics; AUROC, area under the ROC curve.
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FIGURE 7 | Feature ranks and classification accuracies in lesion core-shell analysis. Top Panel: The mean (standard deviation) rankings of the nine diffusion features
used in this analysis based on the linear recursive feature elimination (RFE) algorithm in SVM. Bottom Panel: Accuracy of the classification models (SVM-IC)
achieved by adding features one at a time, starting from the highest to the lowest rankings. The stars indicate features that contribute to significant improvement in
classification accuracy (****p < 0.0001).

FIGURE 8 | Performance comparison of the classification models in the lesion core versus shell analysis. Shown are the ROC curves for models constructed from
the top three ranked diffusion features: (A) mean diffusivity (MD) alone, (B) MD + radial diffusivity (RD), and (C) MD + RD + fractional anisotropy. ROC, receiver
operating characteristics; AUROC, area under the ROC curve.

these measures derived using either 1-shell or multi-shell data,
and using either online or own DTI data in ssHARDI modeling.
In addition, based on the distribution of diffusion at all

sampling directions in a voxel, we also created a new measure
of tissue organization, ODF energy, to increase the capacity
of ssHARDI.
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FIGURE 9 | Feature ranks and performance comparison in the classification of lesion tissue between high and low disease patients. Top Left Panel: The mean
(standard deviation) rankings of the 11 diffusion features used in this analysis based on the linear recursive feature elimination (RFE) algorithm in SVM. Bottom Left
Panel: Accuracy of the classification models (SVM-IC) achieved by adding features one at a time, starting from the highest to the lowest rankings. Right Panel:
ROC curves for models constructed using the top two ranked diffusion features: (top fractional anisotropy (FA) alone, and bottom) FA + axial diffusivity (AD). ROC,
receiver operating characteristics; AUROC, area under the ROC curve.

To maximize the understanding of diffusion metrics in tissue
assessment, our study considered several modeling approaches,
3 regarding ssHARDI alone: ActiveAx, NODDI, and diffusion
ODF. Multi-model analysis is critical for assessing complex
pathologies as observed in MS (Reich et al., 2018). However,
this strategy also led to a large volume of parameters. A caveat
of multiparametric approaches (Cercignani and Bouyagoub,
2018) is the difficulty of assigning importance to parameters
that have overlapping sensitivities. Here we took advantage of
SVM, a well-recognized machine learning method. The SVM-
RFE has shown to be robust to feature redundancy and model
overfitting, and in a linear form, the SVM can assign unique
coefficients to each parameter, thereby identifying the specific
contribution of a parameter to individual classification tasks
(Guyon et al., 2002).

In lesion–NAWM analysis, nearly all top rankings were tissue
orientation and alignment metrics, particularly the top 3: ODF
energy, FA, and ODI. Based on definition, ODF energy measures
the orientational complexity of a structure. The higher the value,
the more misalignment in the structure. FA detects changes in
both axonal density and alignment anisotropy (Zhang et al.,
2012), and therefore is partially explainable by ODI. The leading
performance of these orientation features in this analysis may

indicate that the most critical changes following lesion formation
in MS are tissue damage, such as inflammatory demyelination
and axonal injury. A direct consequence of this pathology is
increased structural heterogeneity, rather than simple alterations
in neurite density. This is consistent with prior findings showing
decreased FA in nearly all lesion studies in MS compared to
the NAWM (Schmierer et al., 2007; Inglese and Bester, 2010),
and ODI changes with lesion formation (Grussu et al., 2017;
Schneider et al., 2017) and repair (Luo et al., 2019), although the
consistency of ODI changes deserves further validation (Spano
et al., 2018). Notably, optimal classification between lesion and
NAWM ROIs in the current study required the addition of FA.
Previously, tractography FDi also showed strong correlations
with FA (Roberts et al., 2005; Ukmar et al., 2012), supporting the
relationship between these highly ranked features. The unique
role of tissue alignment and orientation measures may facilitate
early detection and even prediction of lesion pathology in future
studies, promoting early management.

The core-shell analysis was designed to probe the intra-lesion
patterns of pathology as seen in chronic MS lesions. When
active, these lesions show demyelinated, hypocellular cores and
inflammatory demyelinating shells; while inactive, present with
hypocellularity with no active demyelination in lesion territories
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FIGURE 10 | Feature ranks and performance comparison in the classification of NAWM tissue between high and low disease patients. Top Left Panel: The mean
(standard deviation) rankings of the 11 diffusion features used in this analysis based on the linear recursive feature elimination (RFE) algorithm in SVM. Bottom Left
Panel: Accuracy of the classification models (SVM-IC) achieved by adding features one at a time, starting from the highest to the lowest rankings. Right Panel:
ROC curves for models constructed using the top two ranked diffusion features: [top orientation distribution function (ODF) energy alone, and bottom] ODF energy +
Density (AD). ROC, receiver operating characteristics; AUROC, area under the ROC curve (*p < 0.05).

(Pittock and Lucchinetti, 2007). As such, the expected differences
between core and shell are the degree of cellularity, where the
hypocellular core should have higher diffusivity than the cell-rich,
inflammatory shell. Indeed, the 3 DTI measures (MD, RD, and
FA) ranked the highest in our core-shell analysis, and MD played
a dominant role. While there is lack of core-shell studies using
dMRI in the literature, prior evidence attests the sensitivity of
MD to subtle changes in MS pathology. One report showed
that MD increased 5 months before the occurrence of active
MS lesions, and pre-lesion MD correlated significantly with the
MD of the lesions 2 months after active inflammation (Liu
et al., 2012). In the present study, the lack of significance of
the MD model in AUROC compared to chance may be due to
several reasons, including the small number of such lesions and
their heterogeneity in pathology. For instance, chronic inactive
lesions may not show significant core-shell differences, and their
inclusion may have caused artifacts. Alternatively, robust analysis
of core-shell activity in chronic active lesions can improve
our understanding of the ongoing pathology and so disease
progression in MS patients (Giorgio et al., 2014).

Our inter-patient analysis results appear to agree with the
findings described above. Between patients who have high versus
low disease activity, FA ranked the highest in lesion tissue
classifications; while in NAWM classifications, ODF energy was

the best. In general, T2 MRI lesion load reflects disease activity,
and in a long-term, it correlates with patient disability in MS
as seen after 20 years of disease onset (Fisniku et al., 2008).
Therefore, patients with higher lesion load are expected to have
greater tissue damage, likely affecting both neurite density and
orientation, and so greater changes in lesion FA between the
patient groups. On the other hand, increased disease activity
would also implicate increased pathology in the lesion-free areas,
such as the NAWM, yet the changes wherein should be much
less than in the visible plaques. Indeed, our NAWM analysis
suggests that the pattern of differences between high and low
disease patients is mainly orientation based, as reflected by ODF
energy, deserving further confirmation.

Collective observations of this study may suggest that MD and
FA are important diffusion metrics for assessing MS pathology.
In particular, they may serve as top options in core versus
shell analysis, disease severity comparisons between patients
(e.g., lesion FA), and at a lesser extent, lesion versus non-
lesion analysis. However, parameters from the relatively complex
models appear to be more competitive in NAWM-associated
evaluations than the DTI indices, particularly the orientation-
driven metrics (ODF energy and ODI), suggesting the value
of multi-model analysis. Currently, dMRI is one of the unique
imaging approaches that can potentially evaluate both myelin and
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axonal properties in vivo. However, a variety of other techniques
are underway in this regard, including those for myelin mapping
using either advanced or conventional MRI. For example,
myelin estimation based on simultaneous T1/T2 relaxometry
and proton density mapping correlated strongly with histological
myelin as seen in post-mortem MS brain samples (Ouellette
et al., 2020). Another study demonstrated that quantitative
susceptibility provided additional myelin information in brain
NAWM of MS patients, independent of FA and RD (Yu
et al., 2019). Further, pre-operative myelin mapping using
T1/T2 ratio showed the potential to predict outcomes of
trigeminal neuralgia following Gamma knife radiosurgery, while
FA and RD demonstrated similar values in this prediction
as estimators of pre-operative axons (Li et al., 2020). These
findings further support the importance of multi-dimensional
analysis in MS and similar diseases, including combining
multi-model dMRI, and various other candidate metrics of
myelin and axons.

We note a few limitations in this study. The spatial resolution
of our dMRI was moderate. However, we registered all diffusion
outcomes to the high-resolution T1 MRI to mitigate the impact,
and our ssHARDI maps appeared similar to those obtained
using high resolution dMRI from the HCP both visually and
quantitatively. Next, to optimize data quality, we excluded lesions
that did not have a “clean” match of contralateral NAWM
regions, and lesions not large enough for core-shell analysis,
limiting the sample size. Nonetheless, SVM analyses enabled
determination of critical parameters, so the risk of model
overfitting is minimal. Finally, there were lesions that appeared
overlapping and they were segmented as single confluent regions.
Given the inhomogeneity of signal intensity in such lesions,
it may have somewhat affected the lesion-NAWM results (e.g.,
underestimation of tissue differences). However, we applied
ROI means in all quantitative analyses, which should have
minimized the effect, if any. The impact on core-shell analysis is
expected to be less than the above, as regions of inhomogeneity
may be included in both lesion portions. In the future, we
seek to use higher resolution DTI and evaluate patients with
different types of diseases and lesion pathologies to confirm our
findings, including datasets with histology-verified lesion activity.
Additionally, we also plan to investigate the utility of the top-
performing diffusion features in assessing pre-lesion NAWM
pathologies, and in predicting the occurrence of MS lesions, to
promote clinical applications.

Collectively, using commonly available dMRI data, it is
possible to perform competitive ssHARDI modeling. Combining
machine learning with robust ssHARDI and DTI metrics may
provide advanced assessment of lesion and NAWM pathology,
including mean diffusivity for intra-lesion pathology in MS and
similar diseases.
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