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Abstract: Globally, flooding is a major threat causing substantial yield decline of cereal crops, and is
expected to be even more serious in many parts of the world due to climatic anomaly in the future.
Understanding the mechanisms of plants coping with unanticipated flooding will be crucial for
developing new flooding-tolerance crop varieties. Here we describe survival strategies of plants
adaptation to flooding stress at the morphological, physiological and anatomical scale systemically,
such as the formation of adventitious roots (ARs), aerenchyma and radial O2 loss (ROL) barriers.
Then molecular mechanisms underlying the adaptive strategies are summarized, and more than
thirty identified functional genes or proteins associated with flooding-tolerance are searched out and
expounded. Moreover, we elaborated the regulatory roles of phytohormones in plant against flooding
stress, especially ethylene and its relevant transcription factors from the group VII Ethylene Response
Factor (ERF-VII) family. ERF-VIIs of main crops and several reported ERF-VIIs involving plant
tolerance to flooding stress were collected and analyzed according to sequence similarity, which can
provide references for screening flooding-tolerant genes more precisely. Finally, the potential research
directions in the future were summarized and discussed. Through this review, we aim to provide
references for the studies of plant acclimation to flooding stress and breeding new flooding-resistant
crops in the future.
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1. Introduction

Along with climate changes, flooding shows a heavier tendency triggering severe crop
reduction in both yield and quality around the world [1]. In the United States, for instance,
losses of crop yield induced by flooding followed by drought from 2000 to 2011 [2]. In 2016,
a total of 217 million dollars was paid for damages or controls associated with flooding,
which cost 3.4 times higher than that for droughts (www.rma.usda.gov/data/cause). In
some developing countries, because of their poor drainage systems, the impact of frequent
flooding on crop systems is more serious, which usually aggravates poverty and food
insecurity [1]. To reduce the losses, it is essential to unravel the mechanisms of plants
against flooding stress for developing new flooding-tolerance crops.

Generally, flooding can be classified into two forms depending on water depth: water-
logging and submergence [3,4]. Waterlogging is the condition that water exists on the soil
surface and only plant roots are surrounded by water, while submergence is the state that
the whole plant partially or completely immerses in water [3,5,6]. One of the immediate
impacts caused by flooding is the deficiency of oxygen [7,8]. Previous studies showed
that oxygen diffused in water approximately 10,000 times slower than that in air, and
oxygen permeating into water-immersed soil is about 320,000 times less than that into
soil full of gas [3,9,10]. The deficiency of oxygen in soil restricts plant growth resulting
in the reduction of crop yield [3,11]. Under waterlogging stress, the growth of the plant
was impeded due to enhanced anaerobic respiration [3,11]. Meanwhile, adventitious roots
(ARs), aerenchyma and radial O2 loss (ROL) barriers emerged in roots for the exchange of
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gas [3,11]. When exposed to submergence stress, plants have evolved two main strategies
to resist the adversity: low oxygen quiescence syndrome (LOQS) for complete submer-
gence and low oxygen escape syndrome (LOES) for partial submergence [8,12]. Plants
with LOQS strategy demonstrate restricted growth through keeping the minimum energy
and carbon consumptions for prolonging underwater survival [13] (Figure 1A). After the
flooding recedes, these plants can be recovered rapidly [11]. Escaping from water (LOES) is
another strategy that plants maintain the upper leaves in the aerial environment for getting
adequate oxygen, light and carbon dioxide [8,11]. Accordingly, several morphology and
anatomical traits of plants change with the water depth, such as deepwater rice and Rumex
palustris with internode or petiole elongation as well as aerenchyma formation [14–16]
(Figure 1A).
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waterlogging and submergence stress. (B) The physiological changes of plants in response to flooding stress. (C) The
main anatomical characteristics of plants adaptation to flooding stress. Triangles and pentagrams point to the location of
aerenchyma and radial O2 loss (ROL) barriers respectively.

Recently, much progress has been made in the mechanisms of plant acclimation to
flooding stress [17–19]. For example, Nagai et al. reported two genes controlled internode
elongation antagonistically in rice, the ‘accelerator’ ACCELERATOR OF INTERNODE
ELONGATION 1 (ACE1) and the ‘decelerator’ DECELERATOR OF INTERNODE ELON-
GATION 1 (DEC1) [18]. Tang et al. showed that two transcription factors of the WRKY
family (WRKY33 and WRKY12) interacted with each other to up-regulate RAP2.2 for
Arabidopsis adaptation to submergence stress [19]. Bui et al. reported that transcription
factor ANAC017 mediated differential submergence tolerance of Arabidopsis between
juvenile and adult stages [20]. These studies contribute to our understanding of the mech-
anisms of plant adaptation to flooding stress, however, the detailed update including
these latest research progresses has not been conducted subsequently. In this review, plant
survival strategies under flooding stress in morphology, physiology and anatomy levels
were investigated and exhibited initially, then the potential crucial genes or proteins and
the regulatory role of phytohormones were summarized by highlighting the most recent
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findings of plant adapting to flooding stress. Moreover, several key open questions worthy
of further study were proposed and discussed.

2. Plant Responses to Flooding Stress

Flooding is a natural occurrence with adverse effects on plant growth and develop-
ment, multiple mechanisms of plants adaption to flooding stress have been discovered at
morphology, physiological and anatomical scales.

2.1. The Morphology of Plants under Flooding Stress

Generally, flooding stress triggers adaptive changes in plant roots and shoots at a
morphological scale, such as the formation of ARs, the growth of the shoots inhibited or
accelerated (Figure 1A). Previously, some important crops including wheat, maize, rice
and soybean have been studied in their responses to flooding stress. For instance, wheat,
as a dryland crop, was sensitive to flooding stress [21]. When exposed to waterlogging
stress, dry mass of wheat shoot and root, and the ratio of root/shoot significantly declined
compared to controls, indicating that root growth was inhibited more seriously than
shoot [22,23]. Maize was also intolerant against waterlogging stress and the trefoil stage
was the most sensitive period for maize [24,25]. Waterlogging inhibited maize growth
resulting in decline in plant height, ear height, dry weight, leaf area index and grain
characteristics (such as grain number per ear and 1000-grain weight) [26]. Meanwhile,
contents of chlorophyll, soluble sugar and starch in leaves, stems and roots decreased under
waterlogging stress [27]. For rice, many lowland cultivars are susceptible to submergence
stress and thus hardly survive as the deluge lasts for a longer period of time [3,28,29].
However, several rice cultivars can experience flash-flood (complete submergence) for
around two weeks by restricting shoot elongation as well as carbohydrate consumption,
and will be recovered once the flash-flood recedes [5,11]. On the other hand, deepwater
rice, which adapts to the submergence where it grows, is able to maintain the top leaves
in the aerial environment for catching sufficient oxygen by elongating its internodes
rapidly [5,30,31]. The growth and grain yield of soybean is also affected by flooding [32].
At the seedling stage, root growth of soybean was suppressed severely after submergence
prolonging for 10 days [33]. Different soybean genotypes might utilize distinct mechanisms
to resist waterlogging stress and proteins associated with energy metabolism were thought
to function in soybeans tolerance to flooding stress [34,35]. Generally, waterlogging stress
enhances anaerobic respiration of roots of dryland plants along with energy consumption
and restricts their growth eventually. Likewise, complete submergence stress inhibits the
growth of plants and decreases the rate of survival with the extension of the submergence
time in most cases. By contrast, partial submergence promotes the elongation of internode,
petiole or other organs in some plant species for getting enough oxygen, which contributes
to their rapid growth in a short time.

Adventitious roots, as a typical trait of plants acclimating to waterlogging stress, can
facilitate the uptake of water and nutrient as well as the transport of gas more effectively [36]
(Table 1). ARs can be developed from some non-root tissues of the plants during normal
development, or under the stimulation of external stresses, including flooding, nutrient
deficiency, heavy metals and wounding [37]. On the basis of physical characteristics
and generation conditions, ARs can be divided into various types, such as hypocotyl
roots, crown roots, brace roots, nodal roots, stem roots, junction roots and prop roots,
among which the front five types can be triggered by flooding [37]. When exposed to
waterlogging stress, maize formed more crown roots than controls and the waterlogging-
tolerant line possessed more crown roots than the waterlogging-sensitive line [38]. In deep-
water rice, the elongation of ARs was initiated after 8 to 10 h under partial submergence
stress, and ethylene was found to facilitate the formation of ARs through triggering the
death of epidermal cells covering the root tip [39,40]. In tomato, ARs gradually formed
at the hypocotyl after three days of partial submergence, and further extended to the
upper surface of the water along caulicles [41]. Furthermore, inhibiting ethylene or auxin
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production impaired ARs formation of tomato, which indicated that ethylene and auxin
might interact with each other during the development of ARs under flooding stress [42].
Likewise, a recent study reported that waterlogging stress-induced cucumber generating
a large amount of ARs, and both auxin and ethylene can stimulate the formation of
ARs, however, auxin-induced ARs relied on ethylene while ethylene-induced ARs was
unaffected by auxin [43]. Contrastively, the opposite result was found in Rumex palustris
that auxin-induced ARs were not affected by inhibiting ethylene biosynthesis while the
inhibition of auxin transport suppressed ethylene-induced ARs formation [44]. In summary,
the formation of plant ARs is mainly regulated by ethylene and auxin under flooding stress,
however, their roles may be diverse in different plants.

2.2. The Physiological Phenotype of Plants Response to Flooding Stress

Flooding stress leads to accumulation of the harmful substances in plants, such as
reactive oxygen species (ROS) and malondialdehyde (MDA) [67]. In turn, plants activate
the internal protection mechanisms to scavenge these components, such as the production
of proline, glutathione and the activation of antioxidant enzymes [57,68,69] (Figure 1B,
Table 2). ROS are toxic byproducts of oxidative metabolisms, such as O2

.−, H2O2, OH˙
and 1O2 [70,71]. Whereas, ROS also functions as signal molecules that regulate plant
development under environmental stresses [56,71]. Submergence exhibited a huge impact
on ROS homeostasis. Ye et al. reported that submergence led to a decrease of H2O2
content in bermudagrass (Cynodon dactylon) leaves, though O2

.− content had insignificant
change [68]. Contrastively, another study showed that O2

.− and H2O2 concentration in
the elongation and mature zone of barley roots increased under waterlogging stress [72].
Additionally, MDA content in bermudagrass leaves increased after submergence for three
weeks and catalase (CAT), glutathione reductase (GR) and peroxidase (POD) activities
presented an upward trend with the extension of the time [68]. Wang et al. showed
the activities of antioxidative enzymes POD and superoxide dismutase (SOD) in roots of
Triarrhena sacchariflora increased first and then decreased under flooding stress as well as
contents of proline and MDA compared with control plants [69].

On the other hand, flooding is accompanied by the deprivation of oxygen, which
leads to aerobic respiration in a low-level and accelerates more carbohydrates consumed by
glycolysis [85]. Moreover, under complete submergence stress, the insufficiency of carbon
dioxide and light decreased plant photosynthesis rates [13,86] (Figure 1B). For instance,
the accumulation of soluble sugar and sucrose in bermudagrass leaves declined obviously
under submergence stress [68]. Loreti et al. reported that starch content in rosette leaves of
Arabidopsis degraded with the extension of submerged time during the night, and glucose
content was observed decline at the end of the night as well as sucrose [87]. For spring
maize, the negative impact induced by waterlogging stress was different because of the
distinction of duration and growth stage, and the seedling stage was the sensitive period
followed by the jointing and tasseling stages [88]. Additionally, the photosynthetic rate
(Pn) decreased with the waterlogging time prolonging and resulted in the reduction of
total dry weight and grain yield ultimately [88].
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Table 1. The formation of adventitious roots (ARs), aerenchyma and ROL barriers in plants responding to flooding stress.

Flooding Stress (Real or Simulated) Species Adventitious Root Aerenchyma ROL Barrier References

Under stagnant deoxygenated conditions Rice Y * Y Y [45]
Partial submergence Rice Y [39,40]

Under stagnant deoxygenated conditions Rice Y Y [15]
Under stagnant deoxygenated conditions Rice Y [46]

Partial submergence Rice Y [47]
In aerated, stagnant deoxygenated, or N2-flushed conditions Rice Y [48]

Under stagnant deoxygenated conditions Teosinte Y Y Y [49]
Waterlogging Teosinte Y [50]

Under stagnant deoxygenated conditions Teosinte Y Y [51]
Waterlogging Maize and teosinte Y Y [52]
Waterlogging Maize Y [53]
Waterlogging Maize Y [38]
Waterlogging Maize Y [25]
Waterlogging Wheat Y [54]
Waterlogging Wheat Y [55]
Waterlogging Wheat Y Y [56]

Under stagnant conditions Hordeum marinum, Triticum aestivum,
Hordeum marinum × Triticum aestivum Y Y Y [23]

Waterlogging Barley Y Y [57]
Flooding (Waterlogging) Rumex Y [58]

Waterlogging Rumex Y [44,59]
Waterlogging Sunflower Y [60]

Waterlogging or hypoxic culture Willow Y Y [61]
Waterlogging Arabidopsis Y [62]

Flooding (Waterlogging) Tomato Y [42]
Partial submergence Bittersweet Y [63]

Half-flooding (Partial submergence) Taxodium Y Y [64]
Waterlogging Cucumber Y [43]
Waterlogging Seashore paspalum, Bermudagrass Y [65]
Waterlogging Some Echinochloa species Y [66]

* ‘Y’ represents ‘Yes’ and means plants have the corresponding trait.
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Table 2. Changes of ROS, antioxidant enzymes and other physiologic indexes in plant tissues as exposed to flooding stress.

Plant Species Samples ROS Others Antioxidant Enzymes Reference

Barley Leaf CAT ↑ *, ascorbate peroxidase (APX) ↑ and
POD ↑; SOD ↓ ** [73]

Barley Root H2O2 ↑, O2
.− ↑ [72]

Rice Root and shoot SOD ↑ and CAT ↑, APX ↓ [74]

Wheat Leaf, root and shoot

Leaf water potential ↓, stomatal
conductance ↓, photosynthesis ↓,

chlorophyll content ↓, shoot nitrogen
content ↓, shoot and root growth ↓, the

diameter of metaxylem and
protoxylem vessels of the nodal roots ↓

[54]

Wheat Flag leaf POD ↑ in tolerant genotypes, SOD ↓ and
CAT ↓ [75]

Maize Leaf SOD ↑, CAT ↑ and APX ↑, POD ↓ [76]

Citrus Leaf and root
Leaf MDA (early stage) - ***, Leaf

MDA (15–27 days after waterlogging)
↑; Root MDA ↑ or -; Leaf proline ↑ or -.

SOD ↑ [77]

Citrus Leaf SOD ↑, CAT ↑ [78]
Tobacco Leaf SOD↑ [79]

Lotus Shoot

SOD ↓, dehydroascorbate reductase
(DHAR) ↓, GR ↓, APX ↑,

monodehydroascorbate reductase (MDAR)
-

[80]

Creeping bentgrasss Root H2O2 - MDA - SOD ↑, AR had no consistent trend with
different genotypes. GR -, POD - [81]

Pigeon pea Root Superoxide radical, H2O2

Visible yellowing and senescence of
leaves; leaf area, dry matter, relative

water content and chlorophyll content
in leaves, and membrane stability

index in roots and leaves decreased.

SOD ↑, CAT ↑, GR ↑ and APX ↑ [82,83]
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Table 2. Cont.

Plant Species Samples ROS Others Antioxidant Enzymes Reference

Bermudagrass Leaf H2O2 ↓, O2
.− - Proline - POD ↑, GR ↑, CAT ↑ [68]

Perennial ryegrass Shoot and root
Leaf chlorophyll and total carotenoid ↓,

water-soluble carbohydrate (shoots
and roots) ↓, MDA ↑

CAT and POD (shoot) ↑, SOD, CAT, POD
and APX (root) ↓ [84]

Soybean Leaf H2O2 content increased at 7
days of waterlogging.

Activities of lactate dehydrogenase
(LDH), alanine aminotransferase
(AlaAT), alcohol dehydrogenase

(ADH) and pyruvate decarboxylase
(PDC) changed inconsistently in

different genotypes under
waterlogging stress.

SOD activity increased after 7 days of
waterlogging, APX and CAT activities

changed with no consistent trend among
different genotypes or conditions.

[35]

* ‘↑’ represents ‘increase’; ** ‘↓’ represents ‘decrease’; *** ‘-’ represents ‘no change’.
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2.3. Anatomical Adaptations to Flooding Stress

Flooding often leads to oxygen deprivation in soils and plant roots, which significantly
restricts metabolic activities for plant survival and development. Therefore, amounts of
aerenchyma and ROL barriers in plant roots are formed to transport adequate oxygen from
shoots to roots (Figure 1C).

2.3.1. The Formation of Aerenchyma

Aerenchyma not only exists in many plants constitutively, but also is formed induc-
tively by environmental stress, such as flooding stress [89] (Table 1). It forms in roots and
shoots and consists of thin-walled cells filled with gas spaces to facilitate the diffusion of
oxygen [8]. For instance, Aerenchyma formed in the mid-cortex cells of wheat roots after
waterlogging for 24 h and its formation was mediated by ROS [55,56]. When applied with
an ethylene precursor beforehand, wheat seedlings formed lysigenous aerenchyma in roots
and these aerenchyma were further developed under hypoxic stress [90]. Zea nicaraguensis
is a wild relative of maize and grew in frequently flooded areas [49]. Soil waterlogging
increased aerenchyma proportion in the cross-sectional area of maize root from less than
1% in drained soil to 15% as well as from 22% to 29% in Z. nicaraguensis roots [49]. Another
study reported that ARs of waterlogging-tolerant barley (Hordeum vulgare L.) genotypes
exhibited remarkably higher porosity and formed aerenchyma more quickly compared to
sensitive ones [57]. Aerenchyma increases plant tolerance to flooding stress by improving
the oxygen-transport efficiency from shoot to root tip, and its formation mainly relies on
ethylene and ROS signaling.

2.3.2. A Barrier to Radial Oxygen Loss

Except for aerenchyma, the oxygen-transport efficiency from shoot to root tip depends
on another crucial factor, the formation of ROL barriers. ROL barriers usually form in the
roots of waterlogging-tolerant plants, and can reduce oxygen leakage during its transport
from shoot-to-root tip and impede soil phytotoxin entry simultaneously [49,51]. The ROL
barriers can be formed constitutively or induced by stagnant conditions, such as flooding
stress [14,91] (Figure 1C, Table 1). Many wetland species, such as Oryza sativa, Juncus
effusus, Phragmites australis and Glyceria maxima, have been reported forming ROL barriers
in roots [14,15,92,93]. For example, growing in stagnant nutrient solution with oxygen
removal enhanced the development of ROL barriers in ARs of rice [15,45]. Long ARs of
rice initiated the formation of ROL barriers quickly and developed well within 24 h under
hypoxic conditions, however, short roots generated the barrier for more than 48 h [93]. The
dryland species have the ability to form ROL barriers under flooding stress. For instance,
seminal roots of wheat induced ROL barriers when exposed to waterlogging to enhance
the internal supply of oxygen [56]. Notably, some Echinochloa species even developed a
ROL barrier constitutively under aerated conditions [66].

The formation of ROL barriers can also be triggered by the organic acids [94,95]. In
waterlogged soils, some monocarboxylic acids are produced by anaerobic microorganisms,
such as acetic, butyric, hexanoic and propionic acids, which inhibit plant growth as accu-
mulated to some extent and can invoke enhanced suberization or lignification in cell walls
of roots [96,97]. For example, the ROL barrier in Hordeum marinum roots was induced by
butyric and hexanoic acids individually or a mixture with acetic and propionic acids [94],
and these four organic acids also triggered the ROL barrier in roots of rice [95].

3. Molecular Mechanism of Plant Response to Flooding Stress

On the basis of the morphology, physiology and anatomy characteristics of plant re-
sponse to flooding stress, many associated-genes functioning in plant adaption to flooding
stress have been reported and studied (Table 3).
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3.1. The Formation of Adventitious Roots

The emergence of ARs is one of the adaptive strategies for plants coping with flooding
stress, and several genes have been identified to mediate ARs formation (Figure 2). GNOM
encodes a guanine-nucleotide exchange factor for ADP-ribosylation factor (ARF) [120] and
can influence polar auxin transport in plants [121,122]. Studies have reported that OsG-
NOM1 in rice affected the development of ARs through regulating polar auxin transport,
and loss function of this gene resulted in the defect of ARs formation [120]. CsARN6.1 in
cucumber encoded an AAA ATPase domain-containing protein and affected waterlogging
tolerance through the regulation of ARs formation, besides, the transformation of CsARN6.1
from waterlogging-tolerant cultivar into waterlogging-sensitive variety increased numbers
of ARs under waterlogging conditions [117]. Ethylene can induce ARs formation and this
process requires ROS as a signal triggering programmed cell death in cortex cells [123,124].
For instance, waterlogging led to the accumulation of ethylene and ROS in cucumber,
ethylene-induced AR formation was inhibited by the reduction of H2O2 [43]. The above
results suggest that auxin, ethylene and ROS are required for the formation of ARs under
flooding stress, but the mechanisms of interaction among them need to be revealed.
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Figure 2. The molecular mechanisms of ROL barriers, ARs and aerenchyma formation. Researches about the formation
of flooding-induced ROL barriers at the molecular level are relatively deficient, however, suberin has been considered to
contribute to the formation of ROL barriers and genes (such as KCS, CYP, GPAT, ABC, LTP, αβHD, POD) involved in suberin
biosynthesis may function in this process [48]. For ARs formation, flooding (hypoxic) stress can induce expressions of
RBOHB, RBOHF3, some Ethylene Response Factor (ERF) genes and ARN, then affects ARs formation directly or through ROS
regulation [25,43,117]. Plants also can influence the development of ARs by mediating auxin polar transport through the
activation of some auxin associated genes, such as GNOM1, PIN1 and PIN2 [120,125,126]. Aerenchyma formation depends
on the accumulation of ROS. RBOH for the generation of ROS and MT for ROS scavenging play important roles in this
process [53]. In addition, genes LSD1, EDS1 and PAD4, which control the generation of ethylene and ROS in the upstream,
are also involved in the formation of aerenchyma [62].
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Table 3. General descriptions of recently reported genes and the relative phytohormones involved in plant response to flooding stress.

Flooding Type Species Genes Name Function Phytohormone References

Waterlogging Arabidopsis LSD1, EDS1 and PAD4

These three genes LESION SIMULATING DISEASE1 (LSD1),
ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) and

PHYTOALEXIN DEFICIENT4 (PAD4) controlled the formation of
lysigenous aerenchyma by regulating the generation of ethylene
and ROS, and functioned in plants acclimation to waterlogging

(hypoxia) stress.

ethylene [62]

Under hypoxic stress Arabidopsis AtLDH1
AtLDH1 encodes a lactate dehydrogenase, overexpression of

AtLDH1 increased the survival of roots and knockout AtLDH1
impaired the growth of roots and shoots under hypoxic stress.

[98]

Under hypoxia stress Arabidopsis AtRAP2.2
AtRAP2.2 encodes an ERF-VII type transcription factor,

overexpression of AtRAP2.2 increased the survival rate under
hypoxia stress.

ethylene [99]

Under anoxia condition Arabidopsis AtHRE1
Overexpression of HRE1 in Arabidopsis enhanced its tolerance to

hypoxic stress through regulating the expression of anaerobic
genes and ethanol metabolism.

ethylene [100]

Submergence Arabidopsis AtRAP2.12
AtRAP2.12 encodes an ERF-VII type transcription factor and
overexpressing AtRAP2.12 in Arabidopsis showed increased

survival rate under anoxia stress.
ethylene [101]

Under hypoxia condition Arabidopsis AtPCO1 and AtPCO2

Plant cysteine oxidase (PCO) makes the penultimate cysteine of
ERF-VIIs oxidized and in turn, the expression of PCO is regulated
by ERF-VIIs; overexpressing AtPCO1 and AtPCO2 in Arabidopsis
became sensitive to submergence and the survival rate decreased

significantly compared to wild type.

ethylene [102]

Submergence Arabidopsis AtRBOH I

The expression of AtRBOH I (respiratory burst oxidase homolog I
from Arabidopsis) is induced under hypoxic stress and loss

function of AtRBOH I decreased the survival rate compared to
wild type under submergence condition.

ethylene, auxin [103]

Submergence Rice Sub1A (SUB1A) Sub1A encodes an ERF-type transcription factor and can enhance
submergence-tolerance of rice. ethylene [104]

Partial submergence Deepwater rice SK1 and SK2
SNORKEL1 (SK1) and SNORKE2 (SK2) are ethylene response

factors and regulate the elongation of internodes through
gibberellin under submergence stress.

gibberellin, ethylene [31]

Waterlogging and
submergence Rice CIPK15 and SnRK1A

CIPK15 encodes a calcineurin B-like (CBL)-interacting protein
kinase that positively regulates the expression of SnRK1A

(Snf1-related protein kinase 1), and functions in rice acclimation to
flooding stress by affecting sugar and energy production.

[105,106]
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Table 3. Cont.

Flooding Type Species Genes Name Function Phytohormone References

Under anaerobic
condition Rice Amy3 subfamily genes

Amy3 subfamily genes encode α-amylases and their expression can
be induced in rice embryos by anaerobic conditions, which

contributes rice to survive under submerged conditions.
[106]

Under anaerobic
condition Rice OsTPP7

OsTPP7 encodes a trehalose-6-phosphate (TP6) phosphatase and
facilitates rice germination under anaerobic conditions by

regulating local T6P/sucrose ratios.
[107]

Submergence Rice OsEREBP1
OsEREBP1 encodes an ERF transcription factor and may enhance

the submergence tolerance through regulating jasmonate and
abscisic acid signals.

jasmonate, abscisic acid [108]

Submergence Rice LGF1

LGF1 controlled the formation of leaf gas films and affected the
synthesis of C30 primary alcohol, which ultimately improved

submergence-tolerance of rice with increased
underwater photosynthesis.

[109]

Submergence Deepwater rice SD1
SD1 (SEMIDWARF1) encodes a gibberellin biosynthesis gene, it
can promote internodes elongation by increasing synthesis of

gibberellins and is regulated by a transcription factor OsEIL1a.
gibberellin, ethylene [110]

Submergence Rice OsARD1

OsARD1 encodes an acireductone dioxygenase (ARD) and
mediates the biosynthesis of an initial substrate methionine in the

process of ethylene synthesis. Overexpression of OsARD1
increased the production of internal ethylene and

submergence-tolerance of transgenic lines was
improved simultaneously.

ethylene [111]

Waterlogging and
submergence Deepwater rice ACE1 and DEC1

ACE1 confers the intercalary meristematic cells with the division
ability and therefore regulated the elongation of internodes

together with GA; DEC1 restricts internodes elongation.
gibberellin [18]

Submergence Maize Subtol6
Subtol6 is a major QTL that can explain 22% of the phenotypic
differences in submergence tolerance within the recombinant

inbred lines.
[112]

Waterlogging Maize ZmEREB180

ZmEREB180 encodes an ERFV-II transcription factor from maize;
overexpression of ZmEREB180 increased the survival rate under

waterlogging stress through promoting ARs formation and
regulating antioxidant activities.

ethylene [25]
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Table 3. Cont.

Flooding Type Species Genes Name Function Phytohormone References

Waterlogging Wheat TaERFVII.1
TaERFVII.1 belongs to ERF-VII family and functions in

waterlogging-tolerance of wheat, overexpression of TaERFVII.1
increased the survival rate under waterlogging stress.

ethylene [17]

Waterlogging Barley HvERF2.11
The expression of HvERF2.11 can be induced by waterlogging and

mediated waterlogging-tolerance of plants through improving
some antioxidant and ADH enzymes activities.

ethylene [113]

Waterlogging Actinidia deliciosa AdPDC1
AdPDC1 encodes a pyruvate decarboxylase which catalyzes the

first step in ethanolic fermentation pathway and it may function in
kiwifruit acclimation to waterlogging stress.

abscisic acid [114]

Waterlogging Actinidia deliciosa AdRAP2.3 AdRAP2.3 is an ERF-VII transcription factor and may mediate
waterlogging-resistance by regulating PDC and ADH genes. ethylene [115]

Waterlogging Chrysanthe-mum
morifolium CmSOS1

SOS1 encodes a Na+/H+ antiporter and may interact with
CmRCD1 to mediate plant tolerance to waterlogging

stress potentially.
[116]

Waterlogging Cucumber CsARN6.1
CsARN6.1 encodes an AAA ATPase, transgenic lines of CsARN6.1

increased the number of ARs via enhanced ATPase activity and
further affected waterlogging tolerance.

[117]

Waterlogging Mentha arvensis MaRAP2-4
MaRAP2-4 from Mentha arvensis encodes an ERF-I type

transcription factor, overexpression of MaRAP2-4 in Arabidopsis
enhanced its tolerance to waterlogging and oxidative stress.

ethylene, jasmonic acid [118]

Waterlogging Petunia PhERF2
PhERF2 may regulate the process of programmed cell death and

alcoholic fermentation, on the base of which enhances
waterlogging-tolerance of petunia.

ethylene [119]

Submergence Arabidopsis WRKY33, WRKY12

WRKY33 regulates the expression of RAP2.2 together with
WRKY12, in turn, RAP2.2 exhibits a feedback regulation to

WRKY33. These three genes mediate submergence-tolerance of
Arabidopsis collectively.

ethylene [19]

Submergence Arabidopsis ANAC017
ANAC017 encodes a NAC transcription factor and mediates

differential submergence stress of Arabidopsis in juvenile and
adult stages.

[20]
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3.2. The Homeostasis of Reactive Oxygen Species

Flooding stress leads to oxidative stress for plants, which triggers plant antioxidant sys-
tems rapidly [68,77]. Respiratory burst oxidase homolog (RBOH) encodes a plasma membrane-
associated NADPH oxidase in plants and can generate hydrogen peroxide (H2O2) by
converting O2 to O2

·− [127–129]. Qi et al. reported that cucumber accumulated higher
levels of ROS under waterlogged stress, further investigation showed that two members
CsRBOHB and CsRBOHF3 were strongly upregulated and might result in ROS accumu-
lation [43]. Hypoxia Responsive Universal Stress Protein 1 (HRU1) can be induced by
submergence stress in Arabidopsis, and was regulated by an VII Ethylene Response Fac-
tor (ERF-VII) protein RAP2.12 (Related to Apetala 2.12) simultaneously; loss of HRU1
function affected H2O2 production and became sensitive to submergence and anoxia, fur-
ther research exhibited that HRU1 mediated ROS production in Arabidopsis through an
interaction with the GTPase ROP2 and the NADPH oxidase RbohD [130]. The transcrip-
tome of two Brachypodium distachyon ecotypes with contrasting submergence tolerance
exhibited that lots of genes associated with redox reaction significantly changed tolerant
ecotype, such as genes coding for ascorbate peroxidases (ASP), ascorbate oxidases (ASO)
and peroxidases (PER), which might be involved in ROS management under submergence
stress [131]. ROS accumulation is harmful for plants, on the other hand, it mediates ARs
and aerenchyma formation as signaling molecules. Under flooding stress, how plants keep
the balance between oxidative stress and signal transduction needs to be further explored.

3.3. The Mechanism of Aerenchyma Formation

Generally, aerenchyma can be classified into two types: schizogenous aerenchyma
and lysigenous aerenchyma [132]. Schizogenous aerenchyma that forms gas spaces owing
to cell separation and expansion without cell death, by contrast, lysigenous aerenchyma
is formed due to the death and subsequent lysis of some cells [53]. Under flooding stress,
plants usually form lysigenous aerenchyma in roots to improve oxygen diffusion (e.g.,
Arabidopsis, maize and wheat) and several genes involved in aerenchyma formation have
been investigated [53,62,90] (Figure 2). In Arabidopsis, lysigenous aerenchyma emerged
in hypocotyls under hypoxic stress and this process relied on three genes LSD1, EDS1
and PAD4, which regulated the upstream ethylene signal and the generation of ROS [62].
With laser microdissection technology, Rajhi et al. investigated the gene expression profile
of cortical cells in maize root when the lysigenous aerenchyma formed, and showed
that the expression of RBOH gene increased sharply under waterlogging stress while
MT (metallothionein) gene for scavenging ROS was down-regulated, which may lead to
the generation of excess ROS and triggered programmed cell death in cortical cells for
aerenchyma formation [53]. Additionally, ethylene-induced the formation of aerenchyma
under waterlogged conditions [53]. In wheat roots, an ethylene precursor pre-treatment
enhanced the expression of three RBOH genes for ROS generation and activated the
formation of lysigenous aerenchyma under stagnant conditions, which might be one of
the strategies for wheat seedlings acclimation to hypoxia stress [90]. According to the
above researches, it can be concluded that both ethylene and ROS mediate the formation of
aerenchyma. Ethylene may induce the generation of ROS and results in the programmed
cell death of cortical cells for lysigenous aerenchyma formation eventually.

3.4. The Forming Basis of ROL Barriers

Apart from aerenchyma, plants develop ROL barriers in roots to impede oxygen
leakage and several genes have been reported to mediate its formation [36] (Figure 2).
Previous studies exhibited that suberin might be the major component of ROL barriers
compared to lignin. For example, De Simone et al. showed that suberization but not
lignification of exodermal cell walls suppressed the radial oxygen loss effectively in roots
of four Amazon tree species, indicating it was suberin forming the ROL barriers under
flooding stress [133]. Shiono et al. reported that the expression of most genes associated
with suberin biosynthesis increased sharply in the outer part of rice roots during ROL
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barrier formation, including GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT)
and PEROXIDASE (POD), which have also been identified to be upregulated during the
formation of ROL barriers with Si supply [48,134], by contrast, few genes related to lignin
biosynthesis were found in this process [88]. Additionally, some transcription factors
containing WRKY, AP2, MYB, and NAC domains might participate in the regulation of
suberin biosynthesis during ROL barrier formation [48,135–137] (Figure 2). Although
suberin is considered to be more crucial in forming the ROL barrier of plant roots, the
initiation and regulation mechanisms of suberin deposition remain unclear.

4. Regulatory Mechanisms of Phytohormones in Plants Response to Flooding Stress

Phytohormones play critical roles in regulating plant growth and can integrate multi-
ple signal transduction pathways under environmental stresses [138,139]. Some phytohor-
mones have been identified to be involved in plants adapting to flooding stress, such as
ethylene, gibberellin and auxin [13] (Table 3, Figures 2 and 3).

4.1. Ethylene

Ethylene is a phytohormone in the form of gas, and hardly escape from plants un-
der flooding conditions, which led to its rapid accumulation inside the plant [13]. The
increased ethylene promotes the formation of AR and aerenchyma in plants when ex-
posed to flooding stress [43,90] (Figure 2). ERF-VIIs are ethylene-responsive transcrip-
tion factors with a conserved APETALA2 (AP2) domain and have been identified to
function in plants tolerance to waterlogging and submergence stresses [17,25,31,104,140]
(Table 3). Two ERF-VII members SK1 and SK2 from deepwater rice were transcriptionally
induced by submergence stress and contributed to the elongation of internodes so as to
keep the top leaves from submerging [11,31]. Another ERF-type transcription factor Sub1A,
was inducible expression under submergence stress, and overexpression of Sub1A with
a tolerance-specific allele in submergence-intolerant variety enhanced its submergence
tolerance [104]. ERF-VII member TaERFVII.1 from waterlogging-tolerant wheat (Triticum
aestivum) was triggered expression obviously by waterlogging but not in susceptible culti-
var, overexpression of TaERFVII.1 increased the waterlogging-tolerance ability of wheat
with no adverse effect on its growth and grain production [17], which can be considered as
a candidate gene for breeding waterlogging-resistant crops. Yu et al. reported that an ERF-
VII member from maize, ZmEREB180, was concerned with waterlogging tolerance and its
expression level was affected by the changes of 5′-untranslated region (5′-UTR); transgenic
maize of ZmEREB180 increased the survival rate through promoting ARs formation and
improving antioxidant ability, which was further supported by transcriptomic analysis [25].
As transcription factors, ERF-VIIs usually function by affecting the expression of other
genes, however, they are regulated by other transcription factors simultaneously. Recently,
Tang et al. reported two transcription factors of WRKY33 and WRKY12 were involved in
Arabidopsis adaptation to submergence stress [19]. WRKY33 interacted with WRKY12
and both of them participated in hypoxia response partially by activating the expression
of ERF-VII member RAP2.2 [19]. In addition, overexpression of WRKY33 or WRKY12 in
Arabidopsis enhanced resistance to hypoxia [19].

Considering the importance of ERF-VIIs for plant adaption to flooding stress, their
members in the model plant Arabidopsis, main crops (rice, maize, wheat and tomato)
and other reported ERF-VIIs were collected and constructed a phylogenetic tree. These
members can be divided into three groups according to sequence similarity. ERF-VIIs that
had been reported to be involved in plant tolerance to flooding stress belongs to Group
I and II, no genes associated with flooding-tolerance have yet been found in Group III
(Figure 3), which can provide references for screening flooding-tolerant genes more pre-
cisely. In brief, ethylene as a major regulator mediated the formation of ARs, aerenchyma,
shoot hyponasty and elongation [141]. However, the downstream genes of ethylene-
signaling pathway associated with flooding-tolerance are largely unknown. For example,
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ERF-VIIs as transcription factors, usually function by regulating the expression of their
target genes, but so far, lots of these upstream genes have not been found and studied.
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4.2. Auxin

Auxin, which acts as a general coordinator of plant growth and development, has
been reported to participate in several plant species adapting to waterlogging stress
(Figure 2), such as box elder (Acer negundo) [143], tomato [42], sunflower [144] and cucum-
ber [43]. Auxin functions in the initiation of root apical meristems and increased auxin
content may result in the formation of AR primordia [43,145,146]. OsPIN1 is a polar auxin
transporter from rice and plays an important role in auxin-dependent ARs formation; the
loss function of OsPIN1 suppressed the development of ARs apparently and application
of auxin partially rescued the missed phenotypes [125]. Another polar auxin transporter
PIN2 of Solanum dulcamara could be induced by flooding stress and ethylene application,
the silence of PIN2 or impediment of auxin transport with chemical methods inhibited
AR primordium initiation [126]. Gutierrez et al. reported that three genes of AUXIN
RESPONSE FACTOR (ARF) family regulated ARs initiation cooperatively in Arabidop-
sis [147]. ARF6 and ARF8 were positive regulators while ARF17 regulated ARs formation
negatively. Meanwhile, three auxin-induced Gretchen Hagen3 (GH3) genes (GH3.3, GH3.5,
and GH3.6) for the biosynthesis of acyl-acid-amido were necessary for ARs initiation in
Arabidopsis hypocotyl [148]. All of these studies indicated that auxin signal participates in
plant acclimation to flooding stress mainly through regulating the formation of ARs.
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4.3. Gibberellin

Gibberellin was also identified to function in plant adaptation to flooding stress
(Figure 4). As suffered from flash floods, submergence-tolerant plants usually restrict their
growth by activation of GA signal [149]. Slender Rice-1 (SLR1) and SLR1 Like-1 (SLRL1)
are GA signaling repressors in rice [150–152]. Previous research exhibited that Sub1A
promoted the accumulation of SLR1 and SLRL1 to suppress GA signal transduction in
submergence-tolerant rice under submergence stress, and affected the expression of PDC
and ADH genes positively, which led to the inhibited growth of submergence-tolerant rice
for energy conservation and regrowth after flooding [104,149,153]. GID1 (GIBBERELLIN
INSENSITIVE DWARF1) is a soluble GA receptor and has been reported previously [154].
Under submergence conditions, loss function of GID1 in rice inhibited the degradation of
chlorophyll and promoted the metabolism of carbohydrates, further analyses suggested
that GID1 regulated GA signals to influence submergence tolerance through controlling
carbohydrate consumption [155].
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Figure 4. The molecular mechanisms of plants with the ‘quiescent’ (LOQS) and ‘escape’ (LOES)
strategies as exposed to submergence stress. Generally, flooding stress induces the accumulation
of ethylene and then leads to different responses according to flooding depth. Under complete
submergence, the ethylene response factor SUB1A is induced and represses the gibberellic acid
(GA) signal to prevent shoot elongation through SLR1 and SLRL1 [104,153]. Ethylene accumulation
induced by partial-submergence contributes to the expression of the SK1 and SK2, which are involved
in the process of internode elongation via GA signal [31]. Ethylene-responsive transcription factor
EIL1a can activate the expression of SD1 (a gibberellin biosynthesis gene), then increased the synthesis
of gibberellins to promote internode elongation [110]. Additionally, an ‘accelerator’ ACE1 and a
‘decelerator’ DEC1 antagonistically regulate internode elongation together with gibberellic acid,
expression of ACE1 or downregulation of DEC1 contributes to the internode elongation [18]. The
dotted arrow represents that GA may be induced by flooding stress directly without being regulated
by ethylene.

GA also plays an important role in the stem elongation of plants [156]. In lowland rice,
an increase of active GA (GA1) resulted in the elongation of leaf sheath under submergence
stress [157]. For deepwater rice, submergence induced the expression of gibberellin biosyn-
thesis gene SD1 (SEMIDWARF1) that was regulated by an ethylene-responsive transcription



Int. J. Mol. Sci. 2021, 22, 1088 17 of 24

factor OsEIL1a, and internode elongation was promoted by increasing gibberellins [110].
Recently, two genes, an ‘accelerator’ ACE1 and a ‘decelerator’ DEC1, were reported to
regulate internode elongation antagonistically together with GA; ACE1, as an unknown
function protein, contributed internode elongation in concert with GA while DEC1, as a
zinc-finger transcription factor, had the opposite function that restricted internode elonga-
tion; these two genes were involved in deepwater rice acclimation to submergence stress
collectively [18]. According to the above results, GA mainly functions in plant acclimation
to flooding stress through the modulation of carbohydrate metabolism and the regulation
of internode (or other organs) elongation. Actually, GA mediates flooding-tolerance of
plants together with ethylene in most cases.

4.4. Other Phytohormones

Moreover, cytokinin and abscisic acid (ABA) have been identified to function in plants
against flooding stress [114,158,159]. Waterlogging-induced ARs formation in wheat is
relevant to four phytohormones (IAA, GA, cytokinin and ABA) and several genes associ-
ated with their biosynthesis or metabolism were inducible expression under waterlogging
stress [160]. Salicylic acid (SA) also participates in the waterlogging-tolerance of plants. SA
content in waterlogging-tolerant soybean lines increased significantly after waterlogging
for 5 or 10 days compared to non-waterlogging conditions while SA content in sensitive
lines exhibited no significant change, implying that SA mediates waterlogging-tolerance of
soybean through regulating the formation of aerenchyma or ARs [161]. Another phytohor-
mone brassinosteroid (BR) has been reported that it may affect GA signaling by interacting
with Sub1A, and regulated the elongation of shoot for surviving under submergence
condition [162].

In fact, different phytohormones function cooperatively in response to flooding stress.
For instance, the ethylene response factor Sub1A in rice repressed the GA signal to prevent
shoot elongation and carbohydrate consumption under complete submergence [104,149].
However, when exposed to partial submergence, ethylene accumulation contributed to
the expression of SK1 and SK2, which facilitated internode elongation through regulating
GA biosynthesis or GA signal transduction [31]. Notably, the expression of SK1 and SK2
may be regulated by one transcription factor EIN3 (ethylene-insensitive-3-like protein)
through binding to their promoter regions [31]. To summarize, plant response to flooding
stress is a complicated process depending on the co-regulation of multiple phytohormones
and the cooperation mechanisms among different hormones need to be further revealed.
Meanwhile, the studies about SA and BR regulating flooding-tolerance of plants should be
strengthened in the future.

5. Conclusions and Further Perspectives

Recently, the mechanisms of plant adaption to flooding stress have been progressively
studied. However, there are still several key open questions to be further clarified.

Firstly, since former studies of plants adaption to flooding stress excessively focus
on model or wetland plants including Arabidopsis, rice and Rumex, the terrestrial plants
should be paid more attention in the future, such as wheat, maize, barely, tomato and
soybean. More importantly, it is essential to collect germplasm resources of these terrestrial
plants widely owing to phenotypic variation among natural populations, and then the
key loci associated with flooding-tolerance can be screened through map-based cloning,
genome-wide association study (GWAS) and precision genome editing with the aid of
CRISPR-Cas9 system for breeding flooding-resistant varieties.

Secondly, the uptake of multiple mineral nutrients usually becomes disorganized
under flooding stress. For example, the concentrations of N, P, K and Zn in leaves of
Lepidium latifolium L. exhibited a decreasing trend as the flooding-time prolongs, and were
lower than those in control plants, however, Fe and Mn contents were higher in roots
of flooded plants than that in unflooded ones [163]. Mineral elements are crucial for
plant growth and the deficiency of mineral nutrients under flooding conditions hastens
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adverse effects on plants. How plants maintain mineral nutrients homeostasis under
waterlogging or submergence stress is largely unknown. Additionally, the formation
of ROL barriers is one of the typical strategies for plant acclimation to flooding stress,
however, its prevention of oxygen loss is nonspecific, and the uptake of water or nutrients
is influenced simultaneously [164,165]. Thus, the mechanism of plants balancing the
impediment of oxygen loss and the uptake of water or nutrients also needs to be further
investigated.

Thirdly, flooding stress usually leads to changes in metabolic activities in plants,
especially outbreaks of some harmful substances, such as ROS, MDA and acetaldehyde.
For instance, flooding-induced oxygen deprivation facilitates the activation of anaerobic
respiration and results in the generation of ethanol and acetaldehyde. Ethanol is usually
considered to be innocuous for its rapid diffusion from cells while acetaldehyde can poison
plant cells [7]. Under the prolonged flooding stress, how does the plant avoid the toxic
of acetaldehyde? Whether the flooding-tolerance plants have enhanced capacity or other
pathways to scavenge acetaldehyde? These questions remain to be further answered.

Finally, the mechanisms about plants with the ‘quiescent strategy’ adaption to sub-
mergence stress remain to be further investigated, especially the tolerant species that can
endure complete submergence stress for a long time. For instance, more than 90% of
bermudagrass can survive after complete submergence for 5 months with water depth
up to 25 m [166]. Under deep submergence, bermudagrass experiences multiple stresses
simultaneously, including oxygen deprivation, low temperature, high water pressure and
low light or even no light. How does bermudagrass adapt to the stresses over the long
term? Exploring the above scientific questions will facilitate understanding the mecha-
nisms of plant acclimation to flooding stress and provide new insights into the breeding of
flooding-resistant crops in the future.
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