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Leukemia cell proliferation requires up-regulation and re-
wiring ofmetabolic pathways to feed anabolic cell growth.
Oncogenic drivers directly and indirectly regulate meta-
bolic pathways, and aberrant metabolism is central not
only for leukemia proliferation and survival, but also me-
diates oncogene addiction with significant implications
for the development of targeted therapies. This review
explores leukemia metabolic circuitries feeding anabo-
lism, redox potential, and energy required for tumor prop-
agation with an emphasis on emerging therapeutic
opportunities.

Tumor cell proliferation is tightly coupled with anabolic
cell growth, as each cycle of cell duplication implies a
100% increase in cellular biomass for cell size to bemain-
tained. As a result, activation of anabolic pathways to-
gether with the energy and redox potential to feed them
are essential components of oncogenic transformation.
Moreover, cancer cells do not simply highjack anabolic
mechanisms active in highly proliferating normal tissues,
but they reorganize these, bypassing cell growth control
checkpoints, securing maximum anabolic output, and
gaining enhanced protection from oxidative stress. This
aberrant nature of cancer metabolic circuitries was first
recognized by Otto Warburg when he postulated that tu-
mor tissues have an increased rate of glucose uptake com-
pared with normal tissues and rely primarily on glucose to
produce ATP (Warburg et al. 1924; Warburg 1956). While
our understanding of cancer metabolism is still develop-
ing, altered metabolism is already recognized as a corner-
stone mechanism of tumorigenesis, a hallmark of cancer
(Hanahan and Weinberg 2011). In addition, tumor metab-
olism represents a readily druggable molecular space,
bringing much interest in targeting metabolic vulnerabil-
ities in cancer. Importantly, major oncogenic drivers
broadly active in human leukemia such as MYC and
RAS are prime drivers of metabolic rewiring in leukemia.

Increased MYC expression is a hallmark of Burkitt’s lym-
phoma and B-cell and T-cell acute lymphoblastic leuke-
mias (ALL) harboring chromosomal translocations
placing theMYC locus in the vicinity of the immunoglob-
ulin and T cell receptor loci, respectively (Dalla-Favera
et al. 1983; Erikson et al. 1986). In addition, enhancer-
driven MYC expression downstream from NOTCH1 is a
driver of cell proliferation, growth, and survival in over
60% of T-ALLs with activating mutations in NOTCH1
(Palomero et al. 2006; Herranz et al. 2014) and as regulator
of cell proliferation and negative regulator of cell differen-
tiation in acute myeloid leukemia (Zuber et al. 2011).
Furthermore, oncogenic MYC expression promotes gly-
colysis, glutaminolysis, mitochondrial biogenesis, lipid
synthesis, and nucleotide biosynthesis (Shim et al. 1997;
Osthus et al. 2000; Li et al. 2005; Liu et al. 2008; Wise
et al. 2008; Gao et al. 2009; Morrish et al. 2010). MYC ex-
pression and activity are modulated by HIF1A and
mTORC1 signaling, which are controlled by oxygen and
metabolic sensors, thus integrating the anabolic and pro-
proliferative effects of MYCwithmetabolic determinants
of cell growth (Zhang et al. 2007; Pourdehnad et al. 2013).
Activating mutations in the RAS-MAPK pathway are
characteristic of juvenile myelomonocytic leukemia
(Stieglitz et al. 2015), but can also be found in ALL and
acute myeloid leukemia (AML) (Roberts and Mullighan
2015; Belver and Ferrando 2016; Bullinger et al. 2017).
As in the case of MYC, RAS mutations promote glutami-
nolysis, enhance glucose uptake, and promote a shift to
anabolic metabolism by shunting glycolytic intermedi-
ates to anabolic pathways and by regulating the activity
of rate-limiting enzymes in the nonoxidative arm of the
pentose phosphate pathway (PPP) and in hexosamine bio-
synthesis (Ying et al. 2012; Lyssiotis et al. 2013; Son et al.
2013). Furthermore, RAS-driven cancers scavenge nutri-
ents via increased micropinocytosis and autophagy,
which promote tumor growth and proliferation (Bar-Sagi
and Feramisco 1986; Guo et al. 2011; Lock et al. 2011;
Yang et al. 2011; Commisso et al. 2013). Finally, PTEN,
a negative regulator of the PI3K-AKT signaling pathway
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is frequently mutated and deleted in T-ALL (Palomero
et al. 2007), and loss of PTEN results in increased
glycolysis, lipid biogenesis, protein translation, and mito-
chondrialmetabolism (Stiles et al. 2004). These oncogene-
driven metabolic circuitries and interactions substantiate
thatmetabolic alterations in cancer cells are closely inter-
twined with the genetic, transcriptional, and epigenetic
changes associated with malignant transformation and
serve as critical downstream effectors of oncogenic
pathways mediating tumor growth. As corollary, onco-
gene-driven metabolic circuitries constitute important
mediators of oncogene addiction, and as such, represent
true cancer-specific vulnerabilities, further substantiating
their relevance as therapeutic targets. In this review, we
discuss the role of cancermetabolic pathways in leukemia
development and recent progress in translating these im-
portant findings to the clinic.

Glucose as source of energy and anabolic
building blocks

Glycolysis converts glucose to pyruvate and yields energy
in the form of two molecules of ATP. Ultimately, pyru-
vate is converted to lactate by aerobic glycolysis or intro-
duced into the tricarboxylic acid (TCA) cycle, which
increases energy production by fueling mitochondrial ox-
idative phosphorylation (Fig. 1). However, and paradoxi-
cally, tumor cells frequently prefer the use of pyruvate
for aerobic glycolysis over oxidative phosphorylation, de-
spite the availability of oxygen, which results in lower
energy yields. B precursor ALL lymphoblasts show up-reg-
ulation of genes involved in glycolysis and concomitant
down-regulation of TCA cycle genes compared with nor-
mal CD34+ progenitor cells (Boag et al. 2006). In addition,
2-deoxy-D-glucose (2-DG), a glucose analog and inhibitor
of glycolysis, induces apoptosis, supporting a dependence
on glycolysis for cell survival (Boag et al. 2006). In agree-
ment, 3-bromo-2-oxopropionate-1-propyl ester (3-BrOP),
an inhibitor of hexokinase, the first enzyme in the glyco-
lytic pathway, can deplete the ATP pool in AML and B cell
lymphoma cell lines and synergizes with inhibition of
mTOR to induce apoptosis (Xu et al. 2005). Furthermore,
deletion of Solute Carrier Family 2Member 1 (SLC2A1), a
major glucose transporter in lymphoid cells, induces met-
abolic reprogramming in favor of catabolism over anabolic
metabolism, and blocks cell proliferation, in B-ALL lym-
phoblasts harboring theBCR-ABL1 tyrosine kinase fusion
oncogene (Liu et al. 2014). Moreover, treatment of BCR-
ABL1 B-ALL cells with 2-DG increases apoptosis and en-
hances the antitumor activity of dasatinib, a tyrosine ki-
nase inhibitor, in vivo. Similarly, AML cell lines and
primary patient leukemia samples with activating muta-
tions in the FLT3 kinase oncogene are also dependent on
glycolysis, and treatment of these cells with 3-BrOP or
2-DG increases the efficacy of tyrosine kinase inhibition
with sorafenib (Huang et al. 2016; Ju et al. 2017). However,
it should be noted that 2-DG also works as an inhibitor
of protein glycosylation and as a result it can impair
the transport of active mutant FLT3 and KIT tyrosine

receptors to the cell surface, which may contribute to its
antileukemic effects (Larrue et al. 2015).
The preferred use of glycoIysis over oxidative phosphor-

ylation in tumor cells is linked with the role of glycolytic
intermediates as important precursors for multiple bio-
synthetic metabolic routes including serine biosynthesis
and the pentose phosphate pathway. In AML, activation
of mTORC1 supports protein translation and cell growth
and promotes glycolysis and high-glucose flux through
the PPP, contributing to glucose addiction (Xu et al.
2003; Tamburini et al. 2009). In addition, marked depen-
dence on oxidative PPP for cell proliferation and survival
in AML makes glucose 6 phosphate dehydrogenase
(G6PD), the first and rate-limiting enzyme in the PPP, a
potentially relevant therapeutic target in this disease
(Xu et al. 2016; Poulain et al. 2017). A key function of
the PPP is the generation of redox potential in the cell
via conversion of nicotinamide adenine dinucleotide
phosphate (NADP+) to its reduced form (NADPH) for bio-
synthesis and protection from oxidative stress. The ser-
ine/threonine-protein phosphatase 2A (PP2A) functions
as a tumor suppressor and it is down-regulated inmultiple
types of cancer. However, in B-ALL PP2A functions to re-
direct glucose fromglycolysis to the PPP as a guard against

Figure 1. Glycolysis and pentose phosphate pathway. Cataboli-
cally, glycolysis converts glucose to pyruvate ultimately produc-
ing lactate, or acetyl-CoA in the TCA cycle for mitochondrial
oxidative phosphorylation. Anabolically, glycolysis generates
metabolic precursors for serine biosynthesis and supports redox
potential and nucleotide biosynthesis via the pentose phosphate
pathway.Most leukemias are highly dependent on glycolysis and
can be targeted using glycolytic inhibitors.
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oxidative stress (Xiao et al. 2018). This metabolic shunt
compensates for the activity of the B-cell transcription
factors PAX5 and IKZF1, which normally down-regulate
the expression of G6PD and other key PPP enzymes, re-
sulting in low PPP activity in B cells (Xiao et al. 2018).
As a result, inhibition of PP2A with LB-100 abrogates
the shunt of glucose carbon to the PPP and results in
marked antitumor effects (Xiao et al. 2018). The relevance
of the metabolic wiring in normal hematopoietic cells for
leukemia tumor initiation and maintenance is further
supported by studies on the role of glycolysis in hemato-
poietic stem cell (HSC) self-renewal and transformation.
HSCs normally rely heavily on glycolysis and loss of
the glycolytic enzymes pyruvate kinaseM2 (Pkm2) or lac-
tate dehydrogenaseA (Ldha), which forces a shift fromgly-
colysis to mitochondrial respiration, results in impaired
long-term repopulating capacity upon transplantation
(Wang et al. 2014). Notably, genetic inactivation of
Pkm2 and Ldha in HSCs also delays the development of
myeloid leukemia following oncogene expression in sup-
port of active glycolysis as an important requirement for
leukemia initiation (Wang et al. 2014). Beyond its role in
tumor initiation and maintenance, increased glycolytic
activity has also been linked with leukemia resistance
to therapy. In ALL, tumors with primary resistance to
prednisolone, a glucocorticoid central in the treatment
of this disease, show up-regulation of genes involved in
glycolysis and carbohydrate metabolism (Holleman et
al. 2004). Moreover, 2-DG synergizes with prednisolone

in these glucocorticoid-resistant cells and induces apopto-
sis, supporting a role for the inhibition of glycolysis in
rendering ALL cells more sensitive to glucocorticoid
treatment (Hulleman et al. 2009). Finally, systemic regu-
lation of glucose levels in the context of AML has been
proposed as a mechanism favoring glucose uptake by my-
eloblasts (Ye et al. 2018). Mechanistically, AML can in-
crease serum levels of Insulin-like growth factor binding
protein 1 (IGFBP1), which results in desensitization of
normal tissues to insulin, decreasing their glucose uptake.
In this way, leukemic cells, which do not require insulin
for glucose uptake, would have a competitive advantage
in the acquisition and utilization of systemic glucose.

Taking aim at the mitochondria

Despite the growth advantage conferred by the use of aer-
obic glycolysis as a source of anabolic precursors and re-
dox potential, many hematopoietic malignancies utilize
both glycolysis and oxidative phosphorylation for ATP
production, and some tumors still favormitochondrial ox-
idation as a source of energy (Fig. 2; Weinberg et al. 2010;
Guo et al. 2011; Marin-Valencia et al. 2012; Birsoy et al.
2015; Boroughs and DeBerardinis 2015; Hensley et al.
2016). The control of nutrient utilization is regulated in
part by prolyl hydroxylase domain proteins, which hy-
droxylate proline residues in substrate proteins involved
in fuel switching. Among these, PHD3 can suppress fatty

Figure 2. Mitochondrial metabolic thera-
peutic targets. The mitochondria also serves
as a major energy factory in leukemia cells
in support of targeting oxidative phosphoryla-
tion with biguanide drugs (metformin and
phenformin) and mitochondrial protein bio-
synthesis with tigecycline. Leukemia cells,
which are highly dependent on arginine–crea-
tine metabolism, are sensitive to cyclocrea-
tine-mediated inhibition of creatine kinase.
Activation of the intrinsic apoptosis pathway
with BH3 mimetic drugs such as ABT199 ac-
tivate the BAK–BAX complex to introduce
pores in the mitochondrial membrane, en-
hancing the activity of mitochondrial metab-
olism-targeting drugs.
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acid oxidation in response to nutrient abundance via ace-
tyl-coA carboxylase 2 (ACC2) hydroxylation, and low lev-
els of PHD3 expression in AML make these tumors rely
on lipid catabolism regardless of external nutrient avail-
ability (German et al. 2016). Metformin, an inhibitor
of mitochondrial complex I, in clinical use for the treat-
ment of type 2 diabetes, has shown antitumor effects via
disruption of oxidative phosphorylation in tumor cells
(Bailey and Turner 1996) and is in clinical trials in combi-
nation with standard chemotherapy for the treatment of
relapsed ALL and chronic lymphocytic leukemia (CLL)
(NCT01750567, NCT01324180). In CLL lymphocytes, ty-
rosine kinase inhibition with dasatinib can increase glu-
cose consumption while reducing lactate production,
suggesting a shift in glucose use from aerobic glycolysis
to the TCA cycle and oxidative phosphorylation (Marti-
nez Marignac et al. 2013). In agreement with this, dasati-
nib sensitive CLL cells are also selectively sensitive to
metformin (Martinez Marignac et al. 2013). Moreover, in
T-ALL, mitochondrial complex I inhibition with metfor-
min has been reported to synergize with daunorubicin,
vincristine, L-asparaginase, and etoposide, enhancing
the antileukemic effects of these drugs (Pan et al. 2012;
Rosilio et al. 2013; Yi et al. 2017). In addition, in chronic
myeloid leukemia (CML) and AML, metformin suppress-
es leukemia cell proliferation, clonogenic activity, and
survival, consistent with higher mitochondrial biogenesis
and higher dependency onmitochondrial oxidation in leu-
kemia myeloblasts compared with normal hematopoietic
precursor cells (Green et al. 2010; Vakana et al. 2011). Sim-
ilarly, inhibition of mitochondrial function with tigecy-
cline, a third generation tetracycline antibiotic that
interferes with translation by blocking the interaction of
aminoacyl-tRNAwith the A site of the ribosome in bacte-
ria and mitochondria, has been proposed as a potential
therapy in AML (Škrtic ́ et al. 2011). Furthermore, inhibi-
tion of ClpP, a mitochondrial protease frequently overex-
pressed in AML, can induce leukemia cell death while
sparing normal hematopoietic cells (Cole et al. 2015). Im-
portantly, AML cells resistant to cytarabine chemothera-
py show higher levels of oxidative phosphorylation and
are highly sensitive to mitochondrial targeting with tige-
cycline or inhibitors of the electron transport chain in vi-
tro and in vivo (Farge et al. 2017).
An important consideration is that, even within the

same tumor, leukemia populations may not be metaboli-
cally homogeneous and that chemoresistant leukemia-
initiating cells responsible for tumor progression and ther-
apeutic failure may show different metabolic characteris-
tics and dependencies from bulk blast progenitors. In this
setting, it has been proposed that leukemia stem cells are
characterized by relatively low levels of reactive oxygen
species and overexpression of the BCL2 antiapoptotic fac-
tor, and that these features can be therapeutically targeted
by reducing oxidative phosphorylation with ABT-199, a
small molecule BCL2 inhibitor (Lagadinou et al. 2013).
In addition, and most notably, ABT-199 plus azacitidine,
a DNA demethylating agent, can further reduce oxidative
phosphorylation in AML cells and effectively induces
durable clinical responses in older, treatment-naïve pa-

tients (Pollyea et al. 2018). In accord, CML leukemia-initi-
ating cells show increased oxidative metabolism
compared with normal hematopoietic stem cells, which
can be targeted with tigecycline (Kuntz et al. 2017). Of
note, the combination of tyrosine kinase inhibition with
imatinib plus mitochondrial disruption with tigecycline
can effectively eliminate most leukemia stem cells in xe-
nograft models (Kuntz et al. 2017).
Decreased energy levels in cells activate AMP-activated

protein kinase (AMPK), a crucial energy sensor, which
promotes ATP production by increasing the activity and
expression of proteins involved in catabolism including
glycolysis and fatty acid oxidation, while conserving
ATP by switching off biosynthetic pathways such as fatty
acid, glycogen, and protein synthesis (Merrill et al. 1997;
Marsin et al. 2000, 2002; Li et al. 2011). Oncogenic
NOTCH1 promotes glycolysis in T-ALL, but also induces
metabolic stress and AMPK activation, which in turn re-
strains aerobic glycolysis and favors oxidative phosphory-
lation rendering T-ALL lymphoblasts sensitive to
phenformin, a metformin-related biguanide complex I in-
hibitor (Kishton et al. 2016). Consistently, treatment of
T-ALL cells with metformin stimulates AMPK to trigger
autophagy and apoptosis (Grimaldi et al. 2012). However,
and importantly, AMPK also regulates metabolic energy
balance at the whole-body level. Dietary restriction in
mice harboring MLL-AF9-induced AML leads to activa-
tion of AMPK, which is essential to support leukemia de-
velopment (Saito et al. 2015). Thus, AMPK deletion
significantly delays leukemogenesis and depletes leuke-
mia-initiating cells by reducing glucose uptake, and in-
creasing oxidative stress and DNA damage (Saito et al.
2015). Notably, AML leukemia-initiating cells are partic-
ularly dependent on AMPK to suppress oxidative stress in
the hypoglycemic bone marrow environment and AMPK
inhibition synergizes with dietary restriction to suppress
leukemogenesis (Saito et al. 2015). In addition, it should
be considered that dietmay affect the activity and antileu-
kemic effects of metabolic drugs and targeted therapies as
a result of the replenishment ofmetabolic pathways (Polet
et al. 2016) and signaling feedback mechanisms (Hopkins
et al. 2018), respectively. The effects of diet in therapy re-
sponse is exemplified by the impact of ketogenic diet on
the effect of PI3K inhibitor in AML (Hopkins et al.
2018). Ketogenic diet in animal leukemia models acceler-
ates the onset of MLL-AF9-induced AML, however it also
enhances the response to PI3K inhibitors, by precluding
the development of tumor-enhancing hyperinsulinemia.
The ecotropic virus integration site 1 (EVI1) gene en-

codes a transcription factor with chromatin remodeling
activity (Hinai and Valk 2016). Aberrant expression of
EVI1 is an oncogenic driver in AML bearing chromosomal
rearrangements inv(3)(q21q26·2) or t(3;3)(q21;q26·2) in-
volving the EVI1 locus, and also an important indepen-
dent adverse prognostic marker in 6%–11% cases with
aberrant EVI1 expression (Hinai and Valk 2016). Among
other oncogenic effects, EVI1 expression remodels the
metabolic landscape of hematopoietic stem cells altering
arginine metabolism and de novo nucleotide synthesis
(Fenouille et al. 2017). In addition, EVI1 overexpressing
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AMLs show high expression of mitochondrial creatine ki-
nase CKMT1, the enzyme responsible for the transfer of a
high-energy phosphate from mitochondria to the cytosol-
ic carrier, creatine (Fenouille et al. 2017). Notably,
CKMT1 inhibition in these cells compromises mitochon-
drial respiration and ATP production by impairing the ar-
ginine–creatine pathway (Fenouille et al. 2017). As a
result, EVI1-expressing leukemia cells are dependent on
arginine–creatine metabolism and become sensitive to
creatine kinase inhibition with cyclocreatine (Fenouille
et al. 2017).

Targeting nucleotide biosynthesis and degradation
pathways

Nucleotide biosynthesis is an essential component of cell
metabolism and a major vulnerability in actively prolifer-
ating cells. The synthesis of purine and pyrimidine nucle-
otides is centrally connected to anabolic pathways as it
utilizes energy and building blocks from multiple meta-
bolic routes engaging amino acidmetabolism, the pentose
phosphate pathway, the one-carbon-unit cycle and the tri-
carboxylic acid cycle (Fig. 3). In leukemia cells, nucleotide
synthesis critically supports DNA replication and ribo-
some biogenesis as essential processes for cell prolifera-
tion and growth. Proof of principle for the targeting of
nucleotide metabolism in the clinic emerged early on
with the seminal identification of the antileukemic ef-
fects of aminopterin, a folate antagonist inhibitor of nucle-
otide biosynthesis, in acute lymphoblastic leukemia

(Farber and Diamond 1948). Today, antimetabolites tar-
geting nucleotide biosynthesis are a stalwart component
of the treatment of hematologic malignancies. Common-
ly used antimetabolites in the treatment of leukemia
include folic acid antagonists, such as methotrexate, pu-
rine antimetabolites, such as 6-mercaptopurine, fludara-
bine phosphate, pentostatin, clofarabine, and cladribine,
and pyrimidine antimetabolites such as cytarabine. New
antimetabolite drugs are actively being incorporated in
the antileukemic armamentarium targeting these path-
ways. Recently, dihydroorotate dehydrogenase (DHODH),
an enzyme mediating the fourth step in de novo pyrimi-
dine biosynthesis (Löffler et al. 1997), has been proposed
as a target in AML, where depletion of the pyrimidine
pool not only abrogates proliferation, but also induces a
HOXA9-dependent differentiation block, triggering mye-
loid differentiation and suppressing leukemia-initiating
cell activity (Sykes et al. 2016; Christian et al. 2019). In ad-
dition, nucleotide degradation pathways have started to
gain attention with the realization of important depen-
dencies mediated by the clearance of endogenous and
drug-generated toxic nucleotide metabolic byproducts.
The purine nucleotide phosphorylase (PNP) enzyme me-
diates nucleotide degradation by catalyzing the cleavage
of inosine, deoxyinosine, guanosine, and deoxyguanosine
(dGuo) to their corresponding base and sugar 1-phosphate.
In the absence of PNP, nucleosides accumulate, active
deoxycytidine kinasemetabolizes the excess deoxyguano-
sine to produce dGTP, which in turn inhibits ribonucleo-
tide diphosphate reductase, blocking the synthesis of
dCDP and dUDP and DNA synthesis, particularly in

Figure 3. Nucleotide metabolism. Purine
and pyrimidine biosynthesis are central to
DNA replication and can be inhibited with
antimetabolite drugs. In addition, the purine
degradation activity of NT5C2, which
contributes to resistance to 6-MP, sensitizes
leukemia cells to inhibition of purine biosyn-
thesis with mizoribine.
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dividing T-cells (Schramm 2002). Consistently, forode-
sine, a transition state analog inhibitor of PNP has shown
antitumor effects in T-ALL (Homminga et al. 2011) and
clinical activity in peripheral T-cell lymphomas (Makita
et al. 2018).
6-mercaptopurine (6-MP), a purine base analog com-

monly used in the treatment ofALL, is incorporated in sal-
vage pathway of purine biosynthesis and induces
antitumor effects via inhibition of de novo purine biosyn-
thesis and by inducing apoptosis upon incorporation into
DNA (De Abreu 1994). The cytosolic 5′-Nucleotidase II
(NT5C2), an enzyme responsible for the intracellular
5′-dephosphorylation of the purine biosynthesis precur-
sors inosinemonophosphate (IMP), guanosinemonophos-
phate (GMP), and xanthine monophosphate (XMP), can
antagonize the activity of 6-MP by facilitating the dephos-
phorylation and cellular export of the thiopurine-derived
metabolites thio-IMP, thio-XMP, and thio-GMP (Dieck
and Ferrando 2019). Notably, somatic activating muta-
tions in NT5C2 are present in 3%–10% of relapsed B-
ALL and 20% of relapsed T-ALL cases (Meyer et al.
2013; Tzoneva et al. 2013; Oshima et al. 2016) and can
also be found in acute promyelocytic leukemia (APL) re-
lapse samples from patients who have been treated with
6-MP (Lehmann-Che et al. 2018). The direct mechanistic
link between increased NT5C2 activity and resistance to
6-MP supports a role of NT5C2 inhibition in the abroga-
tion of 6-MP resistant clones. Moreover, excess NT5C2
activity and consequent increased export of purine nucle-
osides rendersNT5C2mutant ALL cellsmore sensitive to
mizoribine, a purine biosynthesis inhibitor blocking ino-
sine monophosphate dehydrogenase (IMPDH) (Tzoneva
et al. 2018).

Amino acids for protein biosynthesis and beyond

Amino acids are the building blocks of protein biosynthe-
sis, but they also serve as a source of carbon and nitrogen
in nucleotide synthesis and other biosynthetic pathways.
In addition, amino acid degradation can also constitute an
important source of precursors for energy production. Ke-
togenic amino acids leucine and lysine generate acetyl-
CoA, while glycogenic amino acids generate pyruvate
and TCA cycle intermediates. Among these, glutamine
plays a prominent role as a carbon and nitrogen source
both in normal cells and in tumormetabolism.Glutamine
conversion to glutamate and then α-ketoglutarate feeds
carbon into the TCA cycle and glutamine metabolism
contributes to the synthesis of lipids, nucleotides, and
nonessential amino acids (DeBerardinis et al. 2007).
AML cells are particularly dependent on glutamine, as
glutamine controls oxidative phosphorylation in these
cells, and removal of glutamine leads to apoptosis (Wil-
lems et al. 2013; Jacque et al. 2015). Consistently, gluta-
minase (GLS), the enzyme that catalyzes the conversion
of glutamine to glutamate, has been proposed as a thera-
peutic target in this disease (Matre et al. 2016; Gallipoli
et al. 2018; Gregory et al. 2018). Moreover, glutamine dep-
rivation in AML cells results in the up-regulation of

3-phosphoglycerate dehydrogenase (PHGDH) and phos-
phoglycerate aminotransferase (PSAT), two essential en-
zymes in the serine biosynthesis pathway, and serine
removal enhances the effects of GLS inhibition therapy
(Polet et al. 2016). In addition, glutamine use is also prom-
inently active in T-ALL and glutaminolysis critically con-
tributes to leukemia cell growth and survival in the
context of suppression of oncogenic NOTCH1 signaling,
making glutaminase inhibitors highly synergistic with
anti-NOTCH1 therapies in this disease (Herranz et al.
2015).
Asparagine is a nonessential amino acid in most tissues

as it is synthesized via a transamination reaction cata-
lyzed by asparagine synthetase (ASNS), which converts
aspartate and glutamine into asparagine and glutamate.
However, acute lymphoblastic leukemia cells are auxo-
tropic for asparagine as they express low levels of ASNS.
As a result, these tumors are highly vulnerable to aspara-
ginase treatment, which induces systemic degradation of
asparagine and depletes extracellular sources of this ami-
no acid required for leukemia cell growth (Kidd 1953a,b;
Broome 1963a,b; Miller et al. 1969; Ohnuma et al. 1970;
Capizzi et al. 1971). Mechanistically, asparaginase can
deplete not only the asparagine but also the glutamine in-
tracellular pool. Moreover, metabolomic profiling follow-
ing asparaginase treatment reveals global metabolic shifts
with decreased translation and inhibited glycolysis, acti-
vation of autophagy and increased fatty-acid oxidation
and cellular respiration (Hermanova et al. 2016). Altogeth-
er, these perturbations induce profound antileukemic ef-
fects and, as a result, asparaginase treatment contributes
significantly to the success of multiagent chemotherapy
regimens for ALL (Sallan et al. 1983; Clavell et al. 1986).
Moreover, activation of the Wnt pathway via GSK3-de-
pendent inhibition, could sensitize leukemia cells to as-
paraginase (Hinze et al. 2019).
Arginine, a semi-essential amino acid, can be synthe-

sized from citrulline, but it must also be taken up from
the diet in order to meet the cellular demands (Wheatley
2005). AML blast cells frequently show defects in the argi-
nine-recycling pathway enzymes argininosuccinate syn-
thase and ornithine transcarbamylase, which makes
them arginine auxotrophic and dependent on arginine up-
take by the CAT-1 and CAT-2B arginine transporters.
Consequently, depletion of extracellular arginine with
BCT-100, a pegylated human recombinant arginase, leads
to a rapid decrease of the intracellular arginine pool and in-
duces proliferation arrest, apoptosis, and decreased AML
engraftment in vivo (Mussai et al. 2015), a therapeutic
strategy that may also apply for the treatment of T-ALL
(Hernandez et al. 2010; Morrow et al. 2013). However, al-
tered arginine availability can also be induced by AML
cells, which express and release arginase II into the plas-
ma, as a mechanism to suppress immunosurveillance by
interfering with T-cell proliferation and inducing mono-
cyte polarization towards a suppressive M2-like pheno-
type (Mussai et al. 2013).
In CML blast crisis cells, the synthesis of essential

branched-chain amino acids leucine, valine, and isoleu-
cine is enhanced by up-regulation of branched chain
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amino acid transaminase 1 (BCAT1), an enzyme catalyz-
ing the amination of branched-chain keto acids. In this
setting, BCAT1 inhibition induces cellular differentiation
and impairs CML blast crisis propagation in vitro and in
vivo in support of an essential role for branched amino
acid production in this disease (Hattori et al. 2017).

The multiple roles of amino acid metabolism in leuke-
mia growth and survival beyond protein biosynthesis is
further substantiated by the use of cysteine as a precursor
for the biosynthesis of glutathione (GSH) required for the
maintaining of intracellular redox potential (Orlowski
and Meister 1971; Wu et al. 2004a). Tumor B cells in
CLL have high levels of intracellular reactive oxygen spe-
cies and are highly dependent on SLC7A11-mediated cys-
teine import from the microenvironment to support GSH
production and to maintain their intracellular redox bal-
ance (Zhang et al. 2012). Consequently, treatment of
CLL cells with a cysteinase enzyme alone or in combina-
tion with fludarabine led to significant increases in apo-
ptosis both in the presence and in the absence of stromal
cells (Cramer et al. 2017).

Lipids also fuel leukemia growth

Cholesterol, phospholipids, and triglycerides serve as
structural components of membranes, and even though
most tissues can satisfy their lipid requirements through
the uptake of free fatty acids and lipoproteins from the
blood, cancer cell growth requires active biosynthesis to
meet the high demand for the biogenesis of membrane
structures. Fatty acid biosynthesis is initiated by the car-
boxylation of acetyl-CoA to producemalonyl-CoA, which
is subsequently condensed by fatty acid synthase (FASN)
to generate palmitate (Maier et al. 2008). Resulting fatty
acids, alongwith those taken up from the extracellular en-
vironment, serve as building blocks for the synthesis of
triacylglycerides, glycerophospholipids, cardiolipids,
sphingolipids, and eicosanoids.

In addition, degradation of fatty acids by fatty acid oxida-
tion in the mitochondria is a prominent source of acetyl-
CoA for oxidative phosphorylation and energy production
in cancer cells. Transfer of fatty acids to the mitochondria
requires first their coupling with to coenzymeA, and then
the transfer of the acyl group to carnitine, a reaction cata-
lyzed by the carnitine palmitoyltransferase 1a (CPT1A)
enzyme. Targeting fatty acid transport and β-oxidation
with the CPT1a inhibitor ST1326 induces cell growth ar-
rest, mitochondrial damage, and apoptosis in AML cells
(Ricciardi et al. 2015). Of note, cell growth and survival
in AML monocytic cells seems to be supported by bone
marrow adipocytes, which promote fatty acid β-oxidation
(Tabe et al. 2017). Consistently, the lipolysis inhibitor orli-
stat, which blocks the generation of free fatty acids from
triglycerides and phospholipids, and pharmacologic inhi-
bition of fatty acid oxidation with etomoxir or ranolazine,
inhibitAMLcell proliferation, and sensitize human leuke-
mia blasts to apoptosis induced by ABT-737, a small mol-
ecule inhibitor of the BCL2 and BCLXL antiapoptotic
factors (Samudio et al. 2010). In an analogous way, CLL

cells, which express high levels of CPT1 and CPT2, are
sensitive to suppression of fatty acid transport into themi-
tochondria with perhexiline, a CPT inhibitor, leading to
depletion of cardiolipin, a key component ofmitochondri-
al membranes, and consequent loss of mitochondrial in-
tegrity and induction of programmed cell death (Liu
et al. 2016).

Lipid steroids play important roles in membrane struc-
ture and fluidity (cholesterol), as components of the
electron transport chain (ubiquinone), in protein glycosyl-
ation (dolichol), and in protein isoprenylation (farnesyl
pyrophosphate and geranylgeranyl pyrophosphate). Syn-
thesis of steroids fromacetyl-CoA in themevalonate path-
way can be blocked with statins, which prevent the
conversion of HMG-CoA to mevalonate by inhibiting
HMG-CoA reductase (HMGCR) (Goldstein and Brown
1990). An antitumor effect of statin drugs was recognized
early on (Newman et al. 1994) and in vitro experiments
have shown that statins can induce apoptosis in hemato-
logic malignancies (Dimitroulakos et al. 2000; Xia et al.
2001; Wong et al. 2002; Wu et al. 2004b). Mechanistically,
statins can induce apoptosis in leukemia cells at least in
part by interfering with the prenylation of the Rho and
Ras GTPases (Mangues et al. 1998; Cafforio et al. 2005).
Notably, statins are broadly used as hypolipidemic agents
for reduction of cardiovascular risk, and a recent retro-
spective population-based study has shown both an asso-
ciation between CLL and dislipidemia and improved CLL
survival in patients receiving hypolipidemic therapy
(Mozessohn et al. 2017). These results are in agreement
with a role for lipid metabolism in CLL and the observa-
tion of increased cell proliferation in early-stage indolent
CLL blasts in response to increased levels of blood low-
density lipoproteins (Chow et al. 2016). In addition, stat-
ins have been evaluated clinically for the treatment of
AML in combination with chemotherapy. These studies
support the findings that statin treatment may enhance
complete remission rates in favorable-risk AML groups,
but have a less clear role in high-risk AML (Kornblau
et al. 2007; Advani et al. 2018). In addition, treatment of
AML andCLL cells with statins increases their sensitivity
to BCL2 inhibition with ABT-199 as a result of inhibition
of protein geranylgeranylation with consequent up-regu-
lation of the protein p53 up-regulated modulator of apo-
ptosis (PUMA). Moreover, and in support of clinical
relevance, retrospective analyses of three CLL clinical
studies showed that statin use was associated with en-
hanced response to ABT-199 therapy (Lee et al. 2018).

Sphingolipids are lipid components of cell membranes
with important roles in control of cell proliferation, cell–
cell interactions, signaling, and cell survival. De novo
sphingolipid biosynthesis is initiated through the action
of serine palmitoyltransferase (SPT), which joins palmi-
toyl-CoA to serine to produce sphingosine, the backbone
of all sphingolipids. Conjugation of sphingosine to a fatty
acid generates ceramide, and addition of a polar head group
to ceramide leads to the production of more complex
sphingolipids, including sphingomyelin (after the addition
of phosphocholine) and glycosphingolipids (after the addi-
tion of a sugar). In this group, ceramides are proapoptotic
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and promote cell cycle arrest and senescence (Obeid et al.
1993). Ceramide synthase (CerS), the enzyme that catalyz-
es the formation of ceramide from sphingosine, is in-
creased in CLL upon treatment with the BCL2-family
inhibitor ABT-263, resulting in enhanced apoptosis (Bev-
erly et al. 2013). In addition, in AML leukemia cells,
FLT3 signaling is associated with lower CerS1 expression
and CerS1 up-regulation as result of FLT3 inhibition leads
to mitophagy-dependent cell death (Dany et al. 2016). On
the other hand, sphingosine-1-phosphate (S1P), a secreted
sphingolipid, promotes cellmigration and plays important
roles in tissue homing of lymphoid and myeloid cells.
Sphingosine kinase (SPHK) generates S1P via phosphory-
lation of sphingosine and inhibition of this enzyme is syn-
ergistic with vincristine chemotherapy in T-ALL
(Evangelisti et al. 2014). Similarly, inhibition of SPHK1
in combination with cytarabine enhanced leukemia cell
death in AML (Powell et al. 2017). Moreover, genetic dele-
tion of Sphk1 in BCR-ABL1-inducedmousemodels ofALL
delayed leukemia development and was synergistic with
tyrosine kinase inhibitor treatment against BCR-ABL1-
positive cell lines, further supporting a relevant role for
S1P signaling in promoting leukemia development (Wall-
ington-Beddoe et al. 2019).

Beyond metabolism

Cancer metabolic networks control not only energy bal-
ance and growth, but are also increasingly recognized as

important modulators of epigenetic mechanisms of gene
expression via modulation of epigenetic enzymes impli-
cated in DNA methylation and as writers and erasers of
nucleosome epigenetic marks in histone tails. In fact, ace-
tyl-coA is required for histone acetylation, and α-ketoglu-
tarate, a metabolic intermediate in the TCA cycle, serves
as a substrate for the TET family of DNA demethylases
and the Jumonji family of histone demethylases (Fig. 4;
Tsukada et al. 2006; Tahiliani et al. 2009).
The isocitrate dehydrogenase enzymes IDH1 and

IDH2, which catalyze the conversion of isocitrate to
α-ketoglutarate, are mutated in 20% of AML cases
(Schnittger et al. 2010; Green et al. 2011). Recurrent alter-
ations in the IDH1 and IDH2 genes in AML are character-
istically heterozygous missense mutations involving
arginine residues implicated in isocitrate binding (Dang
et al. 2009; Mardis et al. 2009; Yan et al. 2009). These
gain-of-function mutations change substrate specificity
and result in the conversion of α-ketoglutarate into 2-
hydroxyglutarate (2-HG) (Dang et al. 2009; Kranendijk
et al. 2010; Ward et al. 2010), an oncometabolite that
functions as an inhibitor of DNA and histone demethy-
lases, leading to consequent DNA hypermethylation
and deregulated gene expression (Figueroa et al. 2010;
Xu et al. 2011). Notably, mutant IDH enzymes can be tar-
geted with small molecule inhibitors AG-120 (Ivosidenib)
for IDH1 and AG-221 (Enasidenib) for mutant IDH2
(Stein et al. 2017; DiNardo et al. 2018). In a phase I clin-
ical trial, Ivosidenib induced differentiation and matura-
tion of mutant IDH1 AML cells, decreased 2-HG levels

Figure 4. Metabolic targeting of epigenetic
mechanisms in leukemia. TET enzymes,
which mediate DNA demethylation, use
α-ketoglutarate as a substrate and ascorbate
as a cofactor and are inhibited in AML and
myeloproliferative disorders as a result of
loss-of-functionmutations inTET2 or because
of 2HG produced by neomorphicmutations in
the IDH1 and IDH2 genes. Small molecule in-
hibitors of mutant IDH1 and IDH2, and vita-
min C supplementation can abrogate the
production of 2HG or enhance TET2 activity,
respectively, restoring DNA methylation pat-
terns and myeloid cell differentiation.
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in serum and resulted in durable remissions in patients
(DiNardo et al. 2018). Similarly, Enasidenib induced dif-
ferentiation and maturation of malignant myeloblasts
with IDH2 mutations in phase I and induced clinically
relevant responses in patients who had previously failed
conventional AML therapy (Stein et al. 2017). Converse-
ly, heterozygous loss-of-function mutations in TET2,
which impair the ability of this enzyme to mediate
DNA demethylation via oxidation of 5-methylcytosine
(5mC) to 5-hydroxymethylcytosine (5hmC), are present
in about 30% of AML tumors (Abdel-Wahab et al. 2009;
Delhommeau et al. 2009). Notably, TET proteins use vi-
tamin C as a cofactor (Fritz et al. 2014) and vitamin C
supplementation can overcome the effects of partial
Tet2 deficiency in AML, leading to myeloid differentia-
tion (Cimmino et al. 2017). Finally, overexpression of
BCAT1 in AML leukemic stem cells decreases α-ketoglu-
tarate levels by coupling this metabolite to α-amino
groups from branched chain amino acids. In turn, deple-
tion of α-ketoglutarate results in altered TET activity
and DNA hypermethylation, reminiscent of that induced
by IDH mutations, in support of the branched chain ami-
no acid-BCAT1-α-ketoglutarate axis as an oncogenic
mechanism and a potential therapeutic target in this dis-
ease (Raffel et al. 2017).

Future perspectives

While the studies highlighted here have significantly en-
hanced our understanding of the metabolic wiring of leu-
kemia cells, the metabolic programs regulating leukemia
initiation and progression remain to be fully understood.
Deep exploration of leukemia metabolomics using im-
proved analytical techniques suitable for the analysis of
small cell numbers and for in vivo analyses is sure to bring
new and improved perspectives on the metabolic circuit-
ries operating in leukemia populations and the interaction
between leukemia cells and their microenvironment.
Moreover, while targeting metabolic pathways deregulat-
ed in leukemia, and most relevantly in leukemia-initiat-
ing cell populations offers much prospect to improve the
treatment of these hematologic malignancies, realizing
this opportunity will require deep exploration of metabol-
ic vulnerabilities across different genetic and biological
leukemia groups as well as dedicated efforts to investigate
these in primary leukemia samples, relevant mouse leu-
kemia models, and patient-derived xenografts in vivo.
However, it should be noted that while many of the tar-
gets and drugs covered in this reviewdisplay great promise
in the laboratory setting, many are not yet ready for
deployment in the clinic.
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