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Abstract: The central nervous system of adult zebrafish displays an extraordinary neurogenic and
regenerative capacity. In the zebrafish adult brain, this regenerative capacity relies on neural stem
cells (NSCs) and the careful management of the NSC pool. However, the mechanisms controlling
NSC pool maintenance are not yet fully understood. Recently, Bone Morphogenetic Proteins (BMPs)
and their downstream effector Id1 (Inhibitor of differentiation 1) were suggested to act as key players
in NSC maintenance under constitutive and regenerative conditions. Here, we further investigated
the role of BMP/Id1 signaling in these processes, using different genetic and pharmacological
approaches. Our data show that BMPs are mainly expressed by neurons in the adult telencephalon,
while id1 is expressed in NSCs, suggesting a neuron-NSC communication via the BMP/Id1 signaling
axis. Furthermore, manipulation of BMP signaling by conditionally inducing or repressing BMP
signaling via heat-shock, lead to an increase or a decrease of id1 expression in the NSCs, respectively.
Induction of id1 was followed by an increase in the number of quiescent NSCs, while knocking
down id1 expression caused an increase in NSC proliferation. In agreement, genetic ablation of
id1 function lead to increased proliferation of NSCs, followed by depletion of the stem cell pool
with concomitant failure to heal injuries in repeatedly injured mutant telencephala. Moreover,
pharmacological inhibition of BMP and Notch signaling suggests that the two signaling systems
cooperate and converge onto the transcriptional regulator her4.1. Interestingly, brain injury lead to a
depletion of NSCs in animals lacking BMP/Id1 signaling despite an intact Notch pathway. Taken
together, our data demonstrate how neurons feedback on NSC proliferation and that BMP1/Id1
signaling acts as a safeguard of the NSC pool under regenerative conditions.

Keywords: adult neurogenesis; regeneration; quiescence; telencephalon; radial glial cell; neural stem
cell; BMP; id1; notch; her4.1; zebrafish

1. Introduction

Adult mammals have a limited ability to generate new neurons and to repair injured
nervous tissue [1]. In contrast, the brain of adult zebrafish contains many distinct neu-
rogenic niches [2–4], and also unlike mammals, zebrafish can repair large brain lesions
efficiently, frequently recovering function without striking disabilities [2,5–8]. In the te-
lencephalon of adult zebrafish, the entire ventricular zone produces new neurons under
physiological conditions representing the baseline or constitutive neurogenesis [2,6,7,9–11].
When the telencephalon is injured, proliferation of NSCs is transiently boosted above
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the baseline of constitutive neurogenesis with a peak at five to seven days after in-
jury [7,10,12,13]. Peculiarly, injury inflicted within one hemisphere of the telencephalon
leads to a proliferative response of NSCs only in this injured hemisphere, while no re-
sponse is observed in the closely apposed stem cell niche of the uninjured half of the
telencephalon [7,14,15]. Thus, the signals which trigger stem cell proliferation in response
to injury remain confined within the injured hemisphere.

The ventricular zone of the adult zebrafish telencephalon is densely populated by
the cell bodies of radial glia cells (RGCs), the NSCs of the zebrafish telencephalon [11,16].
RGCs express typical NSC-markers such as Glial acidic fibrillary protein (Gfap), Brain lipid
binding protein (Blbp), and the Calcium-binding protein β (S100β) [9,10,16–18]. Under
homeostatic conditions, the majority of the NSCs are quiescent type I RGCs. Only a small
proportion of NSCs proliferate and express proliferation markers, such as proliferating
cell nuclear antigen (PCNA). This latter so-called type II RGCs can give rise to commit-
ted neuronal progenitors corresponding to neuroblasts (type III cells) [10,16]. When the
telencephalon is injured, many more NSCs enter the cell cycle and start to express pro-
liferation markers [7]. Concomitantly, the NSCs generate an increased number of new
neurons compared to homeostatic conditions [19]. Newborn neuronal precursors migrate
from the ventricular layer to the injury site to replace lost neurons [6]. This regenerative
neurogenesis can be initiated by inflammatory signals [20–22].

During regeneration, NSCs were proposed to divide mostly symmetrically giving rise
to two new neurons or two NSCs [19]. Especially, the increase in neurogenesis in response
to injury could rapidly lead to depletion of stem cells unless if these fate decisions are
not carefully managed. Genetic and pharmacological evidence strongly support a role
of Notch signaling in regulating NSC quiescence, both in mouse and zebrafish [23–26].
Specifically, in the zebrafish telencephalon, Notch3 is expressed in RGCs and promotes
quiescence of NSCs [27]. This signaling originates, at least in part, from the progenitor
population itself [28,29]. Notch signaling appears to serve as an intrinsic signaling cue for
the regulation of quiescence and the maintenance of the stem cell population in mammals
and fish [1,9].

Previously, in a genome-wide search for transcription regulator genes differentially
expressed in response to telencephalic injury in the zebrafish [14,30,31], we identified the
HLH factor Id1 which is a non-DNA-binding inhibitor of basic-Helix-Loop-Helix (bHLH)
transcription factors [32]. id1 was shown to be mainly expressed in quiescent NSCs and to
be specifically up-regulated in these cells after injury [14,15]. As in constitutive neurogenic
condition, id1 expression was mainly associated with non-proliferative NSCs after brain
injury [14]. Functional studies using morpholinos and mosaic gain-of-function by in situ
lipofection suggested a role of Id1 in repressing proliferation of NSCs. Therefore, we
speculated that in particular its up-regulation is important to maintain the NSC pool after
injury [14]. Id factors have previously been implicated to play a role in the maintenance
of the stem cell pool in mice indicating a possible conservation of the mechanism [33–35].
However, mice do not exhibit the same strong regenerative capacity as zebrafish [9].

Further investigation revealed that expression of id1 in NSCs is driven by a phyloge-
netically conserved cis-regulatory module (CRM) [15]. For activity under both constitutive
and regenerative conditions, this CRM requires Smad1/5 and Smad4 binding motifs which
are intracellular mediators of BMP signaling [15]. Our preliminary data suggested thus
that, in addition to Notch, BMP signaling may play a role in regulating the prolifera-
tive activity of NSCs during constitutive and regenerative neurogenesis in the zebrafish
telencephalon [15].

Given the degenerate nature of transcription factor binding sites and the promiscuity
with which these are bound by TFs, our previous data are suggestive but not proving.
Moreover, the concern regarding the unspecific effects of morpholinos demand repeti-
tion of previous experiments with more reliable methods. In recent years, it has been
recognized that lipofection can induce inflammatory responses [36]. In light of the known
influences of inflammation on cell proliferation in the zebrafish telencephalon, previous
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results have to be confirmed using alternative methods. We therefore embarked on comple-
mentary genetic gain- and loss-of-function experiments with stably inherited transgenes
and mutations. Our approaches have the advantage, that we can address the so far unan-
swered question whether id1 is required for maintenance of the regenerative capacity of
the zebrafish telencephalon.

Here, we tested two hypotheses: (1) BMP/Id1 signaling represses proliferation of
NSCs in the zebrafish telencephalon and (2) this repression is required to maintain stem
cell pools and thus the regenerative capacity of the adult zebrafish telencephalon. By
conditional genetic approaches, we show that BMP signaling controls proliferation, as well
as id1 expression, consistent with the notion that BMPs/Id1 are regulators of stem cell
quiescence. Moreover, genetic ablation of id1 function leads to an increased proliferation of
NSCs and subsequent depletion of stem cell pools with concomitant failure to heal injuries
in repeatedly injured mutant telencephala. Our data show that BMP signaling is key to
the maintenance of NSC pools and the long-term capacity to regenerate wounds in the
zebrafish telencephalon.

2. Results
2.1. BMP Proteins Are Expressed in Neurons of the Telencephalon

Previous data suggested that BMPs may control expression of id1 and in this way reg-
ulate cell proliferation in the telencephalon [15]. We first addressed the question of whether
bmps are expressed in the telencephalon of the adult zebrafish. We chose bmp2a, bmp2b,
bmp4, bmp7a and bmp7b, all of which are expressed at low levels in the telencephalon [14,37]
(and data not shown) and can act redundantly on the same pathways [38,39]. We carried out
expression analyses on transverse sections through the telencephalon by in situ hybridiza-
tion (ISH) with either chromogenic (Figure 1A–E) or fluorescent staining (Figure 1F–J) of
antisense probes directed against mRNAs of bmp genes. Expression of the mRNAs of the
five bmp genes was detected in the brain parenchyma and along the telencephalic periven-
tricular layer in similar and overlapping patterns, although levels of expression varied
between different sub-regions of the telencephalon for individual bmp genes (Figure 1A–E).

Next, we tested which cells express the bmp genes. To this end, we combined fluores-
cent in situ hybridization (FISH) for the five bmp probes with immunohistochemistry (IHC)
using anti-HuC/D antibodies (Hu) to label post-mitotic neurons. By additional co-staining
with antibodies directed against glutamine synthetase (GS), we marked NSCs in the telen-
cephalic tissue sections. All five bmp genes were strongly expressed in neurons while their
expression was not detectable in NSCs (Figure 1F–J). Thus, NSCs, with their cell bodies at
the medial periventricular zones and their long processes traversing the parenchyma all
the way to the pial surface, are embedded in a bmp-expressing, neuronal environment.

We next assessed whether this abundant expression of bmp mRNA in neurons also
reflects the expression of the BMP protein. To address this, we conducted IHC using a
BMP2b antibody (the only BMP antibody available for zebrafish) and an antibody directed
against NeuroD1. To assess expression in NSCs, we carried out double IHC with the
BMP2b antibody and the GS antibody marking NSCs. BMP2b was not expressed in NSCs
(Figure 1K–K”’, white arrowheads). However, and as expected from the ISH data, BMP2b
expression was associated with the NeuroD1 expressing neurons (Figure 1L–L”’, yellow
arrowheads). We also checked whether oligodendrocytes marked by Tg(olig2:gfp) [40],
co-express BMP2b. Only weak or no BMP2b staining was detected in oligodendrocytes
(Figure S1).

These data are consistent with a model where neurons are BMP-producing and NSCs
are BMP-sensing cells in the telencephalon. To assess whether NSCs are, in principle, able
to respond to BMP signals, we mined single cell sequencing data [41] for the expression of
components of the BMP signaling pathway (Table S1). Quiescent NSCs were unequivocally
identified by expression of id1 and a lack of cyclin D1 (ccnd1) transcripts [41]. All 22 cells
identified with this expression pattern expressed the BMP receptors bmpr1ab and bmpr2b
and the downstream BMP specific mediators smad1, smad5 and smad9 (Table S1). Conse-
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quently, NSCs harbor the relevant components of the canonical BMP signaling pathway
suggesting that they can respond to BMP signals. In addition, the BMP induced gene
bambia is expressed in NSCs (Table S1) in agreement with the notion that NSCs receive
BMP signals.

Figure 1. Expression of bmp genes in the adult zebrafish telencephalon. (A–E) ISH with probes directed against bmp2a (A),
bmp2b (B), bmp4 (C), bmp7a (D) and bmp7b (E) mRNA on transverse telencephalic sections. While bmp2a (A), bmp7a (D)
and bmp7b (E) appear to be expressed in all telencephalic nuclei, bmp2b (B) and bmp4 (C) expression is more confined
to the medial region. Red rectangles in (A–E) indicate the coordinates of the region presented in (F–J), respectively.
(F–J) Expression of bmp genes revealed by fluorescent FISH (red) on cross-sections of WT telencephala, together with
double immunofluorescent staining for NSCs (glutamine synthetase [GS], green) and post-mitotic neurons (Hu, blue).
The bmp genes are co-expressed with Hu in neurons (yellow arrows in F–J) but are not expressed in GS+ NSCs (white
arrows). (K–L”’) BMP2b antibody staining (red) along with antibodies against GS (K–K”’, green) or NeuroD1 (L–L”’, blue)
shows that Bmp2b is expressed in NeuroD1+ neurons. White rectangles (K,L) represent the region magnified in K’–K”’
and L’–L”’, respectively. White arrowheads show the GS+ NSCs (K’–K”’), yellow arrowheads indicate neurons (L’–L”’).
Scale bar = 20 µm (F–J, K’–K”’,L’–L”’), 100 µm (A–E,K,L). Dc: central zone of the dorsal telencephalic area; Dl: lateral
zone of the dorsal telencephalic area; Dm: medial zone of the dorsal telencephalic area; Vc: central nucleus of the
ventral telencephalic area; Vd: dorsal nucleus of the ventral telencephalic nucleus; Vv: ventral nucleus of the ventral
telencephalic area.

2.2. Bmp Signaling Induces id1 Expression and Promotes Stem Cell Quiescence

To test the relevance of the observed BMP expression, we manipulated BMP signaling
by conditionally inducing BMP signaling in adult zebrafish. As a BMP with representative
activity of all the five expressed BMPS, we chose Bmp2b to trigger BMP expression with
the help of a stably integrated, heat-shock inducible transgene Tg(hsp70:bmp2b) [42]. We
checked the efficiency of the manipulation by employing an antibody directed against
the phosphorylated states of Smad1, 5 and 9, the known intracellular mediators of the
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canonical BMP signaling cascade. Phosphorylation of these Smads reflects the activation of
the serine/threonine kinase domains of the BMP receptors upon BMP ligand binding [43].
No phosphorylated Smad1/5/9 (pSmad) staining was detectable above background in
GS-marked NSCs in the absence of heat-shock (Figure 2B–B”). In striking contrast, when
BMP2b was ectopically expressed by heat-shock, strong immunoreactivity of pSmads was
noted in NSCs (Figure 2C–C”). Wild-type (WT) animals not carrying the Tg(hs:bmp2b)
transgene did not show pSmad staining upon heat-shock (Figure 2A–A”). Thus, ectopic
expression of Bmp2b leads to a strong activation of BMP signaling in NSCs. Of note, the
induction of phosphorylation of Smad is restricted to the NSCs, suggesting that neurons do
not respond to BMPs in a strong fashion under the employed induction scheme. This further
supports our model that neurons are BMP sending and NSCs are BMP perceiving cells.

Figure 2. Conditional expression of bmp2b causes activation of BMP signaling, elevated expression of id1 and an increased
proliferation of NSCs. (A–C”) Immunostaining with GS (green) and pSmad1/5/9 (red) antibodies on sections of WT
telencephala, treated with heat-shock (A–A”, +HS) and Tg(hs:bmp2b) telencephala without heat-shock (B–B”, -HS) or
with heat-shock (C–C”, +HS). pSmad1/5/9 immunoreactivity was detected in GS+ NSCs exclusively in heat-shocked
telencephala of the Tg(hs:bmp2b) line. (C”) inset: a magnified view of a pSmad+/GS+ NSC. Note the nuclear localization
of pSmad in contrast to cytoplasmic localization of GS. White arrows show individual NSCs, yellow arrows indicate
the processes of the same NSCs (A–C”). (D–F) ISH on telencephalic cross- sections indicating increased id1 expression
after heat-shock-induced bmp2b expression. Black arrows show the expression of id1 in the ventricular zone of WT after
heat-shock (D), Tg(hs:bmp2b) after heat-shock (F) and Tg(hs:bmp2b) without heat-shock (E). (G) RT-qPCR analysis of id1
mRNA expression in WT telencephala with heat-shock (WT +HS) and Tg(hs:bmp2b) telencephala without heat-shock (-HS)
and with heat-shock (+HS). (H–J’) Immunohistochemistry with antibodies against the NSC marker S100β (blue) and the
proliferation marker PCNA (green) on telencephalic transverse sections from WT with heat-shock (H,H’) and Tg(hs:bmp2b)
without heat-shock (I,I’) and with heat-shock (J,J’) focusing on the ventricular zone of the dorsal telencephalon. Note that the
number of proliferating NSCs (PCNA+/S100β+ cells, dashed, white boxed areas) is reduced in heat-shocked telencephala
of the Tg(hs:bmp2b) line (J,J’). (K) Quantification of the PCNA+/S100β+ + cells in telencephala of the Tg(hs:bmp2b) line
showing a significant reduction in the heat-shocked (+HS) telencephala compared to the control group without heat-shock.
Significance is indicated by asterisks: ns, not significant; *** p < 0.001. n = 3 brains (G), n = 15 sections (K). Scale bar = 20 µm
(A–C”,H–J’), 100 µm (D–F). HS: heat-shock.
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We next assessed whether BMP2b would affect id1 expression. Indeed, an increase of
id1 mRNA was triggered by heat-shock in the ventricular zone in comparison to transgenic
animals without heat-shock (Figure 2E,F and Figure S2). Heat-shock of a WT adult zebrafish
did not elicit induction of id1 (Figure 2D) demonstrating that the observed response was
dependent on the transgene. Quantification of the experimental data revealed that the level
of id1 induction was in the range (Figure 2G) which was previously noted in response to
injury [14].

We next asked whether the observed induction of id1 is paralleled by a reduction of
proliferating NSCs. For this purpose, sections through the telencephalon of heat-shocked
and non-heat-shocked Tg(hsp70:bmp2b) animals were labeled with antibodies directed
against the NSC marker S100β [16,44] and PCNA [16,45]. In comparison to non-heat-
shock controls (Figure 2I,I’), the number of proliferating NSCs was reduced in brains of
heat-shocked animals (Figure 2J,J’, White boxed area). Upon quantification, the reduction
of proliferating NSCs was found to be highly significant (Figure 2K). Heat-shock of WT
adult zebrafish did not elicit induction of NSC proliferation (Figure 2H,H’). Taken together,
expression of Bmp2b leads to an increase of id1 expression and a decrease of proliferating
NSCs, in line with the notion that BMPs control cell proliferation via activation of id1. This
pattern of decrease in proliferation and increase of id1 expression is highly similar to that
seen previously as a response to injury of the telencephalon [14].

2.3. Inhibition of BMP Signaling Causes Increased Proliferation of NSCs

If BMPs were indeed involved in the regulation of NSC proliferation, we would
anticipate that blocking BMP signaling decreases id1 expression and increases proliferation.
To test this, we employed the conditional expression of a dominant-negative BMP receptor
1a mutant [46] in which the kinase domain has been deleted. In comparison to non-heat-
shocked Tg(hs:dnBmpr1a) animals (Figure 3A), a heat-shock resulted in a decrease of id1
expression in the telencephalon (Figure 3B). Meanwhile, heat-shock of WT animals not
carrying the transgene did not affect id1 expression (Figure S3A). When quantified with
real-time quantitative PCR (RT-qPCR), the induced reduction was confirmed to be highly
significant (Figure 3C).

We next asked whether this induced reduction of id1 expression is accompanied by an
increase in NSCs proliferation. In comparison to non-heat-shocked controls (Figure 3D,D’),
the hs:dnBmpr1a expressing animals showed an increase of PCNA+/S100β+ (white boxed
area) and thus proliferating NSCs (Figure 3E,E’,F). These data demonstrate that inhibition
of BMP signaling by employment of the dominant-negative receptor, leads to the reverse
effect of what was observed upon forced expression of BMP2b. The proliferation of NSCs
in the zebrafish telencephalon is thus controlled by BMPs. In conclusion, the presented
data show that BMPs regulate id1 expression and suppress cell proliferation.

2.4. Genetic Removal of id1 Activity Leads to Increased Proliferation in the Telencephalon

Previously, transient reduction of Id1 activity by cerebroventricular microinjection of
a vivo-morpholino led to increased proliferation of NSCs [14]. Given the temporal and
spatial limitation of this method and its potential toxic impact on the transfected tissue [47],
we first sought to confirm the results from these transient studies with a stable genetic
approach. We generated a knock-out of id1 using a CRISPR-Cas9 approach. The identified
mutant contains a 2 bp deletion in the start codon of the id1 coding sequence, which leads
to a non-functional shorter Id1 protein (Figure S4A). In this mutant the level of id1 mRNA
expression was not notably affected (Figure S4B). Homozygous id1ka706/ka706 animals were
viable and reached adulthood without gross morphological defects.
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Figure 3. Inhibition of BMP signaling leads to a reduction of id1 expression and an increase of proliferating NSCs.
(A,B) Reduced id1 expression after inhibition of the BMP pathway by heat-shock of Tg(hs:dnBmpr1a) animals. Black arrows
point at the expression of id1 in the ventricular zone of Tg(hs:dnBmpr1a) animals without (A, -HS) and with heat-shock
(B, +HS). (C) RT-qPCR quantification of id1 mRNA expression shown in A-B indicates that inhibition of BMP signaling
leads to a significant reduction of id1 expression. (D–E’) Immunohistochemistry on telencephalic transverse sections of
Tg(hs:dnBmpr1a) animals for NSCs (S100β, blue) and proliferating cells (PCNA, green), focusing on the ventricular zone of
the dorsal telencephalon. The number of proliferating NSCs (PCNA+/S100β+ cells) is increased after heat-shock (compare
dashed white boxed area in (D,D’) to (E,E’)). (F) Quantification of the population size of PCNA+/S100β+ cells exhibiting
a significant increase in heat-shocked (+HS) compared to non-heat-shocked (-HS) telencephala. Significance is indicated
by asterisks: * 0.01 ≤ p < 0.05; ** p < 0.01. n = 3 brains (C), n = 15 sections (F). Scale bar = 20 µm (D–E’), 100 µm (A,B). HS:
heat-shock.

To assess the proposed role of id1 in the regulation of proliferation of NSCs, we stained
telencephalic cross-sections of 6-month-old WT (Figure 4A–A”) and id1ka706/ka706 animals
(Figure 4B–B”) with the NSC marker S100β and the proliferation marker PCNA. A two-fold
increase in the number of PCNA+ cells (yellow arrows, inside white boxed area) could
be detected in the ventricular zone of the mutants in comparison to that of WT siblings
(Figure 4C). When the number of PCNA+/S100β+ cells (white arrows, inside white boxed
area) was compared between mutant and WT, a similar increase was noted (Figure 4D),
suggesting that in the id1ka706/ka706 mutant about twice as many NSCs are in a proliferative
state. These data confirm our preliminary results from vivo-morpholino knock-down
experiments [14].

We next tested whether the increased number of proliferating NSCs has an effect on
ascl1a expression which has been implicated in proliferation as well as commitment to
neurogenesis in mammals [33,48,49]. To this end, we stained transverse sections through
WT and id1ka706/ka706 telencephala with an antisense probe directed against the neural
precursor gene ascl1a (Figure 4E,F). A 1.5-fold increase of ascl1a expression was observed
in the mutant telencephalon (Figure 4G) which was further verified and confirmed by
RT-qPCR (Figure 4H).
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Next, we asked whether the higher number of activated NSCs in the mutant would
lead to an increase in the number of NSCs in the mutant. We found a slightly but sig-
nificantly increased number of NSCs in the mutant telencephala (Figure S4C). Thus, the
pool of stem cells is not depleted despite the increased neurogenesis in the id1 mutant.
This suggests that mechanisms remain in operation that maintain the stem cell pool in the
mutant under normal physiological conditions.

1 
 

 Figure 4. Loss of id1 function leads to an increased number of proliferating NSCs. (A–B”) NSCs marked by immunohis-
tochemistry with S100β (blue) and PCNA (green) antibodies on telencephalic cross-sections from adult id1ka706/ka706 and
WT siblings. The number of PCNA+ cells per brain is increased in the mutant (B’, dashed white boxed area) compared to
WT control brains (A’, dashed white boxed area). White arrows show PCNA+/S100β+ cells, yellow arrows show PCNA+
cells. White boxed area indicates area of quantification. (C) Relative population size of PCNA+ cells in WT and id1ka706/ka706

brains. (D) Quantification of the number of proliferating NSCs (type II cells, PCNA+/S100β+ cells) in id1ka706/ka706 and
WT siblings. (E,F) Expression of achaete-scute-like1a (ascl1a) mRNA is increased in id1ka706/ka706 telencephala. Black arrows
show the expression of ascl1a in the ventricular zone of id1ka706/ka706 mutants and WT siblings. (G) Quantification of ascl1a
expression (scheme in the upper right-hand corner displays the quantified area in blue) in mutants and WT siblings.
(H) RT-qPCR quantification confirms induction of ascl1a in id1ka706/ka706. Significance is indicated by asterisks: ** p < 0.01;
*** p < 0.001. n = 3 brains (A–D), n = 15 sections (G), n = 5 telencephala (H). Scale bars: 20 µm (A–B”) 100 µm (E,F).

2.5. id1 Is Essential to Preserve Long Term Maintenance of the Regenerative Capacity in the
Injured Telencephalon

The level of id1 expression in individual cells, as well as the total number of cells, is
increased five days after inflicting a lesion to the telencephalon. This increased response of
id1 expression followed the induction of NSC proliferation [14]. We therefore speculated
that Id1 is required to dampen the proliferative response to prevent exhaustion of the stem
cell pool in the regenerating brain. We addressed this hypothesis by causing repeated stab
wounds in the telencephalon of id1ka706/ka706 and WT control animals. In our wounding
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protocol, the right hemisphere of the telencephalon is injured by introducing a needle
through the skull while the left hemisphere remains uninjured [7,50]. Afterwards, the
animals were allowed to recover 1 month before a second lesion was inflicted (Figure 5A).
Stab wounded animals were sacrificed 5 days after the first or the second lesion or kept for
another 3 months (Figure 5A). For examination of proliferation and repair of lesion, sections
through the telencephalon were co-stained with antibodies against the proliferation marker
PCNA and the NSC marker S100β. As expected from the previous experiments, mutant
animals showed a stronger proliferative response of the NSCs than the WT control, 5
days after the first lesion (compare Figure 5C,C’ with Figure 5B,B’, white boxed area).
This is in striking contrast to the situation after the second injury: While WT siblings had
many PCNA+ NSCs and thus a profound proliferative response to the second lesion, the
mutants displayed less proliferating NSCs (Figure 5E–G). Moreover, when examined 3
months after the second wounding, the WT animals (n = 16) had all healed the second
wound (Figure 5H,I) and only 5 animals displayed some mild traces of the injury (Figure
5I). In contrast, 7 of the 11 mutant animals presented massive tissue defects (Figure 5J) and
only 4 had repaired the second lesion partially with clear signs of the lesion remaining
(Figure 5K, white arrows). Also, the survival rate was slightly less in the mutants at 3
months (Table S2).

We next asked whether the overall number of NSCs in the telencephalon decreased
in the mutant. The number of NSCs (S100β+ RGCs) was comparable 5 days after the first
lesion between the mutant and WT telencephala (Figure 5L). Note that uninjured animals
showed a slightly increased number of NSCs (Figure S4C). After the second injury, the
number of NSCs (S100β+ RGCs) had dropped by 32% in the mutants (Figure 5M). Hence,
lack of id1 function causes not only loss of proliferation of NSCs but also shrinkage of the
NSC pool as a whole in the injured animal.

In summary, in absence of id1, the ventricular zone initially displayed a much more
profound proliferative response to a lesion. Upon repeated injury, however, proliferating
NSCs were severely reduced in the mutant. This, together with the observed decrease
of NSCs, demonstrates depletion of proliferation-competent stem cells. These data show
that id1 is required to maintain the stem cell pool after wounding and thus the long-term
capacity to efficiently repair wounds in the telencephalon.

2.6. BMP and Notch Signaling Act Mostly in the Same NSCs

Notch3 and the Notch-target gene her4.1 are mainly expressed in quiescent NSCs [27,51]
and Notch3 negatively controls the proliferation of NSCs [27]. It was previously sug-
gested that there are distinct classes of NSC populations with different proliferative
potential [16,17,41,51–53]. Our observation that BMPs mediate NSC quiescence raises
the question of whether these two pathways cooperate or whether they act on different
stem cell populations.

In order to investigate this question, we first assessed whether id1 and notch3 or
her4.1 are expressed in the same NSCs (Figure 6). We hybridized sections through the
telencephalon of Tg(id1-CRM2:gfp) fish with a notch3 antisense RNA probe and counted cells
expressing notch3 and co-expressing notch3 and the id1-CRM2 transgene (Figure 6A–C).
In total, co-expression was detected in 83.7% of cells, suggesting that the vast majority
of the NSC population is targeted by both, Notch3 and BMP signaling (Figure 6D). To
confirm this, we crossed Tg(her4.1:gfp) transgenic fish [54] into a Tg(id1-CRM2:mCherry)
background [15]. We counted 88.7% cells co-expressing the two transgenes (Figure 6E–H).
This suggests that the two regulators of stem cell quiescence are largely co-expressed and
therefore act in most cases in the same cells.
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Figure 5. id1 is required to maintain the stem cell pool and the regenerative capacity of the telencephalon. (A) Experimental
layout: 6-month-old adult id1ka706/ka706 fish (n = 25) and WT siblings (n = 25) were stabbed with a needle into the right
hemisphere of the telencephalon. Fish (n = 2) of each group were sacrificed at 5 days post lesion (dpl) and the remaining
fish were allowed to recover for one month before a second stab wound was inflicted. Five days after the second lesion,
fish (n = 7) from each group were sacrificed for analysis. The remaining fish were kept for another 3 months before
they were sacrificed (n = 16 for WT and n = 11 for id1ka706/ka706 mutants). Note that five mutant fish showed signs of
suffering after the second wounding and were sacrificed before the end of the three months recovery. (B–C’, E–F’, H–K)
Double immunohistochemistry with S100β (blue) and PCNA (green) antibodies was carried out to mark proliferating
NSCs on telencephalic cross-sections from id1ka706/ka706 mutants and WT siblings at the different time points. (B–C’) After
the first stab, id1ka706/ka706 mutants showed a higher number of proliferating NSCs. (D) Quantification of the population
size of PCNA+/S100β+ cells in relation to the total number of NSCs (S100β+ cells) in WT and id1ka706/ka706 telencephalic
cross-sections after the first stab wound. (E–F’) After the second injury, id1ka706/706 mutants showed less proliferating NSCs
(PCNA+/S100β+ cells) compared to WT siblings. (G) Quantification of the population size of PCNA+/S100β+ cells in
relation to the total number of NSCs (S100β+ cells) in cross-sections through WT and id1ka706/ka706 telencephala. (H–K) WT
fish had repaired the lesion in the telencephalon 3 months after the second stab without signs of the injury (H) or with
only mild signs of slight tissue disorganization (I). In contrast, id1ka706/ka706 mutants showed severe tissue lesions (J), such
as a hole in the parenchyma of the telencephalon (dashed line) or dents in the parenchyma with tissue disorganization
(K, white arrows). (L,M) Quantification of the NSCs (S100β+ cells) in the injured side after inflicting the first (L) and second
(M) stab wound in WT and id1ka706/ka706 mutants showing a stepwise reduction of the number of NSCs. (Compare also
with the increased number of NSCs in the uninjured mutant (Figure S3C)). Significance is indicated by asterisks: ns, not
significant; * 0.01≤ p < 0.05; ** p < 0.01. Scale bars: 20 µm (B–C’,E–F’,H–K).
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Figure 6. notch3, her4.1 and id1 are co-expressed in the NSCs of the telencephalon. (A–A”) FISH against notch3 mRNA
(A, red) on transverse sections through the telencephalon of Tg(id1-CRM2:gfp) transgenic animals (B, green). A” merged
view of panels (A,A’). An overlapping pattern of expression for notch3 and Tg(id1-CRM2:gfp) (green) was noted in the
telencephalon (white arrows). (B) Summary of co-expression analyses of Tg(id1-CRM2:gfp) with notch3. (C–C”) Immunos-
taining on cross sections of the telencephalon of Tg(her4.1:gfp;id1-CRM2:mCherry) double transgenics with antibodies against
GFP (green), and mCherry (red). GFP and mCherry signals co-localize indicating that her4.1 and id1 are co-expressed.
(D) Summary of co-expression analyses of Tg(id1-CRM2-mCherry) with Tg(her4.1:gfp). n = 3 brains. Scale bar = 20 µm.

Curiously, we found significant, but much smaller fractions of NSCs that expressed
only Tg(her4.1:gfp) or Tg(id1-CRM2:mCherry) (Figure S5A–B”’). We assessed whether there
are differences in proliferative potential between the her4.1+/id1+ NSCs and the NSCs
expressing only one of the two genes. Indeed, 31.7% NSCs expressing Tg(her4.1:gfp) and
56.7% NSCs expressing Tg(id1-CRM2:mCherry) only were PCNA+, while only 4.7% NSCs
positive for both markers were also PCNA+ (Figure S5C). This suggests that cells express-
ing either id1 or her4.1 are more frequently cycling than the double positive cells. This
observation is in agreement with the notion that the two pathways cooperate in NSCs to
control quiescence.

2.7. BMP/id1 Signaling Affects Expression of her4.1

Despite the obvious relationship between BMP/Id1 signaling and Notch signaling, id1
expression in the adult telencephalon is not affected by the Notch inhibitor LY (Ref. [14] and
Figure S6)) suggesting that id1 expression and hence also BMP signaling is independent
of Notch signaling. Therefore, we examined the relationship from the opposite side and
asked what happens to the expression of her4.1, if we block BMP signaling. Treatment with
10 µD an inhibitor of the canonical BMP signaling pathway [55], affected the expression
of her4.1 marginally as shown by ISH (Figure 7B) and confirmed by RT-qPCR (Figure 7F,
second column from left). Application of 6 µM LY411575 (LY), a gamma-secretase inhibitor
and potent Notch signaling blocker [56], strongly reduced the expression of endogenous
her4.1 entirely (Figure 7C,F (middle column)), while 3 µM LY (Figure 7D,F (second col-
umn from the right)) caused a reduction of her4.1 expression relative to DMSO treated
controls (Figure 7A,F (first column from the left). Co-application of 10 µM BMP inhibitor
DMH1 together with 3 µM Notch inhibitor LY very strongly abolished her4.1 expression
(Figure 7E,F, first column from the right)). Thus, BMP signaling has, like Notch signaling,
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a positive effect on her4.1 expression suggesting that the two pathways converge on this
transcription factor.

Figure 7. Notch and BMP signaling pathways interact to control quiescence of NSCs. (A–E) Expression of her4.1 revealed
by ISH on control telencephala (DMSO, A) or telencephala treated with different concentrations of DMH1 (B), LY411575
(LY, C,D), or a combination of LY and DMH1 (E). (B) 10 µM DMH1 does not influence strongly the expression of her4.1.
(C) Notch blockage reduces her4.1 expression along the ventricular zone. (D) After reduction of the concentration of LY
to 3 µM, her4.1 expression is still recognizable in the ventricular zone. (E) Combination of 3 µM LY with 10 µM DMH1
blocks her4.1 expression in the ventricular zone suggesting that the two pathways interact. Red rectangles (A–E) illustrate
regions of immunostaining in A’–E’. (A’–E’) Cross-sections of the pallial ventricular zone following different concentrations
of DMH1 or LY treatment or a combination of both, immunostained for the NSC marker S100β (blue) and the proliferation
marker PCNA (green). The proportion of PCNA+/S100β+ cells is increased in the groups treated with 6 µM LY alone (C’,C”)
or treated with a combination of 3 µM LY and 10 µM DMH1 (E’,E”). (F) RT-qPCR analysis of her4.1 mRNA expression under
different conditions of drug treatment. (G) Quantification of the relative population size of PCNA+/S100β+ cells under
different conditions. Significance is indicated by asterisks: ns, not significant; * 0.01 ≤ p < 0.05; ** p < 0.01; *** p < 0.001. Scale
bars: 20 µm (A’,A”,B’,B”,C’,C”,D’,D”,E’,E”), 100 µm (A,B,C,D,E).

Next, we asked whether cell proliferation is also affected by chemically blocking
the Notch and BMP pathways. We co-stained telencephalic sections of inhibitor-treated
animals with antibodies against PCNA and S100β (Figure 7A’–E”). While exposure to
10 µM DMH1 alone had no effect on the number of PCNA + RGCs (Figure 7B’,B”,G, second
column from the left) addition of 6 µM LY (Figure 7C’,C”,G, middle column) or 3 µM LY
(Figure 7D’,D”,G, second column from the right) caused an increase in proliferating cells.
The rise in proliferation was more important with the addition of 6 µM LY (Figure 7G, mid-
dle column) than with 3 µM LY (Figure 7G, second column from the left). When suboptimal
inhibitor concentrations (3 µM LY, 10 µM DHM1) were co-applied (Figure 7E), an even
more notable increase in the number of proliferating cells was scored (Figure 7E’,E”,G,
first column from the right). This increase of proliferating NSCs in co-inhibited animals is
similar to the effect on her4.1 expression. These observations further support the notion
that BMP and Notch signaling pathways converge on her4.1.
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Inhibitor experiments are limited by the efficacy and specificity of the inhibitors. To
confirm the suggested effect of BMP signaling on her4.1 expression, we analyzed her4.1
expression in transgenic Tg(hs:dnBmpr1a) animals expressing the dominant negative BMP
receptor in response to heat-shock. When exposed to elevated temperature, her4.1 expres-
sion was reduced in comparison to transgenic animals not exposed to heat-shock (Figure
S7A–D). Thus, her4.1 appears to be under the control of BMP signaling. We also analyzed
her4.1 expression in id1ka706/ka706 mutant animals. Transverse sections through WT and
id1ka706/ka706 telencephala stained with an antisense probe directed against the her4.1 gene
(Figure S7E,F) show a reduction of her4.1 expression in the id1ka706/ka706 mutant compared
to WT animals (Figure S7G). This reduction was validated by RT-qPCR (Figure S7H).

3. Discussion

Zebrafish have the remarkable ability to heal injuries in the adult central nervous
system. Here, we show that, in the telencephalon, the basis of this long-term neurogenic
potential involves the management of the stem cell pool by the BMP/Id1 signaling pathway.
Interference with BMP signaling led to modulation of id1 expression and proliferation of
NSCs. Genetic ablation of id1 activity caused increased proliferation of NSCs. Additionally,
repeated wounding resulted in depletion of the stem cell pool and failure to repair the
injury of the telencephalon. Our data are consistent with a model in which the regenerating
nervous tissue feeds back on the stem cell pool via BMP/Id1 signaling thereby promoting
quiescence after an initial rise of proliferation in response to injury. Cross-talk of BMP/Id1
signaling with the Notch signaling pathway appears to occur at the level of expression of
the transcription factor her4.1. In the absence of id1 and under homeostatic conditions of
constitutive neurogenesis, Notch signaling appeared to be sufficient to maintain the stem
cell pool. However, when challenged by the need to repair multiple injuries, this safeguard
is not sufficient anymore and the NSC pool is depleted in an id1 mutant. Thus, the NSC
pool is maintained by an at least two-tiered regulatory mechanism involving both Notch
and BMP/Id1 signaling.

3.1. Neuron-Derived BMPs Control Proliferation of NSCs

Several lines of evidence demonstrate that BMPs control proliferation of NSCs. Con-
ditional expression of BMP2b caused reduction of NSC proliferation while blocking the
expression of BMP signaling via expression of dnBMPR1a led to increased proliferation
of NSCs.

The source of BMPs in vicinity to the NSCs is the neurons in the telencephalic
parenchyma. In contrast to stem cells in the mouse telencephalon [57], NSCs of the zebrafish
telencephalon do not express BMPs. However, single cell-sequencing analysis suggests
that NSCs are fully competent to respond to BMP signals expressing all the key members
of the intracellular BMP signaling cascade. Moreover, when BMPs are over-expressed, only
NSCs show detectable pSmad staining in cross-sections through the parenchyma of the
telencephalon. These data suggest that neurons are the BMP emitting cells and NSCs are
the BMP receiving cells.

id1, whose expression is increased by wounding [14], is known to depend on BMP
signaling. id1 expression in NSCs including its up-regulation in response to injury is
faithfully mimicked by a cis-regulatory module derived from the id1 gene. This module
requires putative Smad1/5/9 DNA binding elements to function [15]. By showing that
BMP signaling is necessary to induce id1 expression our functional data further support
the notion that id1 is a primary target of the BMP signaling cascade.

A noteworthy phenomenon is the restricted activation of proliferation in the injured
hemisphere only [7,14]. Likewise, activation of id1 expression occurs only in the injured
hemisphere [14,15]. This suggests that not only induction of proliferation by injury but also
its dampening by BMPs back to the baseline levels of constitutive neurogenesis is restricted
to the injured hemisphere. It is thus unlikely that BMPs are released into the cerebrospinal
fluid as they would otherwise also affect NSCs in the uninjured hemisphere. The long
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processes of NSCs spanning the entire parenchyma may play a role as sensors of BMP
signals. It remains to be determined whether BMP expression is increased in response to
repair of the tissue relative to normal levels of expression. By both RNA ISH and antibody
staining, we did not detect changes of expression of the four tested bmp genes or the BMP2b
protein (unpublished). However, some of the tested BMPs showed slightly elevated levels
in comparative RNA-Seq of control and injured telencephalic hemispheres (unpublished).
This weak response may be a matter of sensitivity or BMPs are regulated at the level of
processing or other post-translational mechanisms that escaped our detection due to lack
of tools. Irrespectively, our data suggest that neurons are the BMP producing and NSCs are
the BMP sensing cells. This cross-talk is somehow up-regulated by regeneration leading to
dampening of proliferation. Our data are consistent with a model in which the nervous
system maintains, via BMP signaling, a feed-back loop between the regenerating nervous
tissue and the stem cell niche thereby adapting the proliferative rate of the stem cells to the
needs of tissue homeostasis and regeneration.

3.2. Id1 Mediates Long-Term Maintenance of the Regenerative Capacity

Mutation of id1 leads to an increased number of proliferating NSCs and elevated
formation of neuroblasts committed to a neural fate. These changes are similar in mag-
nitude to those observed previously in response to injury of the telencephalon [14,15].
Mechanisms have to be in place that prevent depletion of the stem cell pool, especially
when production of new neurons was boosted by injury. Our analysis of the id1 mutant
as well as the BMP gain- and loss-of-function experiments suggest exactly such a role for
the BMP/Id1 signaling system. BMP/Id1 signaling promotes a non-proliferative state and
thereby maintenance of the NSC pool.

After the first injury of the telencephalon, the id1 mutants showed a stronger prolifera-
tive response than the WT siblings. When wounding was repeated, the mutants presented
a significantly reduced proliferative capacity after the second round of injury. This suggests
that the stem cell niche in id1 mutants was significantly deprived of proliferation-competent
NSCs after the first injury/regeneration cycle. This is reflected by a reduction of overall
NSC counts after wounding. Fully in agreement with this loss of NSCs, id1 mutants failed
to repair the second lesion in contrast to WT siblings treated in the same way. id1, and
consequently also BMP signaling, are thus required by the adult telencephalon to maintain
its capacity of regenerative neurogenesis. This shift back to baseline proliferation could
be facilitated by two distinct BMP/Id1- mediated mechanisms: BMP/Id1 signaling could
prevent quiescent type I NSCs from entering the cell cycle or it could actively promote
return of proliferation competent type II NSCs to quiescence after injury-induced rise
of proliferation.

3.3. A Conserved Function of BMP Signaling in Stem Cell Maintenance

It is striking that the CRM2 driving id1 expression [15] in NSCs of the telencephalon
is conserved between mammals and zebrafish. Even more astonishing is that the human
homologue of CRM2 mediates expression in the telencephalon of the zebrafish in a pattern
identical to that of the endogenous element [15]. Moreover, the function of the id1-CRM2
depends on the integrity of conserved BMP response elements. This suggests that the basic
mechanisms of BMP signaling are conserved and presumably also in operation in the two
distantly related vertebrate species.

In rodents, multiple functions of BMP signaling ranging from control of prolifera-
tion, differentiation and gliogenesis to quiescence of NSCs have been reported in various
contexts (see [58] for review). Fetal NSCs respond to BMPs with proliferation [59]. In
contrast, blockage of BMP signaling in the dentate gyrus suggests that BMPs mediate
quiescence [60] in agreement with our findings in the zebrafish. In the mouse SVZ, this
control of quiescence involves locally balanced BMP levels via expression of the BMP
clearance receptor LRP2 in ependymal cells. This control appears to be restricted to the
SVZ as the subgranular zone of the mouse telencephalon does not express LRP2 [61]. In
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contrast to zebrafish NSCs, in the murine SVZ, NSCs (type B cells) express BMP2 and 4 [57]
pointing at significant differences to the zebrafish. Moreover, conditionally blocking Smad4
in Type B cells of the SVZ leads to oligodendrogenesis [62]. We did not observe this shift in
the zebrafish telencephalon but rather noted an increase in neurogenesis when we blocked
the BMP/Id1 signaling axis. Murine type B stem cells of the SVZ show activation of Smads
via phosphorylation and also ID1 is expressed at high levels in these cells [34]. Indirect
evidence also points to involvement of BMPs in regulation of proliferation in the SGZ in
the hippocampus of mice [58]. The BMP/Id1 regulatory module is evolutionary ancient
and, like Notch signaling, it has been deployed in multiple processes during development
and body homeostasis [63]. The data from studies in the mouse telencephalon suggest that
the BMP/Id1 regulatory module is also employed in the control of quiescence in NSCs of
the murine telencephalon, even though mice do not show a strong regenerative capacity.

3.4. Cooperation between BMP and Notch Pathways in the Control of Stem Cell Quiescence

Multiple lines of previous evidence suggest that Notch signaling controls prolifera-
tion of NSCs in the zebrafish telencephalon [23,27,64,65]. In particular, Notch3 has been
implicated in the control of NSC quiescence [27]. Notch signaling appears to act on short-
range between NSCs and activated neural precursors (type III cells) [28]. This process
bears resemblance to lateral inhibition initially proposed to select the precursor cell of
sensory bristles in the Drosophila cuticle [66]. Thus, the dynamics of the NSCs generate
an intrinsic cue that assures their long-term maintenance [28]. Our data here suggest that
intrinsic Notch signaling is not the only mechanism that safeguards maintenance of NSCs
in the zebrafish telencephalon but also BMP mediated cross-talk between neurons and the
stem cells.

When Notch signaling is blocked pharmaceutically, her4.1 expression is reduced
and proliferation is increased [27]. Strikingly her4.1 expression is also affected when
BMP signaling or id1 activity is altered: Lack of id1 function leads to a reduction of
her4.1 expression. However, inhibition of Notch signaling does not seem to influence id1
expression [14]. Our data suggest that BMP signaling acts in parallel of and converges
with Notch signaling on the expression of her4.1. A similar interaction of BMP and Notch
signaling was recently uncovered in the control of angiogenesis in zebrafish embryos [67].
It remains to be shown, however whether the control of quiescence is mediated entirely
through Her4.1 or whether other mechanisms acting in parallel exist.

So far, is unclear how Id1 and Her4.1 affect cell proliferation. During mouse neu-
rogenesis and myogenesis, the Notch effector Hes1, related to zebrafish Her4.1, is either
expressed at high levels or oscillates [68,69]. The downstream proneural gene ascl1 is com-
pletely suppressed in quiescent stem cells in which the repressor Hes1 is expressed at high
levels. Expression of the regulator Hes1 can start oscillating due to an autoinhibitory loop
and, as a consequence, the expression of ascl1 becomes also oscillatory. The oscillatory state
allows escape from cell-cycle arrest [68,69]. The HLH protein Id1 is a negative regulator
of bHLH proteins like Her4.1 and Hes1 [32]. Moreover, Id1 binds to Her4.1 in vitro [14].
Disrupting the postulated negative feedback loop of her4.1/Hes1 would increase expres-
sion of her4.1/Hes1. In agreement, blocking BMP signaling or knocking-out id1 resulted in
reduction of her4.1 expression in the zebrafish telencephalon. It remains to be seen whether
ascl1 is indeed a key regulator of proliferation in the zebrafish telencephalon.

3.5. Why Are Two Pathways Necessary to Control Stem Cell Quiescence?

A major question is why are two pathways necessary to control proliferation of
NSCs. Previously, it has been suggested that distinct NSCs exist with respect to marker
expression and cell cycle progression along the ventricular zone of the NSCs [16,52]. A
simple explanation may thus be that the distinct populations employ different mechanisms
to control stem cell quiescence. However, the observation that most stem cells co-express
id1 and her4.1 suggests that the majority of NSCs receives input from both signaling systems.
The large number of NSCs expressing both her4.1 and id1 may be the large fraction of deep
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quiescent cells postulated previously [51]. In agreement, when we checked for expression
of the proliferation marker PCNA, the id1/her4.1 double-positive cells expressed PCNA
less frequently than the cells expressing only id1 or her4.1. It is, however, also possible that
these id1+/her4.1-/PCNA+ and the id1-/her4.1+/PCNA+ cells are transition state cells
that are on the way back to quiescence or in transition to neuroblasts (Type IIIa cells [16]
also called activated neural progenitors (aNPs) [28].

Clearly, Notch appears to be almost sufficient to maintain a normal stem cell pool in
the uninjured id1 mutant. NSC proliferation is increased in the id1 mutant. However, Notch
maintains under these conditions a high number of NSCs,ven slightly higher than what was
found in WT siblings. The stem cell population shrank only after injury in the id1 mutant.
This allocates distinct functions to Notch and BMP/Id1 signaling. While Notch3 signaling
appears to have a predominantly homeostatic function during constitutive neurogenesis,
BMP/Id1 comes into play when the proliferation control system is moved out of balance
by injury. Under these circumstances, BMP/Id1 is necessary to prevent depletion of the
stem cell pool and eventual loss of the regenerative capacity. Taken together, maintenance
of stem cells by BMP/Id1 signaling is a key mechanism that underlies the remarkable
ability of adult zebrafish to heal even severe injuries of the forebrain. Our data suggest
that stem cells are not only maintained by niche-intrinsic cues but also via neuron/radial
glial communication.

4. Materials and Methods
4.1. Zebrafish Strains and Husbandry

Experiments were performed on 6-12 month old AB wild-type (WT), Tg(id1-CRM2:GFP) [15],
Tg(her4.1:GFP); Tg(id1-CRM2:mCherry) [54] and [15] respectively), Tg(olig2:gfp) [40],
Tg(hs:bmp2b) [42], Tg(hs:dnBmpr1a) [46] and id1ka706/ka706 (this study) zebrafish. Zebrafish
housing and husbandry were performed following the recommendations by [70]. All
animal experiments were carried out in accordance with the German protection standards
and were approved by the Government of Baden-Württemberg, Regierungspräsidium
Karlsruhe, Germany (Aktenzeichen 35-9185.81/G-288/18).

4.2. Stab Wound, Chemical Treatment and Heat-Shock of Adult Zebrafish

Stab wounding was performed as described [7,50]. In brief, after anesthesia in tricaine,
we inserted a hypodermal needle directly into the right telencephalic hemisphere while the
contralateral left hemisphere was kept intact and served as a control.

For the DMH1 treatment, fish were bathed in 200 mL fresh fish water containing 10 or
20 µM DMH1 diluted from a 10 mM DMH1 (Tocris, Bristol, UK) stock solution in DMSO.
For LY411575 treatment, 10 mM LY411575 (Sigma Aldrich, St. Louis, MO, USA) stock
solution was diluted with fresh fish water to 6 µM or 3 uM final concentration. For the
combined treatment 200 µL of a 10 mM DMH1 stock solution (final concentration 10 µM)
plus 60 µL of a 10 mM LY411575 stock solution (final concentration 3 µM) were mixed with
200 mL fresh fish water. Three fish were kept in the solutions for 5 days. Every morning,
fish were fed with regular adult fish food and the fish water containing the drug was
changed daily.

For heat-shock, adult zebrafish were transferred to a beaker containing fresh fish water
at 33–34 ◦C (water bath). After 30 min, the temperature was increased to 37 ◦C and the fish
were kept for 1 hour at this temperature. Afterwards, the fish were transferred to 28.5 ◦C
and kept for 6 more hours before being euthanized.

4.3. Constructs and Synthesis of Antisense DIG RNA Probes

The following antisense digoxigenin-labeled probes were used: id1, her4.1, ascl1a and
notch3 [71]. The bmp2a, bmp7a, bmp7b [72] and bmpr2b [73] probes were amplified by PCR
from zebrafish embryonic cDNA (primers see Table S3), then cloned into the pGEM-T easy
vector (Promega). bmp2b and bmp4 were kindly provided by Matthias Hammerschmidt [74]
and bmpr1ab by Jeroen Bakkers [75]. Briefly for probe synthesis, 1 µg of each plasmid was



Cells 2021, 10, 2794 17 of 23

linearized using appropriate restriction enzymes for 30 min at 37 ◦C. After deactivation of
the restriction enzyme (see Table S4) at 80 ◦C for 5 min, the plasmid was used for in-vitro
RNA transcription in the presence of DIG labelling mix (Roche) and RNA Polymerase (see
Table S4) and incubated for 3 h at 37 ◦C. The reaction was stopped by adding 0.2 M EDTA,
pH8 and purified using the ProbeQuant G50 Micro column kit (GE Healthcare). The probe
was then diluted 1:1 using hybridization buffer [50] for storage at −20 ◦C.

4.4. Preparation of Adult Zebrafish Brains, In-Situ Hybridization, Immunohistochemistry,
Imaging and Quantification

Brain preparation (dissection and sectioning) for ISH and immunohistochemistry
were performed as described in [50].

For immunohistochemistry, primary antibodies included: chicken anti-GFP (1:1000,
Aves labs, Davis, CA, USA), mouse anti-PCNA (1:500, Dako, Agilent, Santa Clara, CA,
USA), rabbit anti-S100β (1:400, Dako, Agilent, Santa Clara, CA, USA), mouse anti-GS
(Glutamin Synthetase) (1:1000, Millipore, Burlington, MA, USA), rabbit anti-HU (1:500,
Abcam, Cambridge, UK), rabbit anti-BMP2b-Zebrafish (1:50, Anaspec, AS-55708), mouse
anti-NeuroD1 (1:500, Abcam, Cambridge, UK), rabbit anti-Phospho Smad1/5/9 (1:200,
Cell Signaling Technology, Danvers, MA, USA) and rabbit anti-RFP (1:500, antibodies
online, Aachen, Germany). Secondary antibodies were conjugated with Alexa fluor dyes
(Alexa series) and included anti-chicken Alexa 488, anti-mouse Alexa 546 and anti-rabbit
Alexa 633 (1:1000, Invitrogen, Waltham, MA, USA). For ISH, the prepared DIG probes
were hybridized with the brain tissue. After cutting, secondary DIG antibodies (anti-
DIG-AP for chromogenic staining; anti-DIG-POD for fluorescent staining) were applied
overnight. Staining took place on the next day with NBT/BCIP in the case of chromogenic
staining or Tyramide Cy3 solution (Perkin Elmer, Waltham, MA, USA) for fluorescent
staining. Pictures of chromogenic in situ hybridized sections were acquired with a Leica
stereomicroscope MZ16 F. Immunohistochemically stained brain slices were mounted
using Aqua-Poly/Mount (Cat No. 18606-20, Polysciences, Inc, Warrington, PA, USA) with
coverslips (0.17mm thickness) and imaged with a laser scanning confocal microscope
(Leica TCS SP5). To obtain single-cell resolution images, an HCX PL APO CS x63/1.2NA
objective was used with the pinhole size set to 1-airy unit. Fluorescent images for green
(GFP), red (PCNA), and infrared channesl (S100β, GS, HU, Bmp2b, NeuroD1, pSmad1/5/9,
and mCherry) were acquired sequentially in 16-bit color depth with excitation/emission
wavelength combinations of 488 nm/492–550 nm, 561 nm/565–605 nm, and 633 nm/650–
740 nm, respectively. Pixel resolution for XY and Z planes are 0.24 and 0.50 µm, respectively.
For individual brain samples, at least three transverse sections cut with a vibratome
(VT1000S, Leica, Wetzlar, Germany) at different anterior-posterior levels representing
anterior, posterior an intermediate telencephalic regions were imaged.

4.5. Real-Time Quantitative PCR

Total RNA was isolated from adult telencephala using Trizol (Life Technology, Ther-
moFisher Scientific, Darmstadt, Germany). First- strand cDNA was synthesized from 1 µg
of total RNA with the Maxima First-Strand cDNA synthesis kit (ThermoFisher Scientific,
Darmstadt, Germany) according to the manufacturer’s protocol. A StepOnePlus Real-Time
PCR system (Applied Biosystems) and SYBR Green fluorescent dye (Promega, Madison,
Wisconsin, USA) were used. Expression levels were normalized using β-actin. The relative
levels of mRNAs were calculated using the 2−∆∆CT method. The primer sequences [76]
are listed in Table S5. Experiments were performed at least 3 times, each time with RNA
pooled from 5 brains for WT or id1ka706/ka706, respectively.

4.6. Statistical Analysis

For the quantification of proliferating NSCs, the number of PCNA+/S100β+ Type
II cells was counted in 1 µm steps of 50-µm thick z-stacks (imaged with a 63× objective).
Three sections per brain from at least 3 individuals were analyzed. For quantification of
her4.1 and ascl1a expression in the telencephalon, sections were photographed with a stereo
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microscope. Staining intensity in the ventricular zones of the dorsolateral and dorsomedial
parts from three individual brains was measured by ImageJ. The fold-induction was calcu-
lated for each brain as a ratio over the average of a control group. Comparisons between
two data sets from quantification of proliferating NSCs, quantification of expression via
ImageJ or qRT-PCR, were performed by Welch two-sample t-test. For comparisons between
more than two groups, one-way ANOVA was performed to assess whether there is a
difference among group means, followed by Tukey’s multiple pairwise-comparison test as
a post hoc test using R software.

4.7. Image Analysis

Confocal brain images were opened with Fiji/ImageJ software as composite hyper-
stacks to manually evaluate colocalization of GFP, PCNA, S100β, GS, HU, mCherry pro-
teins and expression of bmp genes and notch3 mRNA (FISH). Cells expressing individual
markers or marker combinations were counted in the dorsomedial and the dorsolateral
ventricular zones in three transverse sections prepared at different anteroposterior levels of
the telencephalon.

4.8. Generation of the id1 Knockout Allele id1ka706

The oligonucleotide containing the target sequence (5′-CCAAAATGAAAGTTGTGGGACCT-
3′), was designed using the ZiFiT Targeter program [77]. The guide RNA was synthesized
using the cloning-free guide RNA synthesis method adapted from [78] where an oligonu-
cletide containing the T7 promoter is annealed to the gene specific target oligo. After
annealing, T4 DNA Ligase was added and the mixture was incubated at 12 ◦C for 20 min in
a thermocycler to fill up the sequence of the annealed oligonucleotides to a double stranded
DNA. Afterwards, the DNA was purified by column purification (Gel and PCR clean up
kit, Macherey-Nagel) and used for RNA synthesis (Megashortscript T7 Kit, Ambion).

Single-cell stage embryos were injected with 300 ng/µL Cas9 protein (GeneArtTM
PlatinumTM Cas9 Nuclease; Invitrogen/Life Technologies) along with 200 ng/µL of previ-
ously synthesized guide RNA and phenol red to a final concentration of 0.05% as visual
marker for injection. F0 embryos were raised to adulthood and then outcrossed with WT
animals. F1 progeny with indel mutation were in-crossed, and homozygous F2 mutants
were identified.

For genotyping, genomic DNA was isolated from injected embryos or fin biopsies
from adult fish by the HotSHOT method [79] for determination of guide RNA efficiency
as described in [80]. Genomic DNA was prepared by incubating biopsy samples in 75 µL
of 25 mM KOH with 0.2 mM EDTA at 96 ◦C for 20 min, followed by neutralisation with
75 µL of 40 mM Tris-HCl (pH 3.8). The genomic region containing the site of mutation was
PCR-amplified using the following conditions: initial denaturation step at 94 ◦C for 7 min;
35 cycles of 94 ◦C for 25 s, 56 ◦C for 30 s and 72 ◦C for 30 s; and a final elongation step at
72 ◦C for 10 min. For id1, a 451 bp amplicon encompassing the mutation site was generated
using the following primers: forward 5′-CATCATCCGCAGAAGACACA-3′; reverse 5′-
AACATGGTCATCTGCTCGTC-3′. The PCR product was sent for Sanger sequencing to
identify the mutant alleles (Microsynth, Balgach, Swiss).

4.9. Single-Cell Sequence Analysis

For assessing genes co-expressed with id1 in NSCs, we downloaded the prepared
count data of 370 cells (zebrafish_neurogenesis_smartseq.h5ad in https://github.com/
fabianrost84/lange_single-cell_2019, accessed on 21 September 2021). We used the Scanpy
package to read this file [81]. After the quality control to remove the low-quality cells,
264 cells were used for further analysis. The number of NCSs was 76. The number of
NSCs with id1 expression was 44. The set of 44 id1+ NSCs cells contained 22 quies-
cent (ccnd1-negative) cells. We calculated the Pearson’s correlation coefficient between
id1 gene expression and expression of other genes in id1 and ccnd1- NSCs/RGCs by R
function (cor.test).

https://github.com/fabianrost84/lange_single-cell_2019
https://github.com/fabianrost84/lange_single-cell_2019
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10102794/s1, Figure S1. BMP2b is not detectably expressed in oligodendrocytes of the
telencephalon. Cross-sections through the telencephalon of Tg(olig2:gfp) transgenic fish marking
oligodendrocytes (green) were immunostained with a BMP2b antibody (blue). The boxed-in area
in A is magnified in A’ to A”’ showing individual channels (A’,A”) and the merged image (A”’).
White arrows show 2 oligodendrocytes, yellow arrows show BMP2b+ neurons. Scale bars: 100 µm
(A), 20 µm (A’–A”’), Figure S2. Heat-shock has no influence on the endogenous expression of
the id1 gene. (A,B) ISH against id1 on cross- sections of WT telencephala. There is no difference
in the expression level for id1 between non heat-shocked (A) and heat-shocked (B) WT brains.
(C) RT-qPCR analysis of id1 mRNA expression levels in WT with and without heat-shock reveals
that the level of id1 mRNA does not change in response to heat-shock in the WT brain. n = 3
brains. Significance is indicated by ns, not significant, Figure S3. Heat-shock does not influence the
expression pattern of id1 in WT fish. (A–C) Cross-sections through telencephala of heat-shocked WT,
(A) and hs:dnBMPR1a transgenic animals without (B) and with heat-shock (C). Heat-shock of WT
animals did not influence the expression of id1. In contrast, decrease of id1 expression was noted after
inhibition of the BMP pathway by heat-shock of Tg(hs:dnBmpr1a) animals (C) relative to transgenics
without heat-shock (B). Black arrows show the expression of id1 in the ventricular zone of WT (A)
and Tg(hs:dnBmpr1a) animals without heat-shock (B) and after heat-shock (C). n = 3 animals (A-C).
Scale bar: 20 µm. HS, heat-shock, Figure S4. Generation of a CRISPR/Cas 9-mediated Id1 loss-
of- function mutant id1ka706/ka706. (A) Schematic representation of the id1 locus on chromosome 11.
The gene consists of 2 exons. Red letters represent the start codon of the id1 coding sequence. The
Sanger sequencing results of WT (id1WT) and homozygous (id1ka706/ka706) sequences are displayed
underneath. In the homozygous sequences T and G of the start codon are deleted. (B) RT-qPCR
analysis of id1 mRNA expression levels in WT and id1ka706/ka706 telencephala reveals that the level
of id1 mRNA is not changed in the mutant. (C) Quantification of the S100β+ RGCs/NSCs in WT
and id1ka706/ka706 telencephala without injury. n=3 brains (B, C). Significance is indicated by asterisks:
ns, not significant; ** p < 0.01, Figure S5. Both notch3 and her4.1 are expressed together with id1 in
the RGCs of the telencephalon. (A–B”’) Immunostaining on cross sections of the telencephalon of
Tg(her4.1:gfp;id1-CRM2:mCherry) double transgenics with antibodies against GFP (green), mCherry
(blue) and the proliferation marker PCNA (red). GFP and mCherry signals co-localize indicating
that her4.1 and id1 are co-expressed. A”’ inset: magnified image of PCNA+/id1-CRM2:mCherry+
cells (yellow arrowhead, upper image) and a PCNA+/her4.1+ cell (white arrowhead, lower image).
B”’ inset: a magnified view of a PCNA+/id1-CRM2:mCherry+/her4.1:gfp+ cell (red arrowhead).
(C) Summary of co-expression analysis of (Tg(id1-CRM2:mCherry), red) and (Tg(her4.1:gfp), green).
Pie charts represent total number of Tg(her4.1:gfp) or Tg(id1-CRM2:mCherry) or both Tg(her4.1:gfp) and
Tg(id1-CRM2:mCherry) expressing cells and the fraction of cells co-expressing PCNA. Cells expressing
either Tg(id1-CRM2:mCherry) alone or Tg(her4,1:gfp) alone show a higher proportion of PCNA+ cells
than cells expressing both markers. Scale bar = 20 µm. n = 3 brains, Figure S6. Expression of id1 is
independent of Notch signaling. (A–C) Expression of id1 revealed by ISH on control brains (DMSO,
A) or brains treated with different concentrations of DMH1 (B) or LY (C). (B) Inhibition of BMP
signaling by 20 µM DMH1 lead to the reduction of id1 expression. (C) Inhibition of Notch signaling
by 6 µM LY411575 did not influence the expression of id1 but strongly reduced her4.1 expression (See
Figure 7C). Black arrows show the expression of id1 in the ventricular zone of untreated (A) and
treated (B,C) adult zebrafish telencephala. n = 3 brains. Scale bar: 100 µm, Figure S7. Inhibition of
BMP signaling or deletion of id1 leads to a reduction of her4.1 expression. (A,B) ISH reveals decrease
of her4.1 expression after inhibition of the BMP pathway by heat-shock of Tg(hs:dnBmpr1a) animals.
Black arrows show the expression of the her4.1 gene in the ventricular zone of Tg(hs:dnBmpr1a) animals
without (A) and with heat-shock (B). (C) Quantification of her4.1 expression in panels A and B (scheme
in the upper right-hand corner displays the quantified area in blue). (D) RT-qPCR quantification
of her4.1 mRNA expression of brains shown in A,B. (E,F) Expression of her4.1 mRNA is reduced in
id1ka706/ka706 telencephala. Black arrows show the region of expression of her4.1 in the ventricular
zone of id1ka706/ka706 mutants and WT siblings. (G) Quantification of her4.1 expression (scheme in the
upper right-hand corner displays the quantified area in blue). (H) RT-qPCR quantification confirms
reduction of her4.1 in id1ka706/ka706 telencephala. HS, heat-shock. n = 3 independent brains (C,G),
n = 15 sections D,H, Table S1. Genes co-expressed with id1+/ccdn1- RGCs/NSCs according to single
cell sequencing data from [41], Table S2. Number of WT and id1ka706/ka706 adult zebrafish used in
the multiple stab wound experiments, Table S3. PCR primer sequences for ISH probes, Table S4.
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Restriction enzymes and RNA polymerases used for DIG probe synthesis, Table S5. PCR primer
sequences for RT-qPCR.
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