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Abstract
Background  Accurate response evaluation is necessary to select complete responders (CRs) for a watch-and-wait approach. 
Deep learning may aid in this process, but so far has never been evaluated for this purpose. The aim was to evaluate the 
accuracy to assess response with deep learning methods based on endoscopic images in rectal cancer patients after neoad-
juvant therapy.
Methods  Rectal cancer patients diagnosed between January 2012 and December 2015 and treated with neoadjuvant (chemo)
radiotherapy were retrospectively selected from a single institute. All patients underwent flexible endoscopy for response 
evaluation. Diagnostic performance (accuracy, area under the receiver operator characteristics curve (AUC), positive- and 
negative predictive values, sensitivities and specificities) of different open accessible deep learning networks was calculated. 
Reference standard was histology after surgery, or long-term outcome (>2 years of follow-up) in a watch-and-wait policy.
Results  226 patients were included for the study (117(52%) were non-CRs; 109(48%) were CRs). The accuracy, AUC, posi-
tive- and negative predictive values, sensitivity and specificity of the different models varied from 0.67–0.75%, 0.76–0.83%, 
67–74%, 70–78%, 68–79% to 66–75%, respectively. Overall, EfficientNet-B2 was the most successful model with the highest 
diagnostic performance.
Conclusions  This pilot study shows that deep learning has a modest accuracy (AUCs 0.76-0.83). This is not accurate enough 
for clinical decision making, and lower than what is generally reported by experienced endoscopists. Deep learning models 
can however be further improved and may become useful to assist endoscopists in evaluating the response. More well-
designed prospective studies are required.

Keywords  Rectal cancer · Deep learning · Response evaluation · Organ preservation · Watch-and-wait approach · Artificial 
intelligence

Rectal cancer patients treated with neoadjuvant (chemo)
radiotherapy (CRT) usually undergo revaluation 6–10 weeks 
after the end of radiotherapy to evaluate therapy response. 
With an increasing interest in organ preservation, an addi-
tional goal of response evaluation is to identify a possible 
(near) complete response (CR). A combination of three 
modality assessment, digital rectal examination (DRE), 
endoscopy and MRI with diffusion-weighted imaging 
(DWI), has been shown to have the highest accuracy to iden-
tify a CR [1]. Many studies have addressed the value of MRI, 
while few studies have focused on endoscopy. Those which 
did evaluate the diagnostic value of endoscopy showed 
that it outperformed MRI in assessing the response [1, 2]. 
The majority of patients with a luminal CR (>70%) can be 
identified with endoscopy and a flat white scar is the most 
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predictive feature to identify a CR [2]. However, 26 – 36% of 
the patients show other subtle morphological abnormalities, 
such as small or large flat ulcers, irregular tissue or residual 
adenomas, which are more difficult to interpret, leading to a 
considerable risk of missing residual disease or CRs [1–3]. 
New endoscopic techniques with computer aided diagno-
sis (CAD) using advanced imaging as narrow band imag-
ing (NBI) or magnifying chromoendoscopy are designed 
to aid endoscopists in evaluating the histology of mucosal 
lesions, for example, by predicting submucosal invasions 
in advanced adenoma [4]. However, these techniques have 
not been studied in response assessment, and are limited 
due to the variability in diagnostic performance [5]. Other 
advances, in the field of artificial intelligence, in particular 
deep learning, may have potential to improve the endoscopic 
diagnostic accuracy [5, 6]. Deep learning neural networks 
use many layers to automatically extract features. Automated 
methods such as deep learning are capable of analyzing large 
amounts of images at much faster rates than a human. It 
has already been shown to be effective in detecting small 
esophageal cancer lesions [7, 8] or (benign) polyps in colon 
cancer [9–11] on endoscopy. The aim of this pilot study 
is to evaluate the feasibility and accuracy of deep learning 
methods based on endoscopic images and clinical variables 
for the response evaluation of rectal cancer patients treated 
with neoadjuvant therapy.

Materials and methods

Study design

The study cohort was retrospectively selected from a sin-
gle institute database between January 2012 and December 
2015. Informed consent was waived by the local institu-
tional review board. Patients were included if they had (1) 
primary rectal cancer, (2) neoadjuvant long-course CRT or 
short course radiotherapy both followed by a waiting inter-
val for downsizing, and (3) restaging endoscopic images 
available. Endoscopic restaging was routinely performed 
to assess the luminal response after neoadjuvant therapy. 
When residual disease was present at the response evalu-
ation patients were referred for a total mesorectal exci-
sion (TME). When there was evidence of a clinical CR, 
patients were followed in a prospective watch-and-wait 
(W&W) study, approved by the local institutional review 
board and registered on clinicaltrials.gov (NCT00939666 
and NCT02278653). A clinical CR, as described in Maas 
et al. [12], consisted of no palpable tumor on DRE, white 
scar with no residual mass, ulcer or irregularity on endos-
copy, and substantial downsizing with residual homogene-
ous fibrosis on T2-weighted imaging (T2W) without high 
signal on diffusion-weighted imaging (DWI). Patients 

were excluded if they were: (1) lost to follow-up (FU), (2) 
refused surgery despite residual disease, or (3) maximum 
FU < 2 years when followed in a W&W program.

Endoscopy

All patients underwent flexible endoscopy (EPK-I video 
processor, Pentax Medical Netherlands, Uithoorn, the 
Netherlands) after neoadjuvant therapy to evaluate the 
luminal response. All patients received a rectal phosphate 
enema as a bowel preparation prior to endoscopy. Endos-
copy was performed with standard white light imaging and 
the images (resolution of 768 × 576 pixels and 300 × 300 
dpi) were digitally stored afterward.

Predictive models

Model based on clinical variables

From the total of 226 patients, 70% (n = 158) were ran-
domly allocated to a training/validation subset, 30% 
(n = 68) to a test subset, stratifying for CR and non-CR 
status. Three predictive models namely feedforward neu-
ral network (FFN), support vector machine (SVM) and 
logistic regression were built based on six clinical vari-
ables (age, sex, clinical T-stage, clinical N-stage, neoad-
juvant treatment, and time between restaging endoscopy 
and surgery).

To reduce overfitting and improve the accuracy of the 
predictive models, the SelectKBest feature selection tech-
nique [13] was used to choose the best predicting clinical 
variables for the outcome (CR or non-CR). This technique 
scores all the features and then selects the optimal features 
according to the top highest scores. The top three selected 
clinical features (clinical N-stage, neoadjuvant treatment, 
and time between restaging endoscopy and surgery) were 
found to be optimum to train the models [14]. Performance 
of the clinical model was further assessed with the outcome 
measurements AUC, accuracy, precision, sensitivity and the 
F1-score. The F1-score is calculated as follows: F1Score = 2
*((precision*sensitivity)/(precision + sensitivity).

During training, fivefold cross-validation was used on 
70% of the training and validation set. The area under the 
curve (AUC) was calculated to assess model performance, 
where the loss function is minimized. During testing, boot-
strapping calculated the model performance (AUC) of 500 
randomly selected samples (with replacement) of the test 
subset. Mean AUC and the standard deviation of these 500 
iterations were calculated to measure the model performance 
and the variability, respectively.



3594	 Surgical Endoscopy (2022) 36:3592–3600

1 3

Deep learning based on endoscopy

Image preprocessing

A total of 731 endoscopic images were used which were 
split into training, validation and testing set, with the portion 
7:3 resulting in 512 training/validation images and 219 test 
images. Since the number of available images were limited, 
fivefold cross-validation was used to evaluate all the deep 
learning models. All endoscopic images belonging to the 
same patient were included in the same set. The median 
number of images per patient was 3 (range 2–7). The train-
ing set was used for the optimization of the weight of the 
neural network by the training process; the validation set was 
used to adjust the hyper-parameters (learning rate, number 
of epochs and size of mini batches) and the test set was 
independent from the training procedure, to test the final 
result of the neural network. The neural networks are trained 
using an optimization process that requires a loss function 
to calculate the error in the model. During training, if the 
prediction matches with the actual results the values of the 
loss function will be lower. The results of the independent 
test set will be presented. Figure 1 shows examples of the 
endoscopic images of CRs and non-CRs. The endoscopic 
images were first preprocessed to focus on the important 
features of the image (Fig. 2). Preprocessing consisted of 
cutting the black margin of the images followed by crop-
ping out the central region of the image. The images were 
also resized based on model image input size, rescaled and 

normalized. We applied a data augmentation procedure 
to increase the number of images used for the training set 
and to avoid overfitting [15]. The images for training were 
expanded by rotation, flipping, shearing and zooming of the 
original images, resulting in 4 additional images per patient. 
The number of CRs in the training/validation and test set 
were 76 and 33 patients, respectively.

Convolutional neural networks (CNN)

To develop an accurate deep learning algorithm large data-
sets are needed using a vast amount of data. An alternative 
way is to use transfer learning via ImageNet [16], which is 
an online accessible tool and re-uses networks which were 
trained by an enormous amount of natural images. Fine-
tuning existing CNN models that have been pre-trained 
with a large set of labeled natural images are common to 
use as a transfer learning technique. The re-used network 
can be performed on medical data and show promising 
results [17, 18]. Specifically, models trained on the Ima-
geNet dataset (~ 1.2 million training RGB images) could be 
suitable to apply transfer training learning while training 
endoscopic images where the available dataset is limited 
[17]. To improve the output of CNN, a classical method is 
used to increase the number of layers of CNN, which will 
also lead to the increase of time to compute and the difficulty 
to converge. As the number of layers increases, when the 
gradient is back propagated, multiple times of multiplication 
will make the gradient unstable, which is called a gradient 

Fig. 1   Example of evident and 
doubtful complete responders 
and non-complete responders. 
Evident complete response with 
a typical white scar (yellow 
arrows) (a), doubtful response 
with a small ulcer (yellow 
arrows) (b), doubtful response 
with a small-medium sized 
ulcer (yellow arrows) (c), and 
evident incomplete response 
with a tumor mass (d) (Color 
figure online)
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explode or vanish problem. To improve this, novel structures 
are used. “ResNet” have shortcut connections between lay-
ers, and the output of previous layer will be added to the 
input of later layers [19]. ResNet’s design is able to stabi-
lize gradient and relieve the gradient explosion or vanishing 
problem. “DenseNet” has a similar concept with ResNet, and 
connects all the output of previous layers to the later layer by 
concatenating [20]. DenseNet can also relieve the gradient 
explode or vanish problem and needs less computational 
time and memory compared to ResNet. Inception adds mul-
tiscale convolution modules in parallel, collects multiscale 
feature maps and concatenate, to increase the ability to learn 
feature representation [21]. Inception avoids the problem 
of adding too many layers. “InceptionResNet” combines 
the basic module of Inception and ResNet to achieve the 
advantages of both [22]. “Xception” is an improved version 
of Inception [23]. It replaces the convolution modules in 
Inception to depth wise separable convolutions, separating 
completely the relevance of channels. “MobileNet” separates 
convolution into depth wise and pointwise convolutions, 
compresses the network and also keeps the accuracy level 
[24]. “EfficientNet” is one of the recent convolutional neural 
network architectures that achieve much better accuracy and 
efficiency as compared to the previous ConvNets. It uses a 
new scaling method that uniformly scales all dimensions of 
depth, width, and resolution to obtain a family of deep learn-
ing models [25]. In our study, we test and compared several 
CNNs including Xception, MobileNetV2, DenseNet121, 
ResNet50, InceptionV3, InceptionResNetV2 and Efficient-
Net-B2. They are mostly models with top results in natural 

object recognition in ImageNet Large Scale Visual Recogni-
tion Challenge(ILSVRC) competition [26]. The CNNs were 
trained with two 4 GB K2 Nvidia Graphics Processing Unit 
(GPU)s. The optimizer was Adam with the learning rate 
1e-4. To find the best optimizer, we also tried SGD (sto-
chastic gradient descent), RMSprop, and the learning rate 
was adjusted from 1e-3 to 1e-5. All the layers of the models 
were trained; and reducing the number of layers trained did 
not improve the performance. We also tried to change the 
training scheme, such as first training the bottom layer, then 
all the layers, which did not make a difference with current 
methods. The initialization weights of the models were the 
weight trained by ImageNet, the results became much worse 
with random initialized weights.

Combined model

Deep learning models in medical applications are increas-
ingly combining contextual data from electronic health 
records and pixel data, because the clinical context is often 
crucial in diagnostic decisions [27]. Hence, in the present 
study the clinical features are combined with endoscopic 
imaging features to improve the performance of the deep 
learning models and provide more clinically relevant mod-
els. FFN was chosen to combine the selected clinical features 
(clinical N-stage, neoadjuvant treatment, and time between 
restaging endoscopy and surgery), in which it was the best 
performing model from the models constructed based on 
clinical variables. The late fusion technique [28] is used to 
train the combined models where the deep learning models 

Fig. 2   Overview of the combined model architecture. [1408] Represents the last channels in EfficientNet-B2. [500] Represents the number of 
neurons in feedforward neural network based on three selected clinical features
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extract features from the endoscopic images and the FFN 
part extracts features from the selected clinical variables. 
The combined model architecture is presented in Fig. 2.

Reference standard

The outcome of the deep learning method was compared 
with the reference standard: non-CRs or CRs. In patients 
who were operated, the histopathological staging of the 
surgical resection specimen provided the reference stand-
ard, and in W&W patients follow-up provided the reference 
standard. Non-CRs were either defined as patients who had 
residual luminal disease at histopathology (yT1-4) after 
resection, or W&W patients who developed a local regrowth 
(LR) during follow-up. CRs were defined as patients who 
had a pathological complete response (pCR) according 
histopathology (ypT0) or W&W patients with a sustained 
clinical CR after at least 2 years, as the vast majority of LRs 
occur within the first two years of FU [29, 30]. Because this 
study focused on the luminal response assessment, nodal 
stage was not included.

Statistical analysis

Statistical analyses were performed using IBM SPSS Sta-
tistics version 22.0 (IBM Corporation 2013, Armonk, NY). 
For this pilot study no formal sample size calculation was 
made. Nominal data are presented as absolute frequencies 
and values and continuous data as median numbers with 
interquartile range (IQR). Baseline characteristics were com-
pared between patients with and without a CR during FU. 
Differences were tested for significance with the χ2 test for 
the comparison of proportions and the use of Mann–Whit-
ney U-test for comparison of the medians. The diagnostic 
performance of the deep learning models was calculated by 
use of the following parameters: accuracy, area under the 
receiver operator characteristics curve (AUC), sensitivity, 
specificity, positive predictive value (PPV), and negative 
predictive value (NPV) with 95% confidence intervals (CIs). 
The diagnostic performance of all the parameters was calcu-
lated according the binary outcome (CR or no-CR), and CR 
was the positive outcome measure.

Results

Demographics

238 patients were eligible for the study, of which 12 patients 
were excluded for the following reasons: W&W FU less 
than 2 years (n = 2), refused surgery despite residual dis-
ease (n = 5), lost to FU (n = 2) and missing values (n = 3). 

A total of n = 226 patients were included in the analysis. 
Demographics of all patients are shown in Table 1. Median 
age was 65 (58–73) years and 153 (68%) of the patients 
were male. 206 (90%) of the patients received neoadjuvant 
CRT, the remaining 20 (10%) patients had short course 
radiotherapy with a prolonged waiting interval. In total, 117 
(52%) of 226 patients had residual disease: 94 patients after 
immediate surgery and 23 patients in the W&W program 
who developed a regrowth (16 ypT1, 41 ypT2, 56 ypT3 
and 4 ypT4). 109 (48%) of 226 patients were CRs: 19 with 
ypT0 after TME surgery, 85 W&W patients with a sustained 
ycT0 with a median FU of 53 months (26–69), and 5 W&W 
patients who underwent surgery for a suspected regrowth 
but did have a ypT0.

Performance of the models

In this section, we show the automatically generated results 
of models constructed based on clinical features, endoscopic 
images and combined (endoscopic images and clinical fea-
tures) models of the same test set, which was independent 
from the training procedure to test the final result of the 
neural network, and compared the outcomes with the refer-
ence standard.

Machine learning models based on clinical features

Supplementary Fig. 1 summarizes the performance of the 
machine learning models built on all clinical features (sex, 
age, clinical T-stage, clinical N-stage, adjuvant chemother-
apy, and time between restaging endoscopy and surgery) and 
selected clinical features (clinical N-stage, adjuvant chem-
otherapy, and time between restaging endoscopy and sur-
gery). The performance of models built on the three selected 
clinical features was higher than the model built on all clini-
cal features. When considering the three selected clinical 
features, the FFN model performed slightly better (AUC of 
0.73 ± 0.05; accuracy of 0.70 ± 0.04) than the SVM model 
(AUC 0.74 ± 0.05; accuracy 0.68 ± 0.04) and the logistic 
regression model (AUC 0.71 ± 0.06; accuracy 0.64 ± 0.04).

Deep learning models based on endoscopic images 
with and without clinical features

The performance of the different models using endoscopic 
images as an input was lower than the performance of the 
combined model in which imaging and clinical features were 
used. The AUCs for the different CNN models using endo-
scopic images only ranged from 0.71–0.79 and was best for 
EfficientNet-B2 with an AUC of 0.79 (95% CI 0.75–0.82) 
and a sensitivity of 0.74 (95% CI 0.70–0.78) and specific-
ity of 0.70 (95% CI 0.66–0.74). All models based on endo-
scopic images only performed worse than the combined 
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Table 1   Patient characteristics 
of the total cohort and with and 
without a complete response 
during follow-up

CR Complete response, no-CR No complete response, P p-value, IQR Interquartile range, Gy Gray, CRT​ 
Chemoradiation, W&W Watch-and-wait

Variables All (n = 226) Non-CR (n = 117) CR (n = 109) P

Age, median (IQR), year 65 (58–73) 65 (58–74) 66 (59–73) 0.952
Sex, n (%)
 Male 153 (68) 78 (67) 75 (69) 0.731
 Female 73 (32) 39 (33) 34 (31)

Clinical T-stage, n(%)
 1–2 49 (22) 21 (18) 28 (26) 0.095
 3 161 (71) 84 (72) 77 (70)
 4 16 (7) 12 (10) 4 (4)

Clinical N-stage, n(%)
 0 54 (24) 26 (22) 28 (26) 0.038
 1 64 (28) 26 (22) 38 (35)
 2 108 (48) 65 (56) 43 (39)

Distance anal verge, n(%)
  ≤ 5 cm 165 (73) 80 (68) 85 (78) 0.042
  ≥ 5 cm 61 (27) 37 (32) 24 (22)

Neoadjuvant treatment, n(%)
 5 × 5 Gy + prolonged waiting interval 20 (10) 16 (14) 4 (4)  <0.001
 CRT​ 206 (90) 101 (86) 105 (96)

Adjuvant chemotherapy, n(%)
 Yes 41 (18) 22 (19) 19 (17) 0.227
 No 185 (82) 95 (81) 90 (83)

Time between last radiotherapy and 
endoscopy, median (IQR), weeks

10 (8–15) 8 (8–12) 12 (9–18)  <0.001

Time between restaging endoscopy and 
surgery, median (IQR), weeks

5 (2–10) 4 (2–12) 6 (3–10) 0.359

Final treatment, n(%)
 W&W 113 (50) 23 (20) 90 (83)  <0.001
 Immediate surgery 113 (50) 94 (80) 19 (17)

Table 2   Evaluation of the different convolutional neural network models including endoscopic images and clinical variables

CI Confidence interval, AUC​ Area under the ROC curve, PPV Positive predictive value, NPV Negative predictive value

Xception MobileNet DenseNet 121 ResNet50 InceptionV3 Inception 
ResNetV2

EfficientNet-B2

AUC (95% CI) 0.81 (0.78–
0.84)

0.81 (0.77–
0.84)

0.78 (0.74–
0.82)

0.78 (0.74–
0.81)

0.81 (0.77–
0.84)

0.76 (0.72–80) 0.83 (0.80–0.86)

Accuracy (95% 
CI)

0.75 (0.71–
0.79)

0.70 (0.66–
0.74)

0.69 (0.65–
0.73)

0.67 (0.63–
0.71)

0.72 (0.68–
0.76)

0.69 (0.65–0.73) 0.75 (0.72–0.79)

PPV (95% CI) 0.74 (0.71–
0.78)

0.67 (0.63–
0.71)

0.71 (0.67–
0.74)

0.67 (0.63–
0.71)

0.73 (0.69–
0.77)

0.67 (0.63–0.71) 0.74 (0.70–0.77)

NPV (95% CI) 0.78 (0.74–
0.80)

0.70 (0.66–
0.74)

0.71 (0.67–
0.75)

0.72 (0.68–
0.75)

0.74 (0.70–
0.77)

0.71 (0.67–0.75) 0.77 (0.74–0.80)

Sensitivity (95% 
CI)

0.79 (0.75–
0.82)

0.76 (0.73–
0.80)

0.68 (0.64–
0.72)

0.73 (0.70–
0.77)

0.71 (0.67–
0.75)

0.68 (0.64–0.72) 0.77 (0.73–0.80)

Specificity (95% 
CI)

0.73 (0.69–
0.77)

0.73 (0.70–
0.77)

0.72 (0.68–
0.76)

0.66 (0.62–
0.70)

0.72 (0.69–
0.76)

0.71 (0.67–0.75) 0.75 (0.72–79)
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model. A detailed overview of the diagnostic performance 
of the endoscopic image models only are described in Sup-
plementary Table 1. The performance of the combined 
models are described in Table 2. The AUCs varied from 
0.76–0.83 and was the highest in EfficientNet-B2 (0.83, 
95% CI 0.80–0.86). Accuracy varied from 0.67–0.75, with 
EfficientNet-B2 and Xception having the highest accuracy 
(0.75, 95% CI 0.72–0.79; and 0.75, 95% CI 0.71–0.79, 
respectively). The PPV was the highest using EfficientNet-
B2 (0.74, 95% CI 0.70–0.77) and Xception (0.74, 95% CI 
0.71–0.78) and varied from 67% to 74%. Xception had the 
highest NPV (0.78, 95% CI 0.74–0.80) and varied from 70% 
to 78%. Sensitivities varied from 68% to 79% and was the 
highest using Xception (0.79, 95% CI 0.75–0.82). Specifici-
ties varied between 66% and 75%, and was the highest using 
EfficientNet-B2 (0.75, 95% CI 0.72–0.79). Figure 3 shows 
the diagnostic performance for EfficientNet-B2 and Supple-
mentary Fig. 2 presents the loss value and accuracy of the 
training/validation datasets. Supplementary Fig. 3 gives an 
overview of the misclassified patients with EfficientNet-B2.

Discussion

The present study shows a modest accuracy of deep learn-
ing models based on both endoscopic images and clinical 
features to detect CRs on post-CRT endoscopy, and the 
combined model had a higher performance than models 
built on clinical features or endoscopic images only. The 
AUCs for the different CNN models ranged from 0.76 to 
0.83. The CNN models detected 68% to 79% of the patients 
with a luminal CR. The diagnostic performance based on 
endoscopic images and clinical features varied between the 
different models but EfficientNet-B2 achieved the highest 

accuracy and AUC of 0.75 (95% CI 0.72–0.79) and 0.83 
(95% CI 0.80–0.86), respectively.

The AUCs in the present study are generally somewhat 
lower than the AUCs of 0.80 to 0.88 reported by experienced 
endoscopists by van der Sande et al. and Maas et al. [1, 2]. 
The sensitivity of the AI models lies within the range of 
visual evaluation by endoscopists reported in the literature: 
53% to 90% [1, 2] Of course the sensitivity in the reported 
studies is highly dependent on the cut-off point, as illustrated 
by the study of Maas et al. where a sensitivity of 53% was 
reported when using very strict selection criteria such as a 
white scar without any surface irregularities as a luminal 
CR. Currently, in many centers the selection criteria are 
less strict, leading to a higher sensitivity at the expense of 
a lower specificity to detect a CR. The specificity among 
the CNN models varied from 66% to 75%, generally some-
what lower than the 61% to 97% reported by experienced 
endoscopists [1, 2].

Deep learning seems to be beneficial in other endoscopic 
areas, like in adenoma recognition where an algorithm 
correctly identifies diminutive (<5 mm) polyps in which 
a diagnose-and-leave strategy is accepted [9, 11, 31, 32]. 
Additionally, two randomized trials showed the efficacy of 
a real-time on-screen alert box in assisting endoscopists in 
polyp detection and evaluating the number of blind spots 
during procedures for quality measurements [10, 33]. In 
contrast to this, the current study showed a lower diagnostic 
value of the AI model than generally reported for expert 
endoscopists. Factors that may have contributed to this are 
the lack of high-resolution images, and the input of only a 
limited number of 2D images per patient. High-resolution 
images and real-time video assessment will likely lead to 
a higher performance Moreover, the algorithm in the pre-
sent study calculates the probability of a CR only on the 
basis of the few endoscopic images, whereas experienced 
endoscopists can also include the information of DRE and 
MR-imaging [1]. An additional limitation of the study is 
that some patients had a long interval between endoscopy 
and surgery, often because patients initially refused surgery 
or tried an alternative treatment. This may have caused a 
discrepancy between endoscopic images and histology of 
the resection specimen.

Clinical practice is shifting from providing a W&W 
approach in only typical cCR (a flat white scar without 
any surface irregularities at the first response assessment) 
[12, 34] to also selecting patients with a ‘near CR’ (ulcers, 
irregularity or adenoma) who can develop a flat white scar 
at a second reassessment after another interval [35]. The 
definition of this so called ‘near CR’ is unclear, and the 
subtle abnormalities are difficult to interpret with endos-
copy only [1–3]. This is an area where we hope that deep 
learning methods can be of help. In addition, it could help 
endoscopists to guide focused biopsies in doubtful cases. 

Fig. 3   ROC curve of EfficientNet-B2 for the endoscopic image model 
and combined model and ROC curve of feedforward neural network 
model for selected clinical variables. AUC​ Area under the ROC curve
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In clinical practice the endoscopic assessment will never 
serve as a single-modality for decision making. Deep 
learning and AI can provide the endoscopic probability 
of a CR, and this information has to be added to the infor-
mation of the other assessment methods. The addition of 
DRE and MRI-DWI to endoscopic evaluation had been 
shown to be highly valuable, with a particular value of 
MRI-DWI to detect in- and extra-luminal scattered tumor 
regions or nodal disease [36]. Clinical decision making 
is a complex process, that not only involves a probabil-
ity estimate, but also patient and doctor preferences, and 
a number of other practical and ethical issues [37, 38]. 
Usually, physicians refer to non-imaging clinical data to 
interpret endoscopic imaging findings leading to higher 
diagnostic accuracy and more confident clinical decisions. 
EfficientNet-B2 demonstrated both higher accuracy and 
better efficiency over existing CNNs models and they also 
transfer well in multiple transfer learning datasets [25]. 
They also performed best in our endoscopic imaging and 
combined models, where EfficientNet-B2 had the highest 
performance. In order to develop an accurate deep learning 
model, a large amount of data is required for collecting 
and labeling. However, when limited data is available, as 
in the current study, transfer learning has been shown to 
be a useful alternative, and there is evidence it even out-
performs fully trained CNN models [16, 17, 39, 40]. To 
further explore the diagnostic performance of deep learn-
ing in response evaluation, additional studies are needed, 
such as multicenter cohorts evaluating a large amount of 
high-resolution images or video material taken by different 
endoscopists. Possibly, adding other clinical input (e.g., 
DRE and MRI findings) can further improve the models 
[41].

This retrospective pilot study shows that combining deep 
learning with clinical parameters to identify CR after neo-
adjuvant treatment for rectal cancer yields a diagnostic per-
formance ranging from 0.76 to 0.83. The outcomes of CNN 
models varied widely, with EfficientNet-B2 being the most 
promising model. Compared to the literature, at present, an 
experienced endoscopist seems to be more accurate than 
deep learning. However, artificial intelligence may play a 
role in response evaluation when the performance of the 
models is further improved, and large prospective studies 
are required to explore this.
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