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Abstract

Objectives: The aim of this study was to examine how the concentrated delivery of less 

effective antibiotics, such as the β-lactam penicillin G, by linkage to nanoparticles (NPs), could 

influence the killing efficiency against various pathogenic bacteria, including methicillin-resistant 

Staphylococcus aureus (MRSA) and other multidrug resistant (MDR) strains.

Methods: The β-lactam antibiotic penicillin G (PenG) was passively sorbed to fluorescent 

polystyrene NPs (20 nm) that were surface-functionalized with carboxylic acid (COO−-NPs) 

or sulfate groups (SO4
−-NPs) to form a PenG-NP complex. Antimicrobial activities of PenG­

NPs were evaluated against Gram-negative and Gram-positive bacteria, including antibiotic 

resistant strains. Disc diffusion, microdilution assays and live/dead staining were performed for 

antibacterial assessments.

Results: The results showed that bactericidal activities of PenG-NP complexes were statistically 

significantly (P < 0.05) enhanced against Gram-negative and Gram-positive strains, including 

MRSA and MDR strains. Fluorescence imaging verified that NPs comigrated with antibiotics 

throughout clear zones of MIC agar plate assays. The increased bactericidal abilities of NP-linked 
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antibiotics are hypothesized to result from the greatly increased densities of antibiotic delivered 

by each NP to a given bacterial cell (compared with solution concentrations of antibiotic), which 

overwhelms the bacterial resistance mechanism(s).

Conclusions: As a whole, PenG-NP complexation demonstrated a remarkable activity against 

different pathogenic bacteria, including MRSA and MDR strains. We term this the ‘grenade 

hypothesis’. Further testing and development of this approach will provide validation of its 

potential usefulness for controlling antibiotic-resistant bacterial infections.
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1. Introduction

Antibiotic resistance (AR) is a growing global health concern and is rapidly developing into 

an emerging crisis. AR infections result in increased morbidity and mortality, with more 

than 50,000 people annually succumbing to these infections in the United States and Europe 

combined [1], and result in substantial costs in clinical and community health care settings 

[2]. More than 2 million illnesses occur each year as a direct result of AR infections, and 

more people succumb to infections related to other conditions (e.g. AIDS, cancer), whose 

cause is complicated by AR infections [3]. The total economic cost of antibiotic resistance 

to the US economy, although difficult to estimate, exceeds $20 billion in additional direct 

health care costs, with further costs for lost productivity as high as $35 billion a year [2,4]. It 

is now predicted that global mortality rates will reach 10 million annually by the year 2050 

and cost an estimated $35 trillion (USD) in lost economic output [2]. Many currently used 

antibiotics (e.g. penicillin) are becoming progressively less effective for infection treatment 

owing to the preponderance of resistant bacterial strains. The rise in AR has been due, 

in part, to the ability of bacteria to exchange genetic resistance among cells rapidly, thus 

enhancing the persistence of infections [5,6].

Nanoparticles (NPs) are materials that have at least one dimension in the size range of 

1–100 nm [7] and are used in various sectors [8–10]. NPs are used as efficient carriers for 

anticancer drugs to deliver pharmaceuticals to eukaryote cells [11,12]. NP chemistry can 

be engineered with high specificity to produce surfaces having different types of chemical 

functional groups, charges and other properties [13]. This has the potential to enable large 

quantities of antibiotic molecules to be carried by a single NP and delivered to an infectious 

bacterial cell.

NPs can be engineered with fluorophores to facilitate quantitative detection [14,15]. These 

properties offer much potential for probing bacterial infections. We postulated that linking 

antimicrobial compounds to NPs may enable the development of a powerful adaptable tool 

to limit AR infections more efficiently. Administered antibiotics typically reach bacterial 

cells in solution through diffusion. Although this results in a rather homogeneous dispersion 

of molecules spread over tissues, it greatly reduces the concentration of antibiotic molecules 

reaching any given pathogenic cell involved in the infection. However, when antibiotics are 

concentrated on an NP surface, they can potentially deliver a more concentrated dose to 
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a given bacterial cell. This offers the possibility that the antimicrobial efficiencies of less 

effective antibiotics may be altered by their delivery to resistant bacteria using NPs.

The present study was conducted to examine how the concentrated delivery of an antibiotic 

(e.g. penicillin G) using NPs could influence the killing efficiency of bacterial pathogens, 

even strains that exhibit relatively strong resistance to the antibiotic. Polystyrene NPs were 

specifically chosen for use in this study because they are nonbiodegradable [16] over the 

time-scale of the study, their fluorescence facilitates quantification [17,18], and their sizes 

(diameter) were highly consistent [19]. This allowed us to use them as antibiotic carriers in a 

repeatable manner for our study.

2. Materials and methods

2.1. Nanoparticles

The NPs used in this study were obtained from Molecular Probes (Thermo Fisher Scientific, 

Waltham, MA). They consisted of fluorescent spheres with a constant polystyrene core 

composition, but which varied in the type of surface functionalization (Supplementary Table 

S1):

1. Surface-functionalized carboxylate-nanoparticles (COO−-NPs) were size­

estimated by transmission electron microscopy (TEM) and exhibited 

fluorescence (excitation/emission [excit/emiss] = 575/620 nm).

The NPs had relatively high densities (ca. 3290/NP) of (pendent) carboxylic 

acids on their surfaces (Sigma Chemical, Mumbai, India) and were relatively 

hydrophilic.

2. Surface-functionalized sulfate NPs (SO4
−-NPs) contained ca. 2540 pendent 

sites per NP, were relatively hydrophobic, enabling passive sorption of almost 

any protein (pKa 2), and exhibited fluorescence (excit/emiss = 485/528 nm). 

Zeta potentials (mV) of NPs were measured using a ZetaPALS Zeta-Potential 

Analyzer (Brookhaven Instruments, Holtsville, NY).

These NPs were used in previous studies for their efficient fluorescence yield, purity 

and uniformity of size [20–23]. NPs were detected and quantified based on fluorescence 

emissions, with conversions to concentration determined using calibration curves. Three 

replicates per treatment time were used for each time course measurement. The core sizes of 

the NPs were verified using transmission electron microscopy (TEM).

2.2. Antibiotic

The antibiotic penicillin G potassium salt (Supplementary Fig. S1; Fisher Scientific) 

benzylpenicillin or Pen G. Concentrations of bound versus unbound Pen G were quantified 

by absorbance (220 nm) using spectrophotometry (UV-Vis spectrophotometer, Shimadzu, 

Tokyo).
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2.3. Linking antibiotics to nanoparticles

To link Pen G to NPs, 20 μL/mL of carboxylated NPs or sulfated NPs and 1 mg Pen G were 

added to 1 mL deionised (DI) water, mixed well and incubated at 28 °C with gentle shaking 

(50 rpm/min.). Centrifugal ultrafiltration (Amicon Ultra-0.5 tubes, 3000 MWCO, Invitrogen, 

Thermo Fisher Scientific; 10,000 rpm; 10 min) was used to separate freely dissolved Pen 

G from Pen G–NP complexes. Finally, the NP–Pen G complexes were recovered from the 

centrifuged ultrafiltration device and placed into a clean microcentrifuge tube for 2 min, 

1000 rpm, 4 °C. The concentrated complexes were suspended into 1 mL of DI water and 

stored at 4 °C until further use.

The optimum times for incubation for Pen G–NP complexes were analyzed by calculating 

the amount of free Pen G in supernatant using an ultraviolet (UV) spectrophotometric 

method after determining traction times (0, 1, 2, 3 and 4 h). Complexes of bound versus 

unbound Pen G were quantified using UV spectrophotometry at an absorbance of 220 nm 

(UV-Vis; Shimadzu, Tokyo). NPs were quantified by fluorescence by constructing standard 

calibration curves. All measurements were determined in triplicate. Optimal associations of 

Pen G to NPs occurred after a 3-h incubation, which was used for all further experimental 

incubations.

2.4. Transmission electron microscopy

The morphology of the NPs was analyzed with TEM (Hitachi, HT7800, Tokyo). The NPs 

were sonicated using VWR Ultrasonic Cleaner (power, 220 W; frequency, 60 MHz; VWR 

International, Radnor, PA) for 20 min and then deposited on PELCO® TEM 200 mesh 

copper grids with Formvar/carbon support films (Ted Pella, Redding, CA) and dried in a 

hood for 10 min prior to TEM observations.

2.5. Antimicrobial activity assay of Pen G–NPs

The antimicrobial activities of Pen G–NPs, Pen G and NPs were evaluated against Gram­

negative and Gram-positive bacteria, including antibiotic-resistant strains. Gram-negative 

bacteria used were Pseudomonas aeruginosa ATCC 27853, Klebsiella pneumoniae ATCC 

27736, Salmonella typhimurium (ATCC 13311) and Proteus vulgaris (ATCC 33420). 

The Gram-positive strains tested were Staphylococcus aureus ATCC 25423 and several 

additional MRSA strains.

Antibiotic resistance was also tested against several MDR strains: Escherichia coli 
(BAA-197); MRSA-252 (ATCC BAA-1720); a community isolate CA-MRSA strain 

(ATCC-BAA 1717); a hospital isolate HA-MRSA strain (ATCC BAA-29213); and an 

antibiotic-sensitive strain (methicillin-susceptible Staphylococcus aureus [MSSA], ATCC 

BAA-1718), which is resistant to penicillin. Bacterial strains were cultured in tryptic soy 

broth (TSB) overnight and then stored in 25% glycerol at −80 °C until use.

2.6. Antibacterial assessments using two approaches

Disc diffusion assays: The disc diffusion method, as described in Clinical and Laboratory 

Standards Institute (CLSI) guideline M100S, was used to determine the bioactivity of Pen 

G–NPs, Pen G and NPs against the various pathogens mentioned earlier. Briefly, plates were 
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prepared using 10 mL tryptic soy agar (TSA) into sterile Petri dishes (9 cm) and allowed to 

set. The TSA medium plates were spread evenly with 100 μL of an overnight log culture of 

the test organism. Sterile paper discs (6 mm diameter) were placed on each plate. Then, 25 

μL containing known concentrations of Pen G–NPs, Pen G or NPs was added to each disc 

and incubated at 37 °C for 24 h. Inhibition zones around the disc were measured. MICs for 

all tested pathogens were calculated using standard protocols by measuring the depth and 

diameter of clear zones on the agar after incubation [24]. The MIC was defined as the lowest 

concentration of an antimicrobial agent (μg/mL) required to inhibit bacterial growth after an 

overnight incubation when compared with a negative control [25].

Microdilution method: MICs of Pen G–NPs, Pen G and NPs were determined against the 

bacterial strains according to standard methods of the National Committee for Clinical 

Laboratory Standards (NCCLS) [24]. For all microdilution assays, 96-well plates were used 

to determine the MICs of Pen G and the two forms of NP–Pen G (i.e. using carboxylated 

NPs and sulfated NPs) as antibiotic carriers. Using seed cultures of each bacterial strain and 

200 μL of TSB broth, a range of Pen G (0.5–30 μg) was added to each well. The same 

concentrations of Pen G–NPs were also added to separate wells. All MIC determinations 

were run in triplicate.

2.7. Monitoring diffusion of nanoparticles

To determine if the Pen G remained associated with their NP carrier, the corresponding 

diffusion of NPs and clear zones due to antibiotic were measured. Plates were prepared as 

previously described for the disc diffusion method. Then, 25 μL of Pen G–NP, Pen G and 

NPs was added to each disc and incubated (37 °C for 24 h). The diffusion of Pen G–NPs and 

its corresponding antibacterial activity were determined by measuring the diameters of the 

fluorescence (by NPs) and the inhibition zones surrounding the discs, respectively.

3. Results

3.1. Nanoparticles and determination of Pen G–NP complexes

Sizes of the NPs were confirmed to be 22–24 nm for carboxylated NPs and 23–24 nm for 

sulfated NPs, as determined using TEM (Fig. 1). The average zeta potential was 40.2 ± 1.7 

mV for carboxylated NPs and 36.0 ± 0.6 mV for sulfated NPs (Supplementary Table S1).

The complexation of Pen G to NPs occurred relatively rapidly (i.e. <1 h) after the addition 

of NPs to Pen G in solution. Fig. 2A shows that concentrations (measured by absorbance 

at 220 nm) of unbound Pen G in the supernatant (after centrifugation) decreased, whereas 

concentrations of the Pen G–NP complex in the pellet fraction increased over time. The Pen 

G–NP complex reached an optimum complexation after 4 h of incubation. The formation 

of Pen G–NP complexes were followed by absorbance measurements. Fig. 2B shows that 

the absorption spectra of Pen G has a λmax of 230 nm. However, the absorption of the Pen 

G–NP complex was completely changed and indicated that a new complex was formed. 

Furthermore, after initial scanning of absorbance between 245 and 800 nm with a UV-Vis 

double-beam spectrophotometer, the same λmax (230 nm) was observed in both soluble Pen 

G and the Pen G–NP complex. This was likely due to the linking of Pen G to NPs. TEM 
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images showed that there was no detectable change in the size or shape of NPs after Pen G 

sorption. The NPs remained spherical and of similar size as uncoated NPs.

3.2. Antimicrobial potential of Pen G–NP complexes

The antimicrobial activities of Pen G, NPs and Pen G–NPs were tested against Gram­

negative, Gram-positive and AR bacteria. The results showed that MIC values of several 

bacterial strains were significantly reduced (P < 0.05 by ANOVA), compared with controls, 

when Pen G was complexed to sulfated or carboxylated NPs. These included the strains 

of Pseudomonas aeruginosa (ATCC 27853), Proteus vulgaris (ATCC 33420), Salmonella 
typhimurium (ATCC 13311) and Klebsiella pneumoniae (ATCC 27736). A next step was 

to test both types of Pen G–NP complexes against specific pathogen bacterial strains that 

are known to possess resistance mechanisms against Pen G. When Pen G bound to NPs 

was administered at a relatively low concentration, it was effective against MRSA strains, 

even though the same concentration of Pen G in solution form was ineffective (Table 1). 

These strains included Escherichia coli (BAA-197), a hospital-acquired MRSA-252 (ATCC 

BAA-1720) strain and a community-acquired MRSA (BAA-1717) strain, all MDR strains. 

Table 1 shows the results of NP-antibiotic complex activities and the corresponding MICs 

for several bacterial strains (see Supplementary Figs. S2–S4). Moreover, the effectiveness 

of the sulfated NPs, carboxylated NPs and Pen G alone was screened by the disc diffusion 

assay with their zones of inhibition against CA-MSSA, HA-MRSA and MRSA-252, as 

shown in Fig. 3. Results showed that the Pen G alone (control) has no effect on these 

strains, as was expected, whereas significant zones of inhibition were found for both Pen G–

NPs complexes against CA-MSSA, and intermediate inhibition zones were detected against 

CA-MSSA and HA-MRSA.

4. Discussion

Examples of NP applications as antimicrobial agents are emerging rapidly in the literature. 

The inherent antimicrobial properties of certain NPs such as silver and other metals is 

well documented [26–31]. The application of NPs as delivery vehicles for antimicrobial 

molecules such as antibiotics is now being realized and offers promise [32]. This promise, 

coupled with the emergence of multiple AR bacterial strains [33–36] and a concurrent 

reduction in the discovery of new antibiotics [37–39], has prompted the study of NP 

applications [40]. In addition, the reapplications of older, less effective antibiotics is also 

being studied [41].

The present study shows that the complexation of the traditional antibiotic Pen G with NPs 

results in significantly greater killing efficacies of bacterial pathogens, including those that 

are resistant to Pen G, and also MDR strains. Results of Pen G, NPs and Pen G–-NPs, 

when tested against several strains of Gram-negative and Gram-positive bacteria, showed 

that MIC values were significantly reduced (P < 0.05 by ANOVA), compared with controls, 

when Pen G was complexed to sulfated or carboxylated NPs. The bacterial strains were 

those of the common pathogens P. aeruginosa (ATCC 27853), P. vulgaris (ATCC 33420), S. 
typhimurium (ATCC 13311) and K. pneumoniae (ATCC 27736) (Table 1).
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The diffusion of fluorescent NP-linked antibiotics and NPs alone were compared over 

the 24-h time frames used in the MIC plate assays. The results indicated that NPs alone 

were unable to diffuse in the agar plates as determined by fluorescence (data not shown). 

However, when Pen G was sorbed to NPs, they were able to diffuse throughout the cleared 

zones of MIC plates. This indicated that the NPs accompanied—that is, i.e. remained 

complexed to—antibiotics during the killing of bacteria throughout the cleared zones on 

MIC plates.

When MDR strains were tested, a similar pattern was observed for NP-complexed 

antibiotics. When Pen G bound to NPs was administered at relatively low concentrations, 

effective antimicrobial activities were measured against MRSA strains, even though the 

same concentration of Pen G in solution form was ineffective (Table 1). These strains 

included E. coli (BAA-197), a hospital-acquired MRSA-252 (ATCC BAA-1720) strain, and 

a community-acquired MRSA (BAA-1717) strain, all MDR strains. Pen G, when bound to 

NPs, displayed significantly greater antibacterial activities against resistant forms of MSSA, 

MRSA and other pathogenic bacterial strains (Fig. 3), whereas the soluble Pen G at the 

same concentrations were less active or completely inactive against the same respective 

strains. NP-only controls (with no added antibiotic present) did not inhibit bacterial strains. 

Using the disc diffusion assay as a screening method, the sulfated NPs and carboxylated 

NPs showed inhibitory activity against CA-MSSA, HA-MRSA and MRSA-252, but the Pen 

G alone had no observable zones of inhibition against these strains. The linkage of Pen G 

with NPs may actually be advantageous for antimicrobial activity because a microorganism 

may have difficulty in recognizing new compounds that act synergistically against the target 

organism.

Many MDR bacterial strains secrete β-lactamases, which are enzymes that specifically 

degrade Pen G and other β-lactam antibiotics, rendering the strain resistant. The β-lactam 

ring represents a central moiety of the core structure of several families of β-lactam 

antibiotics, such as penicillin, cephalosporins, carbapenems and monobactams. Nearly all 

these antibiotics work by inhibiting bacterial cell wall biosynthesis, which is an ongoing 

process in most bacteria [42]. Interference with cell wall biosynthesis by β-lactams results in 

lethal effects on bacteria, but concurrently propagates the emergence of sub-groups (already 

present in populations) that are resistant to β-lactam antibiotics.

Penicillin is generally considered as a less effective bactericide against Gram-negative cells, 

when compared with Gram-positives due to the protective outer membrane of the former 

[43]. In our study the Gram-negative strains that we tested were resistant to soluble Pen 

G. Interestingly, however, these same Gram-negative strains were significantly inhibited 

when Pen G was complexed to NPs. β-Lactams invoke their bacteriostatic properties by 

acting as nonfunctional analogues for naturally occurring penicillin-binding proteins (PBPs). 

This group of enzymes is critical to cross-linking the peptidoglycan of bacterial cell walls 

[44]. The inhibition by NP-associated Pen G suggests that NP delivery of this antibiotic 

overcame membrane barriers and penicillin-binding protein defences, such as PBP2, of these 

Gram-negative bacteria.
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Antibiotics or drugs loading onto NPs can be used as a novel approach to delivery. This 

is an attempt to develop a new mechanism to overcome strong pathogens, including MDR 

bacteria, and to determine the efficacy and potential for therapeutic applications.

4.1. Grenade hypothesis of NP delivery of antibiotics

Our results suggest that complexation of antibiotics with NP carriers could be developed as 

a novel approach for overcoming resistance to hydrolysis by β-lactamases. The widespread 

use of β-lactam antibiotics, primarily against Gram-positives, has led to the emergence of 

resistant microbial strains, with enhanced production of β-lactamase enzymes. Many genes 

for β-lactamase production, and over 1800 different molecular forms of these enzymes, have 

now been identified [45]. Therefore, altering the potential susceptibility to hydrolysis of 

β-lactam-type antibiotics requires further study to increase the activity of these drugs.

Many Pen G molecules potentially can be sorbed to a single NP. Therefore, a single 

NP, once in contact with the bacterial cell, would deliver a relatively large dose (i.e. 

pulse) of Pen G molecules to that cell when compared with the same concentration of 

Pen G molecules administered in solution form and homogeneously diffusing throughout 

the local medium near a cell. We posit that an antibiotic complexed to a given NP 

could be delivered at a very high localized concentration to that cell. This high localized 

concentration has the capability to overwhelm the cell’s inherent AR defences, such as 

β-lactamases, capabilities for rapid efflux pumps and other potential defences [13,46–48]. 

The concentration experienced by a given cell in contact with an antibiotic-NP complex will 

be many times greater than the cell would experience from the same antibiotic in solution 

because the latter is homogenously dispersed via diffusion.

The absorption spectra of soluble Pen G (220 nm = λmax) was modified with complexation 

to NPs and exhibited a new accessory peak for NP–Pen G complex (570 nm = λmax). This 

was likely due to the surface modification induced by the sorption of the Pen G to NPs when 

compared with NP controls.

Fig. 4 (graphical abstract) outlines the simple complexation of many Pen G molecules 

to the surface of a NP, which has the net result of increasing antimicrobial activity to a 

bacterial cell. Based on the present results, we hypothesize that NP delivery of this protects 

the β-lactam antibiotic from hydrolysis (by β-lactamases) and then releases sufficient (i.e. 

enough to kill) concentrations of Pen G molecules to overwhelm the outer membrane and 

cell wall defences. The complexation of Pen G to the NP might also provide a camouflage 

to protect the β-lactam ring from β-lactamase-mediated hydrolyses and retain the activity of 

PenG. How this might occur at a molecular level, however, remains to be determined.
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Fig. 1. 
Transmission electron microscopy (TEM) micrograph showing polystyrene surface­

functionalized carboxylate nanoparticles (NPs; 23–24 nm) used in experiments (scale bar 

= 50 nm).
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Fig. 2. 
(A) Complexation of penicillin G (PenG) to nanoparticle (NP) carrier versus time. The red 

line shows corresponding decrease in PenG in solution measured by absorbance (230 nm). 

The blue line shows that the formation of the carboxylated NP–PenG complex (detected in 

pellet after centrifugation) increased over time. (B) Shown is the ultraviolet (UV) visible 

spectrum of PenG, carboxylated NPs (C-NPs) and PenG–carboxylated NP complex (C-NPs­

PenG).
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Fig. 3. 
Antimicrobial activity of penicillin G (PenG), SNP–PenG complex and CNPs–

PenG complex against CA-MSSA, HA-MRSA and MRSA-252, CNPs, Carboxylated 

nanoparticles (NPs); SNPs, sulfated NPs.
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Fig. 4. 
Schematic illustration showing the hydrolysis of free penicillin G (PenG) by β-lactamases 

and protection against β-lactamase by the PenG–nanoparticles (NPs) complex.
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