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1  |   INTRODUCTION

Radiation therapy is widely adopted as an effective can-
cer treatment technique. Advanced radiotherapy tech-
niques, such as intensity-modulated radiation therapy 

(IMRT) and volumetric arc radiation therapy (VMAT), 
offer high dose conformity and sub-millimeter spatial 
precision. These highly precise conformal methods 
allow physicians to maximize the tumor control prob-
ability while minimizing the normal tissue complication 
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Abstract
In order to deliver accurate and safe treatment to cancer patients in radiation 
therapy using advanced techniques such as intensity modulated radiation ther-
apy (IMRT) and volumetric-arc radiation therapy (VMAT), patient specific qual-
ity assurance (QA) should be performed before treatment. IMRT/VMAT dose 
measurements in a phantom using various devices have been clinically adopted 
as standard method for QA. This approach allows the verification of the accuracy 
of the dose calculation, data transfer, and the delivery system. However, patient-
specific QA procedures are expensive and require significant time and effort by 
the physicists. Over the past 5 years, machine learning (ML) and deep learning 
(DL) algorithms for predictions of IMRT/VMAT QA outcome have been investi-
gated. Various ML and DL models have shown promising prediction accuracy 
and a high potential as time-efficient virtual QA tool. In this paper, we review 
the ML and DL based models that were developed for patient specific IMRT 
and VMAT QA outcome predictions from algorithmic and clinical applicability 
perspectives. We focus on comparing the algorithms, the dataset sizes, the input 
parameters and features, the QA outcome prediction approaches, the valida-
tion, the performance, the clinical applicability, and the potential clinical impact. 
In addition, we discuss the present challenges as well as the future directions 
in the implementation of these models. To the best of our knowledge, this is the 
first review on the application of ML and DL based models in IMRT/VMAT QA 
predictions.
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probability. However, the complex nature of these treat-
ment techniques requires frequent patient-specific 
quality assurance (QA) prior the treatment.1–3

Patient-specific QA measurement procedure is rec-
ommended by AAPM TG 119 and 2181,3 for IMRT and 
VMAT treatment to ensure that the treatments can be 
delivered as intended. Typically, this involves creating a 
QA plan by recalculating the patient treatment plan dose 
distribution on a suitable phantom. Then, measuring the 
dose distribution with a suitable device such as film, ion 
chamber or diode array detector, or electronic portal 
imaging device (EPID).4 Comparisons between mea-
sured and planned dose distributions are commonly 
quantified by means of a gamma analysis.5 This metric 
is routinely used for producing a quantitative measure 
based on dose and spatial criteria. The widely applied 
tolerance and action levels for gamma analysis are 3% 
dose difference and 3  mm distance-to-agreement, as 
recommended by AAPM TG 119 and 120.1,4 The main 
disadvantages of the patient-specific QA procedure are 
that it is expensive, time-consuming, and often difficult to 
identify and correct the cause(s) of failure.6 Alternatively, 
computational-based (software-based) QA approaches 
are more time-efficient but are less widely accepted. 
For instance, machine log file analysis method is time-
efficient and enables verification of the data transfer 
integrity and delivery system accuracy based on infor-
mation recorded by the linear accelerator (Linac) control 
system.7 However, this approach is regarded as lacking 
independency from the delivery system.7

Machine learning (ML) and deep learning (DL) algo-
rithms are able to produce predictions on new data after 
being trained on a finite dataset. Over the past 5 years, 
ML and DL algorithms have been developed and stud-
ied for predicting IMRT/VMAT QA outcome. These al-
gorithms have the potential of providing time-efficient 
and automated virtual QA tools. The developed ML/DL 
models would significantly reduce the radiation therapy 
treatment workload. The earlier reviews in the literature 
presented general overviews on applications of ML/DL 
in radiation therapy QA.8–10 In this paper, we present a 
comprehensive overview of the conventional ML-based 
and modern DL-based models for patient-specific IMRT/
VMAT QA from algorithmic and clinical utility perspec-
tives. We discuss and compare these methods based 
on the data samples size, the input features, the QA 
outcome prediction approach, the model's validation, 
performance, and their clinical applicability and poten-
tial impacts. We also discuss current challenges and 
future directions of implementation of these models.

2  |   SEARCH STRATEGY

We performed a literature search on the web using the 
“PubMed” search engine. A total of 20 relevant pub-
lished articles were found and were included in this 

review (Figure 1), with the most recent paper published 
in the first quarter of 2021 and the earliest one pub-
lished in 2016. Figure  1 shows the number of yearly 
published articles for the last 5 years on applications of 
ML/DL algorithms in patient-specific QA for IMRT and 
VMAT.

3  |   MACHINE LEARNING/DEEP 
LEARNING ALGORITHMS

In this section, we provide a brief overview of various 
ML and DL algorithms developed for QA outcome pre-
dictions in IMRT and VMAT without too much detail. 
Interested readers may refer back to the relevant refer-
ences for more details.

3.1  |  Machine learning algorithms

Machine learning is a subset of artificial intelligence and 
it generally refers to set of algorithms that can learn to 
perform a specific task based on past data without explicit 
implementation of the solution.11 ML algorithms can be 
employed for regression or classification tasks. There are 
different types of ML algorithms and the commonly used 
ones relevant for this review are briefly described below.

3.1.1  |  Regression algorithms

Linear regression12 is the simplest ML algorithms. 
It makes a prediction by computing the sum of the 

F I G U R E  1   Yearly published articles related to intensity 
modulated radiation therapy and volumetric-arc radiation therapy 
quality assurance outcome predictions using machine learning and 
deep learning algorithms, until March, 2021 (PubMed)
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weights of input variables added to a bias term. During 
the training, the model searches for the set of param-
eters that make the best fit from inputs to output on 
the training data set. This is achieved by minimizing 
the mean squared error (MSE) loss function between 
the estimated output and the true value. In order to re-
duce the possibility of model overfitting, a regulariza-
tion method such as the Least Absolute Shrinkage and 
Selection Operator (LASSO) regression, ridge regres-
sion, or elastic net is commonly applied.

Poisson regression is a form of generalized linear 
regression algorithm used to model count data. It is 
based on the assumption that the response variable 
has a Poisson distribution. Additionally, the logarithm of 
its expected value can be modeled by a linear combina-
tion of unknown parameters. This algorithm is trained in 
a same way as in linear regression. Poisson regression 
can also be regularized with LASSO regression which 
has an advantage of being capable to accommodate 
highly correlated set of features.13,14

Logistic regression15 is a classification algorithm that 
is used to approximate discrete outcomes based on 
given independent variables. It applies a logistic func-
tion to model a binary dependent variable by estimating 
the parameters of a logistic model. These parameters 
are obtained during the training process. The logistic 
model determines the probability of a certain event (e.g. 
pass/fail) or occurrence of an event by fitting data to a 
logit function. Logistic regression is used when a binary 
outcome is needed. The weakness of this model lies in 
its instability when using data that are easily separable 
into certain classes or when using few data samples.

3.1.2  |  Tree-based algorithms

Tree-based ML algorithms are a versatile type of su-
pervised ML algorithms that can be used for regres-
sion and classification tasks. One of the most unique 
characteristics of these algorithms is that they exhibit 
high degree of interpretability of the predicted results. 
Consequently, we can understand the contribution of 
individual parameters to the prediction results as well 
as visualize how a prediction is made as the sample 
travels from the root to the leaf.

Decision tree16 is the simplest form of the tree-based 
algorithms. It consists of several nodes and leaves. 
Each node represents a split of the training dataset 
based on one of the variables, whereas an individual 
leaf (decision) represents a target value of some of the 
samples. During the training, the model normally ap-
plies a recursively greedy training algorithm to search 
for the variables and the possible decision threshold 
for each node that optimally splits the training data into 
similar responses. This is practically solved by minimiz-
ing a cost function such as MSE between the predicted 
output and the true value. The nonparametric nature of 

the decision tree model increases the possibility of the 
model overfitting the training data by creating complex 
trees, thus it requires applying an appropriate regular-
ization technique. Hyper-parameters that are adjusted 
during the training of a decision tree model include the 
maximum tree depth, the minimum number of samples 
required at each node, and the loss function used to 
measure the quality of a split.

Random forest17,18 is the complex form of the de-
cision tree algorithms. It is basically an ensemble of 
decision trees that combines the results from a set of 
weaker decision trees predictors, where random errors 
cancel each other out and correct decisions are rein-
forced. Each of the decision trees is assembled using 
a randomly selected subset of the given variables and 
training examples. The bagging technique is used 
where a collection of estimators is trained on different 
random subsets of the training set with replacement. 
This approach reduces the variance of the average pre-
diction to yield a better model. The hyper-parameters 
described for the decision trees are optimized along 
with the number of trees in the optimized forest, the 
minimum sample of splits, and minimum sample of 
leaves. The final output of the ensemble random forest 
regression model is the average of the decision trees' 
outputs. Whereas, the final output of an ensemble ran-
dom forest classification model is the class that has 
the most votes by the individual decision tress. Using 
a large number of trees in a random forest improves 
the model predictions power but it becomes harder to 
interpret.

AdaBoost boosting or “adaptive weighted boost-
ing”19 is a boosting algorithm that combines a series 
of weak learner decision trees to build a composite 
strong learner with revised sample weights. This pro-
cess is usually sequential, where subsequent models 
are trained based on the errors of the preceding ones. 
The training of this model initially starts with fitting a 
base decision tree regression algorithm to the whole 
training dataset. Then the algorithm iteratively trains 
the regression algorithm on the same dataset while ad-
justing the weights of training samples that have large 
errors. The final prediction is an ensemble of all the 
sequential learners in which the higher performers will 
contribute more to the prediction. An example of hyper-
parameters that is tuned during the training is the num-
ber of trees.

Gradient boosting20 is another boosting algorithm 
which adjusts instance weights at every iteration, by 
fitting new predictors to the residual errors made by 
the preceding one. It uses decision trees as the base 
regression algorithm for training and optimization. In 
this ensemble approach, the nodes in every decision 
tree take a different subset of features for selecting the 
best split. As a result, the individual trees are different, 
therefore, they are able to capture different characteris-
tics from the data. Moreover, each new tree takes into 
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account the errors of the preceding ones. The hyper-
parameter that are optimized include the maximum 
number of estimators, the learning rate, the fraction of 
training samples for fitting the individual base predic-
tors, the maximum tree depth, and the minimum num-
ber of samples required to split an internal node.

XGBoost or “extreme gradient boosting”21 is an im-
proved version of the gradient boosting algorithms with 
the decision tree regression algorithms built sequen-
tially to rectify the previous trees' errors. The model is 
assembled by combining a set of weak decision trees 
iteratively forward with gradient descent optimization. 
XGBoost is also called a regularized boosting tech-
nique which helps to reduce overfitting. It inherently has 
both linear model and the tree learning algorithm. This 
gives the model high predictive power which makes it 
more accurate than the gradient boosting algorithm. 
Examples of hyper-parameters that are adjusted for 
optimal solutions include the number of trees and the 
maximum depth of a tree.

3.1.3  |  Support vector machines

Support vector machines (SVMs)22,23 are another type 
of versatile ML algorithms that could be used for linear 
or nonlinear classification and regression problems. 
The SVM classification algorithm constructs a single 
or multiple optimal hyperplane(s) in a high-dimensional 
space that separates the data into two or multiple 
classes with the maximum-margin. The data points 
closest to the decision surface are called support 
vectors. This characteristic makes the SVM superior 
for classification tasks since it maximizes the margin 
around the separating hyperplane(s). SVM regression 
is a nonparametric technique that fits the data. SVMs 
implement kernels such as linear, polynomial, Gaussian 
radial basis function, sigmoid kernels, and others to 
map input variables to higher dimensional spaces to 
facilitate nonlinear predictive modeling.

3.1.4  |  K-nearest neighbors algorithms

K-nearest neighbors (KNN)24,25 is also a versatile ML 
algorithm that has been used for classification and 
regression. A KNN algorithm is a non-parametric ML 
method with the input consisting of the k closest train-
ing examples in feature space. It works by finding the 
distances between a query and all the examples in 
the data and selecting the specified number examples 
(k) closest to the query. Then the algorithm votes for 
the most frequent label, in the case of classification, 
or the average of the values of k nearest neighbors in 
the case of regression. KNN algorithm is simple and 
easy to implement and does not require developing 
a model or tuning several parameters. However, it is 

computationally expensive as the number of examples 
or independent variables increase.

3.1.5  |  Discriminant analysis algorithms

Linear discriminant analysis26 is one of the simple ML 
algorithms that is frequently used for classification 
problems. It works by creating linear boundaries be-
tween classes, and it is a generalization of Fisher's lin-
ear discriminant to find a linear combination of features 
that separates data samples into two or more classes. 
The algorithm defines the distance of a sample from 
the center of a class and creates a new set of axes 
to place members of the same group closer and move 
the groups farther apart. These new axes are discrimi-
nant axes, or canonical variates, which are linear com-
binations of the original variables. Linear discriminant 
analysis algorithm is easy to implement and interpret 
the results. However, the linear decision boundaries 
may not perfectly separate the classes particularly in 
a high-dimensional setting where there are too many 
parameters. Thus, it requires proper regularization.

3.1.6  |  Artificial neural networks

Artificial neural network (ANN)27 is a type of ML algo-
rithms that are inspired by biological neural networks 
of the human brain. ANN consists of an input layer, a 
single or multiple hidden layers, and an output layer. 
The neurons represent the basic unit of these layers. 
A single neuron has input signals, a linear operation, 
a non-linear operation, called “activation function”, and 
output signals. ANNs are trained for optimal fitting of 
the inputs and outputs for a regression task. For clas-
sification problems, multilayer perceptrons with thresh-
old activation function are usually used to train the 
network. The hyper-parameters that are tuned during 
the training include the number of neurons in a hidden 
layer, the number of hidden layers, the type of activa-
tion function used in each layer, and the learning pa-
rameters weights and biases. ANN performance is not 
significantly affected when few units fail to respond to 
the network. On the other hand, ANNs are argued as 
“black box” models and provide very little insight and 
require a relatively large training dataset.

3.2  |  Deep learning algorithms

Deep learning is a subset of ML algorithms that ap-
plies large-scale hierarchical models with multi-layer 
architectures to generate full representation and learn 
complicated inherent patterns of the data.28 Unlike ML, 
DL automatically extracts features from the input im-
ages, therefore, more features can be considered in 
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the prediction. DL algorithms often surpass the tradi-
tional ML models if well-trained. However, they lack 
the interpretability and they require large data size for 
proper training. The latter problem is solved by train-
ing the model via a transfer learning method.29 In this 
method, a pre-trained DL model on a certain task using 
large-scale data is reused as the starting point for train-
ing another model for a second task using limited train-
ing data. The commonly applied DL models are those 
based on neural networks.

3.2.1  |  Deep neural networks

Deep neural networks (DNNs) are commonly used DL 
models. When a large number of hidden layers is used, 
an ANN model becomes a DNN.30

Fully-connected DNNs are a model in which all neu-
rons in a layer are connected with all neurons in the ad-
jacent layer using pair-specific connections. Thus, this 
full connection approach results in a very large number 
of trainable network parameters. The disadvantage of 
fully connected DNNs is the need for large amount of 
data and computational resources.

Convolutional neural networks (CNNs)31,32 are an-
other type of DNNs that use convolution and pooling 
operations to connect adjacent layers. The convolu-
tional computation convolves a kernel with the preced-
ing layer's image data to produce feature images. The 
output results are then fed to the next layer. Pooling 
operations, such as max-pooling or average-pooling, 
are added after convolution to reduce the number of 
pixels of the feature images. The advantage of CNNs 
over fully connected DNNs is that they typically require 
considerably less network parameters.

4  |   APPLICATIONS OF ML/DL FOR 
PATIENT- SPECIFIC IMRT/ VMAT QA

Recently, high attention has been given to implementa-
tion of ML and DL in medical physics fields, particularly 
medical imaging and radiation therapy. This interest 
led researchers to study various ML and DL models 
for patient-specific QA outcome predictions for IMRT 
and VMAT. In this section, we discuss different ML/DL 
models and compare the used data sizes, the predic-
tive input features, the QA prediction approaches, the 
model performances, and their clinical applicability.

4.1  |  ML/DL model for IMRT QA

Several ML and DL algorithms have been applied for 
patient-specific IMRT QA outcome predictions. Out 
11 studies found in our literature search, five studies 
directly predicted the gamma passing rate results for 

IMRT patient-specific QA. The remaining six studies 
focused on using ML/DL algorithms for detecting and 
identifying errors for IMRT patient-specific QA. A sum-
mary of ML and DL algorithms, dataset size used for 
training and development of the model, anatomic treat-
ment sites involved, type of QA outcome predictions, 
number of extracted input features, and the key findings 
for patient-specific IMRT QA are presented in Table 1.

Valdes et al.33 built a Poisson regression ML model 
trained on complexity features of IMRT plans to predict 
the gamma passing rate results at 3%/3 criteria mea-
sured with two-dimensional (2D) array detector. The 
results showed that the gamma passing rate results 
could be predicted within 3% accuracy on a single in-
stitution dataset. The same research group34 extended 
their work to examine the generalizability of their previ-
ously developed Poisson regression on another insti-
tution dataset with patient-specific QA measurement 
performed using EPID. The results revealed the gener-
alizability of the Poisson regression with gamma pass-
ing rate prediction within 3.5% accuracy. Lam et al.38 
assessed tree-based (AdaBoost, random forest, and 
XGBoost) ML models for gamma passing predictions 
with patient-specific QA measurements performed 
using EPID. Random forest and AdaBoost models 
exhibited the best performance, with gamma passing 
rate prediction error less than 4% for 2%/2 mm gamma 
criteria.

Due to its remarkable performance in different fields, 
DL has also been applied for IMRT/VMAT QA outcome 
predictions. Tomori et al.35 developed a CNN model 
trained from scratch on features extracted form sagittal 
dose distributions for gamma passing rate predictions 
with patient-specific QA measurements performed 
using radiochromic film. The results have shown pre-
diction errors within 1.10% at 3%/3 mm gamma crite-
ria. Finally, Interian et al.36 built an ensemble DL model 
of pre-trained CNNs via transfer learning (VGG-16 
ImageNet model) for gamma passing rate predictions 
using radiomics features derived from fluence maps 
with measurements done using a 2D array detector. 
The model achieved prediction performance compara-
ble to that obtained with Poisson regression developed 
by Valdes et al.33 for 3%/3 mm gamma criteria.

Wootton et al.37 used a logistic regression ML model to 
detect random and systematic multileaf collimator (MLC) 
positional errors using radiomics features extracted from 
gamma maps measured using EPID. The model output is 
classified in three classes: (1) free-error for gamma pass-
ing rate >95%; (2) random MLC positional error with an 
offset of each leaf by a distance between 0 and 2 mm; 
and (3) systematic MLC positional error with offset of all 
leaves by 2 mm in the same direction. The reported re-
sults showed a prediction accuracy with an area under 
the receiver operating characteristics curve (AUC) of 
0.76 for random errors, 0.72 for systematic errors, and an 
overall AUC of 0.74 in detecting the three classes. This 
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accuracy for detecting the MLC positional errors in IMRT 
patient-specific QA was higher compared to the conven-
tional gamma analysis.

In a similar study, Nyflot et al.39 evaluated a linear 
SVM, an ANN, a decision tree, and a KNN ML models 
trained on radiomics features in combination with CNN 
features derived from gamma maps to identify the er-
rors for patient-specific IMRT QA measurement using 
EPID. The SVM model achieved the best performance 
in predicting the three error classes with an accuracy of 
0.64. Ma et al.40 assessed different ML models includ-
ing linear discriminant analysis, linear SVM, radial basis 
function SVM, and random forest trained on structural 
similarity sub-index maps that were calculated from 
portal dose images to predict the MLC positional errors 

and machine output variations in IMRT delivery. The 
authors simulated four types of machine errors (1) ma-
chine output or monitor unit (MU) variations; (2) random 
MLC errors; (3) same-directional MLC shifts; and (4) 
opposite-directional MLC shifts. The results indicated 
that linear-SVM model achieved the best performance 
with an AUC of 0.86 in predicting the four error types, 
followed by linear discriminant analysis with AUC of 
0.83, then random forest with an AUC of 0.80.

Sakai et al.42 studied decision tree, KNN, SVM, lo-
gistic regression, and random forest ML models to 
detect MLC positional errors using radiomics features 
derived from fluence maps measured with EPID. Four 
types of error classifications were used: (1) error-free 
plan, in which the un-modified beams were used; (2) 

TA B L E  1   Summary of the studies that applied ML and DL models for IMRT QA outcome predictions.

Author/Year Dataset size
Anatomic 
site Algorithm

QA outcome 
prediction

No. of input 
features Key results

Valdes et al. 
201633

498 Plans Multiple Poisson 
regression

Gamma 
passing rate

78 Errors within 3% at 
3%/3 mm criteria

Valdes et al. 
201734

637 Plans Multiple Poisson 
regression

Gamma 
passing rate

90 Errors within 3.5% at 
3%/3 mm criteria

Tomori et al. 
201835

60 Plans Prostate CNN Gamma 
passing rate

– Errors within 1.10% at 
3%/3 mm criteria

Interian et al. 
201836

498 Plans Multiple CNN Gamma 
passing rate

– MAE = 0.70% at 
3%/3 mm criteria

Wootton et al. 
201837

186 Beams (558 
images)

Multiple Logistic 
regression

Errors detection 17 3 Classes: AUC = 0.74

Lam et al. 201938 1497 Beams Multiple Tree-based 
algorithms

Gamma 
passing rate

31 Errors within 3% for 
98% of predictions 
at 2%/2 mm criteria

Nyflot et al. 
201939

186 Beams (558 
images)

Multiple SVM, ANN, 
Decision 
Tree, and 
KNN

Errors detection 145 3 Classes: 
Accuracy = 64.3% 
(SVM)

Ma et al. 202040 180 Beams 
(1620 
images)

Multiple Linear 
discriminant 
analysis, 
SVMs, & 
random 
forest

Errors detection 276 4 Classes: AUC = 0.86 
(linear SVM)

Osman et al. 
202041

10 Plans 
(360,800 
data points)

Multiple ANN Errors detection 14 RMSE = 0.0097 mm

Sakai et al 202142 38 Beams (152 
errors plans)

Multiple KNN, SVM, 
Logistic 
Regression, 
and Tree-
based 
Algorithms.

Errors detection 837 4 Classes: AUC = 1.00 
for leaf transmission 
factor error, 1.00 for 
dosimetric leaf gap 
error, & 0.80 for leaf 
positional error vs. 
error-free (SVM)

Chuang et al. 
202143

267 IMRT & 
VMAT Plans 
(10,584,120 
data points)

Multiple Linear 
regression 
and tree-
based 
algorithms

Errors detection 7 RMSE = 0.0085 mm 
(boosted tree 
model)

Abbreviations: ANN, artificial neural network; AUC, area under the receiver operating characteristics curve; CNN, convolutional neural network; KNN,  
K-nearest neighbors; MAE, mean absolute error; RMSE, root mean squared error; SVM, support vector machine.
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transmission factor error plan, in which the value of the 
MLC transmission factor was altered by up to 20% of 
the original value of 0.01; (3) dosimetric leaf gap error 
plan, in which the value of the MLC dosimetric leaf 
gap was altered by up to 20% of the original value of 
0.08 mm; and (4) MLC positional error, in which a leaf 
of one side-bank was opened by up to 1.0 mm from the 
original position. The SVM model achieved the beast 
performance with AUC of 1.00, 1.00, and 0.80 in clas-
sifying the MLC transmission factor error, dosimetric 
leaf gap error, and MLC positional error respectively. 
Osman et al.41 built an ANN model to predict the MLC 
positional deviations during the dynamic IMRT treat-
ment delivery using log file data. Their model revealed 
high prediction accuracy for all individual MLCs with a 
maximum root MSE (RMSE) of 0.0097  mm between 
the predicted and the actual leaf positions. Chuang 
et al.43 studied various regression ML models includ-
ing simple and multivariate linear regressions, decision 
tree, and ensemble method (boosted tree and bagged 
tree model) using trajectory log files data to predict thee 
MLC positional errors for IMRT and VMAT treatment. 

The results showed that the boosted tree model had 
the best performance with RMSE of 0.0085 mm.

4.2  |  ML/DL model for VMAT

Applications of ML and DL algorithms for patient-
specific QA outcome predictions have also been ex-
tended to VMAT. A total of nine studies were found in our 
literature search. Six studies focused on predicting the 
gamma passing rate results for VMAT patient-specific 
QA. The remaining three studies focused on errors de-
tection and identification for VMAT patient-specific QA. 
A summary of ML and DL algorithms, dataset size used 
for training and development the model, anatomic treat-
ment sites involved, type of QA outcome predictions, 
number extracted input features, and the key findings 
for patient-specific VMAT QA are presented in Table 2.

Li et al.45 built a Poisson regression model with 
LASSO regularization to predict the gamma passing 
rates from complexity features of VMAT plans for patient-
specific QA measurements using a 2D array detector. 

TA B L E  2   Summary of the studies that applied ML and DL models for VMAT QA outcome predictions.

Author/Year Dataset size
Anatomic 
site Algorithm

QA 
outcome 
prediction

No. of 
input 
features Key results

Carlson et al. 
201644

74 Plans 
(3,161,280 
data points)

Multiple Linear regression, 
random forest, and 
cubist

Errors 
detection

6 RMSE = 0.193 mm 
(linear 
regression)

Li et al. 201945 303 Plans Multiple Poisson regression Gamma 
passing 
rate

54 Errors within 3.5% 
for 90% of 
predictions at 
3%/3 mm criteria

Ono et al. 201946 600 Plans Multiple Regression tree analysis, 
multiple regression 
analysis, and ANN

Gamma 
passing 
rate

28 Mean prediction 
error = –0.2% 
(ANN) at 
3%/3 mm criteria

Granville et al. 
201947

1620 Beams Multiple SVM Errors 
detection

60 3 Classes: 
AUC = 0.88 
(macro-averaged)

Wall and Fontenot 
202048

500 Plans Multiple Linear regressions, 
SVM, tree-based 
algorithms, and ANN

Gamma 
passing 
rate

241 MAE = 3.75% (SVM) 
at 3%/3 mm 
criteria.

Hirashima et al. 
202049

1255 Plans Multiple Tree-based algorithms Gamma 
passing 
rate

875 MAE = 4.2% & 
AUC = 0.83 at 
2%/2 mm criteria

Tomori et al. 
202050

147 Plans Multiple CNN Gamma 
passing 
rate

– MAE = 0.63% at 
3%/3 mm criteria

Wang et al. 202051 576 Plans Multiple DNN Gamma 
passing 
rate

54 Absolute prediction 
error = 1.76% at 
3%/3 mm criteria

Kimura et al. 
202052

161 Beams Prostate CNN Errors 
detection

145 3 Classes: 
Accuracy = 0.94

Abbreviations: ANN, artificial neural network; AUC, area under the receiver operating characteristics curve; CNN, convolutional neural network; DNN, deep 
neural network; MAE, mean absolute error; SVM, support vector machine.
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The model achieved a prediction accuracy within 3.5% 
for 90% of the cases with 3%/3 mm gamma criteria. Ono 
et al.46 evaluated various ML models including regres-
sion tree analysis, multiple regression analysis, and ANN 
for gamma passing rate predictions using plan complex-
ity features for patient-specific QA measured using 3D 
array detector. Among the tested models on the same 
dataset, ANN had achieved the best prediction perfor-
mance with a mean prediction error of −0.2%, followed 
by multiple regression analysis (mean prediction error 
of 0.5%), and lastly regression tree analysis (mean pre-
diction error of 0.6%). Wall and Fontenot48 also studied 
several ML models including linear, SVMs, tree-based 
(decision tree, random forest, AdaBoost, and gradient 
boosting), and ANN trained on plan complexity features 
for predicting VMAT QA gamma passing rate measured 
using a 2D array detector. The best performance was 
achieved by the SVM with a Mean Absolute Error (MAE) 
of 3.85%, followed by the gradient boosting model with a 
MAE of 3.94%, then random forest and AdaBoost models 
both with a MAE values <4%. Hirashima et al.49 studied 
tree-based models using XGBoost for gamma passing 
rate prediction on VMAT plans trained on mixture of plan 
complexity and radiomics features with patient-specific 
QA measured using 3D array detector. The models ob-
tained a MAE of 4.2% in predicting the gamma passing 
rate at 2%/2 mm criteria. Tomori et al.50 examined a CNN 
model trained on features derived from dose distribution 
images to predict the gamma passing rates for patient-
specific QA measurements using a 2D array detector. 
The model achieved a prediction performance of MAE of 
0.63%. Wang et al.51 studied a DNN model for gamma 
passing rate predictions using complexity features for 
VMAT QA measurements using 3D array detector. The 
system performance was better than a Poisson regres-
sion model tested on the same data set (mean prediction 
error of 1.76% vs. 2.10% at 3%/3 mm gamma criteria).

Granville et al.47 developed an SVM model trained 
on complexity features for classifying the VMAT patient-
specific QA measurements performed with 3D array 
detector. They used three error classification groups 
based on the median difference between the measured 
and calculated doses for each plan: (1) larger than 1%; 
(2) smaller than –1%; and (3) between −1% and 1%. The 
results showed that the prediction model achieved a 
macro-average AUC of 0.88. This shows that it is pos-
sible to use ML models to classify the median dose de-
viations that would be measured for a particular VMAT 
patient-specific QA. Kimura et al.52 studied a CNN 
model for the MLC positional error prediction by using 
features derived from dose difference maps with QA 
measurement performed using 3D detector device. The 
results showed that CNN model are capable of predict-
ing the error types of the plans as error-free, systematic 
error, or random error with an overall accuracy of 0.944. 
Carlson et al.44 inspected single and multiple linear re-
gressions, random forest, and cubist to predict the MLC 

positional errors during VMAT delivery using log files 
data (leaf motion parameters) from multiple institutions. 
The study results showed that MLC positional errors 
are predictable with a maximum RMSE of 0.196  mm 
(cubist), 0.193  mm (linear regression), and 0.200  mm 
(random forest). The gamma passing rate results that 
were calculated by incorporating the predicted MLC po-
sitional deviations during the head and neck VMAT plan 
optimization improved with an average of 4.17%.

4.3  |  Comparison based on data set size

The data set size that is required to train ML-based and 
DL-based models for accurate prediction varies greatly, 
with DL models generally requiring larger dataset size. 
The large variations in the data set sizes (303–1620 
data samples, Tables 1 and 2) that were used for train-
ing the different ML models make the comparison of 
the reviewed studies difficult. A small dataset size could 
lead to imperfect prediction results and wrong conclu-
sions due to the high likelihood of model overfitting. 
Valdes et al.33 reported that about 200 data samples 
are required to train an ML-based predictive model suc-
cessfully for virtual patient-specific QA for one Linac. 
If one model is intended to provide patient-specific QA 
predictions for different Linacs at the same institution, 
more plans would be needed due to a higher variance of 
the data. As a result, most ML models trained with lower 
data samples need to be validated on a large-scale data-
set. Regardless of the prediction performance, ML and 
DL models that are trained on large datasets38,40,47,49 
provide more reliable results. The results reported by 
Carlson et al.,44 Osman et al.,41 and Chuang et al.43 
used large data sets, ranging from hundred-thousand to 
millions data samples, for training various ML models. 
Compared to ML, a DL model needs larger datasets to 
properly train and to optimize its hyper-parameters.53 In 
the reviewed studies, some researchers used a data-
set of relatively low number of samples (60–576 data 
samples, shown in Tables 1 and 2). This is not sufficient 
for proper training of DL models and is more likely to 
induce model overfitting. One widely used approach to 
overcome the problem of large-scale data size require-
ment in DL is the transfer learning technique29 which 
allows training a DL model with limited amount of data. 
However, this approach was used only by Interian 
et al.36 in training CNNs on a dataset of 498 IMRT plans 
to predict the gamma passing rate results. More stud-
ies should be undertaken using transfer learning or data 
augmentation to validate their performance and ensure 
that there is no overfitting problem.

It is very difficult for a single institution to collect a 
large dataset of several thousand IMRT or VMAT plans 
with their QA data for model training. Balance of data 
samples within the training dataset is important to avoid 
bias of the model in the prediction results. If the training 
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dataset contains only few types of treatment sites the 
dataset will be biased from the point of anatomical tar-
get shape. Preparing high-quality data for building an 
accurate prediction model requires a dedicated super-
vised human effort to collect large data samples from 
the radiation oncology databases. In addition, major 
effort is required for labeling the data and handling the 
missing data. Therefore, multi-institutional efforts to 
establish a large dataset or sharing data between insti-
tutions would be useful and effective to overcome the 
limited data availability. This would allow the compari-
son of the performance of the developed models on a 
unified dataset. Making the datasets publicly available 
would also be beneficial to researchers, in particular in 
developing DL-based models which require large-scale 
dataset from multiple institutions.

4.4  |  Comparison based on the 
predictive features

Various types of feature have been used for training the 
ML/DL models to predict the patient-specific QA out-
come results. These types of features include complex-
ity metrics derived from the plans and machine-related 
parameters, radiomics analysis and CNN-features 
derived from images (e.g. dose/fluence maps), or the 
combination of these features. In order to eliminate 
unimportant features and reduce the complexity of the 
model, an adequate feature selection method should 
be implemented to identify and use the most important 
ones. This helps to simplify interpretation and visualiza-
tion of the data, and improve the overall performance 
and robustness of the predictive model.54

Several studies applied features selection tech-
niques to identify only predictive features hence mini-
mizing the likelihood of model overfitting. The feature 
selection methods that were implemented include 
LASSO algorithm,33,34 SVM recursive feature elimi-
nation algorithm,40,47 forests of extremely randomized 
decision trees “Extra-Trees” algorithm,48 mutual infor-
mation algorithm,48 DL dropout technique,35,40,50,52 lin-
ear regression algorithm,48 Wilcoxon rank-sum test,37 
random forest,42,49 Pearson's correlation coefficient,46 
and principal component analysis algorithm.39,45 It is 
important to note that different feature selection meth-
ods applied to the same dataset may result in select-
ing different features. A summary of QA measurement 
device, feature selection methods, and the important 
predicative parameters is presented in Table 3.

4.4.1  |  Complexity features

Plan complexity features are defined as quantitative 
metrics for the MLCs characteristics such as shape, 
aperture size, travel leaf motion, speed, and complexity 

score.55 It has been reported in the literature that com-
plexity features such as aperture area, leaf gaps, and 
jaw positions are predictive of delivery accuracy.55,56 
Thus, these complexity metrics with other machine-
related parameters (e.g. machine type and beam en-
ergy) and clinical parameters (e.g. treatment site) can 
be used as model input features. Various ML and 
DL models were trained to map the plan complex-
ity features alone or with other dosimetric features
.33–35,38,41,43–48,51 Complexity metrics can be related 
to the QA outcome results, offering a troubleshoot-
ing method in case a plan fails the QA. Complexity 
metrics identified as important features include MU 
value,34,35,38,45,47,48 beam irregularity factor,34,38,45,48 
aperture size/area,34,38,45,46,48,49 and others (Table 3).

The dependency of prediction models on specific 
treatment machine, the QA device (2D/3D diode/ion 
chamber array, film, or EPID), the anatomic treatment 
site, the beam energy, and the dose calculation algo-
rithm (e.g. Acuros XB, CCC, AAA, etc.) were investi-
gated. The effect of different characteristics of the 
measurement devices from different manufactures on 
the QA outcome prediction model performance was as-
sessed by Valdes et al..34 The authors trained a Poisson 
regression model on complexity features for IMRT QA 
predictions of gamma passing rate with measurements 
performed using a 2D diode array. Then, to generalize 
their model, they tested it on another institution data-
set with QA measurements performed using EPID. The 
results indicated that ML/DL models trained on a sin-
gle institution dataset may be generally applicable to 
other clinics, regardless of the differences in Treatment 
Planning Systems (TPSs), Linacs, and measurement 
devices. Similarly, treatment site dependency was eval-
uated45,48,49 by training an ML/DL model on a dataset 
consisting of different cancer sites. Wall and Fontenot48 
and Hirashima et al.49 reported that the treatment site 
has dependency with the gamma passing rate predic-
tions. As results, specific models should be built for 
different anatomic treatment sites. Energy dependency 
was also studied by Valdes et al.,33 and it was found to 
be an important feature affecting the model predictive 
performance. This is because different beam energies 
have different dose profile characteristics. For dosim-
etrically matched Linacs (e.g. dosimetric leaf gap and 
MLC leakage), variations are lower and a prediction 
model can be trained on a dataset from the matched 
Linacs.38

4.4.2  |  Radiomics analysis and 
CNN features

Feature-engineered radiomics method involves 
hand-crafting feature extractions and requires man-
ual feature engineering. Radiomics features capture 
characteristic patterns in the imaging data, including 
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TA B L E  3   Summary of features used as inputs to ML/DL models for IMRT/VMAT QA outcome predictions.

Input features QA technique
Feature selection 
technique Important features Reference

Plan complexity 
features

2D array 
detector

LASSO 4 features: MU factor, aperture score, irregularity factor, 
and fraction of the plan delivered at the corners of a 
40 × 40 cm2 field

Valdes et al.33

2D array 
detector and 
EPID

LASSO 7 features: irradiated area outline, Jaw position, fraction 
of the area receiving dose from penumbra, Duty cycle, 
irregularity factor, and others

Valdes et al.34

Film dosimetry Dropout technique 4 features: MU values, the PTV volume, the rectum volume, 
and the overlapping region volume

Tomori et al.35

3D array 
detector

Pearson's correlation 
coefficient

28 features: plan complexity parameters (n = 18), machine 
type (n = 4), and photon beam energy (n = 6).

Ono et al.46

3D array 
detector

SVM recursive 
feature 
elimination

30 features: Linac output, MU factor, total number of control 
points, and others

Granville et al.47

2D array 
detector

Manually 54 features: MU value, union aperture area, plan area/
irregularity/modulation, average leaf gap/dose rate/travel 
distance, modulation index of leaf speed/acceleration, and 
others

Li et al.45

EPID Manually 10 features: modulation complexity score, beam irregularity, 
MUs/control point in a beam, maximum of x–y jaw 
positions, edge metric, and others

Lam et al.38

3D array 
detector

Manually 54 features: plan modulation-complexity and 
delivery-characteristics

Wang et al.51

2D array 
detector

Extra-trees, mutual 
information, and 
linear regression

100 features: aperture score, MU factor, edge metric, leaf gap/
travel/motion, plan irregularity, plan modulation, and others

Wall and 
Fontenot48

2D array 
detector

Manually 6 features: leaf position, instantaneous velocity, movement 
away/toward the center, leaf movement status, the control 
point number, and the leaf bank

Carlson et al.44

EPID Manually 14 features: leaf previous/current/next positions, dose fraction, 
gantry angle, leaf speed/acceleration, leaf gap, leaf 
movement status, and others

Osman et al.41

EPID Manually 7 features: leaf velocity, acceleration, control point, dose 
rate, gravity vector, gantry velocity (VMAT), and gantry 
acceleration (VMAT)

Chuang et al.43

Radiomics 
features

EPID Wilcoxon rank-sum 
Test

13 features: radiomics features (size zone metric) and intensity 
histogram metrics derived from gamma map images

Wootton et al.37

2D array 
detector

Dropout technique CNN features derived from fluence map images Interian et al.36

2D array 
detector

Dropout technique CNN features derived from dose distribution images Tomori et al.50

EPID SVM recursive 
feature 
elimination

11 features: radiomics features e.g. contrast, uniformity, zone 
entropy, and others

Ma et al.40

3D array 
detector

Dropout technique CNN features derived from dose difference or gamma map 
images

Kimura et al.52

EPID Random forest 
regression

11 features: radiomics intensity histogram features and the 
texture features derived from fluence difference map 
images

Sakai et al 42

Combined 
features

EPID Principal component 
analysis, and 
triplet networks

81 features: 17 texture features (hand-crafted) from intensity 
histograms and size zone matrices) and 64 CNN features 
derived from gamma map images

Nyflot et al.39

3D array 
detector

Random forest 502 features: plan complexity features (e.g. aperture area/
perimeter/irregularity, and others), radiomics features 
(shape, statistical information, and texture features), and 
clinical parameters (treatment site/machine, beam energy, 
and dose calculation algorithm)

Hirashima 
et al.49

Abbreviations: CNN, convolutional neural network; EPID, electronic portal imaging device; LASSO, Least Absolute Shrinkage and Selection Operator; MU, 
monitor unit; PTV, planning target volume; SVM, support vector machine; VMAT, volumetric-arc radiation therapy.
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shape (e.g. sphericity), first-order, second-order, and 
higher-order statistical determinants and image-based 
(e.g. fractals) features. Limited studies used radiomics 
texture features extracted from dose/fluence distribu-
tion40,42,49 or gamma map images37,39 to train an ML/
DL model for patient-specific QA outcome predictions. 
Features extracted from dose difference maps42 were 
found to be more predictive and provide more accurate 
MLC positional errors than those derived from gamma 
maps.37 In contrast with complexity metrics, radiom-
ics features extracted from dose/fluence distributions 
or gamma maps have a limitation which is the lack of 
direct relation between the features and the QA results. 
Radiomics features that were found to be significantly 
predictive for IMRT/VMAT QA outcome include gray 
level co-occurrence matrix37,49 (Table 3).

Non-feature-engineered radiomics methods, in con-
trast with the hand-crafted radiomics features based 
approach, involves automatic feature extractions from 
the input images using DL without human expert su-
pervision. This auto-extraction is better and more 
flexible than the tedious process in the hand-crafted 
method. DL models perform the learning of data with 
multiple levels of abstraction. For instance, the front-
end layers in the CNN encode low-level features in the 
image common to most computer vision applications, 
whereas the subsequent layers learn high-level fea-
tures which are more application-specific. Few stud-
ies36,39,50,52 implemented feature-less approach in 
training ML/DL models for patient-specific IMRT/VMAT 
QA outcome predictions. CNN features extracted from 
dose distribution,50 dose difference,52 fluence map,36 
and gamma map images39,52 were applied to train vari-
ous ML/DL models. Results have shown that using the 
feature-less approach for training the models provide 
comparable or higher prediction performance com-
pared to using radiomics features derived by the hand-
crafting approach39 or complexity metrics.36 Although 
feature-less approach embedded in DL models has an 
advantage of providing more freedom and flexibility in 
feature extraction, it is challenging to interpret the ex-
tracted features.

4.4.3  |  Combined (hybrid) features

Training a model using hybrid features such as plan 
complexity metrics, radiomics features, and clinical 
features for IMRT/VMAT QA predictions is expected to 
provide improved accuracy compared to using only one 
type of features. Combining different types of features 
provides comprehensive information that could improve 
the predictions. Two studies39,49 have investigated 
the potential of using different types of features for 
IMRT/VMAT QA outcome predictions (Table 3). CNN-
extracted features combined with radiomic features de-
rived from gamma map images was used by39 to train 

different ML model to predict MLC errors during IMRT 
delivery. This study reported that ML models trained 
with CNN-features exhibited higher performance than 
models trained on radiomics features. This is due to the 
fact that feature-less method allows extracting higher 
number of features compared to hand-crafted ap-
proach. Hence, more patterns in the input images are 
recognized and better prediction accuracy is achieved. 
A mixture of complexity metrics, radiomics features, 
and clinical parameters were used by Hirashima et al.49 
to train tree-based ML models for VMAT QA gamma 
passing rate outcome predations. This study showed 
that using a combined set of features improves the 
model prediction accuracy.

4.5  |  Comparison based on the QA 
outcome prediction approach

Patient-specific QA outcome predictions with ML/
DL in IMRT and VMAT could be categorized into two 
approaches. The first one deals with directly predict-
ing the gamma passing rate results. The second ap-
proach focuses on detecting errors that are associated 
with the delivery and cannot be discovered with the 
gamma passing rate metric. A block diagram show-
ing the workflow of ML/DL models implementation in 
predicting patient-specific QA of IMRT/VMAT delivery 
is presented in Figure 2. The workflow can be gener-
ally described as follows: (1) acquire the IMRT/VMAT 
plans and QA measurement data; (2) derive and ex-
tract the features and parameters from the data then 
select the most predictive ones; (3) train and validate a 
ML/DL model to learn mapping the selected input pa-
rameters and features to gamma passing rate or errors 
detection; and (4) use the trained model to predict the 
gamma passing rate results or identify errors during 
IMRT/VMAT delivery.

4.5.1  |  Predicting gamma passing 
rate results

Directly predicting the gamma passing rate results 
with ML/DL models for patient-specific IMRT/VMAT 
QA were studied by numerous investigators. Gamma 
analysis is widely accepted as a clinical metric to eval-
uate the dose distributions, and a passed/failed IMRT/
VMAT plan is determined according to the value of the 
gamma passing rate. It provides quantitative analysis 
at the pixel level and gives information about the num-
ber of pixels that passed the gamma analysis criterion. 
IMRT or VMAT plan passes the QA if the gamma pass-
ing rate is ≥95% at global 3%/3  mm criteria (action 
needed if the gamma passing rate <90%).1,57 The pre-
diction of the gamma passing rate with ML/DL models 
can be treated as a regression task to estimate the 
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percentage of the evaluated dose (or fluence) points 
that pass the gamma criteria (e.g. 3%/3mm, 2%/3mm, 
2%/2mm, etc.). Based on this predicted value, the plan 
is determined to be passing or failing the QA according 
to an acceptable threshold (e.g. 95% or 90%) which 
depends on the applied gamma criteria. Regression 
models have the advantage of providing more quanti-
tative information. Directly predicting the QA outcome 
(e.g. passing or failing results) can also be treated as a 
classification task.

Eleven studies have implemented ML/DL models 
for IMRT/VMAT QA gamma passing rate predictions 
(Tables  1 and 2) including Poisson regression,33,34,45 
XGBoost,38,49 AdaBoost,38,48 random forest,38,48 re-
gression tree analysis,46 multiple regression analy-
sis,48 and ANN,46,48, SVMs,48 decision tree,48 gradient 
boosting,48 CNNs,35,36,50 and DNNs.51 All the models 
were trained on datasets consisting of multiple treat-
ment sites, except the study by Tomori et al.35 where 
the dataset was site-specific (prostate). In these stud-
ies, three measurement techniques were routinely 
used for IMRT/VMAT QA: portal dosimetry using EPID, 
2D/3D array detectors, and film dosimetry using EBT 
Gafchromic film as shown in Table 3. ML and DL mod-
els applied to map the input features to gamma passing 
rates for patient-specific QA in IMRT and VMAT have 
shown the potential for accurate predictions. These 
predictive models can help guide the plan optimization 

process to avoid solutions which are likely to result in 
lower gamma passing rate during QA.

4.5.2  |  Predicting errors during delivery

Although the gamma analysis is often used to deter-
mine if an IMRT/VMAT plan can be accurately de-
livered, it has some limitations as well. One of these 
limitations is that it does not reveal clinically significant 
errors such as random MLC errors.6,58,59 Another limi-
tation is that it is often difficult for clinical physicists to 
identify and rectify the cause(s) of errors.6 This is be-
cause patient-specific IMRT/VMAT QA measurement 
can be affected by several potential sources of error 
including dose calculation, data transfer, Linac perfor-
mance, device setup, and dosimeter response.3 Some 
studies presented potential solutions by applying ML/
DL for detecting and identifying these errors for more 
effective patient-specific QA. Error detection and iden-
tification with the ML/DL models is a classification task 
and has the advantages of providing a quick, unam-
biguous, and actionable result. However, quantifying 
the error (e.g. MLC positional errors) is a regression 
problem to determine the value of the deviation.

As presented in Tables  1 and 2, nine studies in-
vestigated the capability of ML/DL models for errors 
detection. ML and DL algorithms for this task include 

F I G U R E  2   A typical flow diagram of patient-specific intensity modulated radiation therapy/volumetric-arc radiation therapy (IMRT/
VMAT) quality assurance (QA). (Top) current clinically adopted QA based-measurement approach, (Bottom) machine learning/deep 
learning (ML/DL)-based approach for predicting the gamma passing rate results and detecting or identifying the types of QA errors for 
failing plans
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logistic regression,37,42 linear regression,43,44 random 
forest,40,42,44 cubist,44 SVMs,39,40,42,47 ANN,39,41 de-
cision tree,39,42,43 KNN,39,42 discriminant analysis,40 
CNN,52 and ensemble of tree-based (bagged and 
boosted).43 Detectability of error category such as 
free of error, random MLC error, systematic MLC error, 
transmission factor error, dosimetric leaf gap error, or 
MU/machine output variations using ML/DL models 
were investigated.37,39,40,42,47,52 Three studies41,43,44 in 
the literature focused on utilizing the ML algorithms to 
predict the individual leaves positional deviations using 
the log file data. These predicted positional deviations 
of all leaves are then incorporated into the TPS to be 
taken into account during the plan optimization process. 
This procedure can significantly help in enhancing the 
gamma passing rates results of patient-specific QA.

The reviewed studies for errors detection and identi-
fication models have shown that MLC positional errors, 
MLC modeling parameters, and MU/machine output 
variations could be predicted with ML/DL models. 
Extending the predicted types of errors to include other 
errors such as setup errors, detector calibration errors, 
beam modeling errors, and dose rate errors would 
provide the physicists valuable information to mitigate 
these errors.

4.6  |  Comparison based on 
models validation

Model validation is very important step after the training 
of ML and DL models, where the model performance is 
tested on a validation dataset. The validation is required 
for the reliability of the developed prediction models. 
Reporting the model performance on a dataset that 
was not seen by the model during the training warrants 
the model accuracy and applicability to real-world data.

In this review, model validation was performed using 
the k-fold cross-validation33,35,36,38,40,42,45,47–52 and the 
hold-out validation37,39,41,43,44,46 techniques. In k-fold 
cross-validation, the dataset is equally partitioned into 
k subparts or folds. Of the k-folds or groups, for each 
iteration, one group is selected as validation data, and 
the remaining (k − 1) groups are selected as training 
data. The process is repeated for k times until each 
group is treated as validation and remaining as train-
ing data. The cross-validation technique could be very 
useful when there is not enough data, hence the avail-
able data are randomly divided into a development set 
(training and cross-validation) and a testing set. In the 
other hand, the hold-out validation technique involves 
separating part of the data as a subset for indepen-
dent validation. Some models37,39,43,46 were trained on 
a training set and their performances were validated 
on a testing set. In some other studies,41,44 the dataset 
was into three separate sub-sets for training, validation 
(fine-tune the model), and testing. In one study,34 the 

model validation was performed on a test set from an-
other institution that has different data characteristics 
from the training dataset. This validation technique is 
suitable for large data size and reduces the model bias 
and dependence on the training data.

4.7  |  Comparison based on models 
performance

Our review shows that ML and DL models have dem-
onstrated a high degree of prediction accuracy for 
patient-specific QA in IMRT and VMAT. There are 
large differences in model performances. Model per-
formance may be limited by characteristics of the 
underlying data, particularly the unique and specific 
combination of technologies and clinical parameters 
used to generate treatment plans and perform QA. 
Each model was trained on a different dataset includ-
ing single institution dataset, multi-institution dataset, 
single treatment site, multiple sites, different measure-
ment devices, different Linacs, etc. Hence, the mod-
els give different prediction results. These variations in 
the type of dataset make the direct comparison of the 
performance of these models difficult. However, some 
comparisons could still be made to provide some quan-
titative and qualitative information.

The accuracies achieved by the ML/DL models for 
the prediction of gamma passing rate results have 
shown a prediction accuracy within 3%. These in-
cluded Poisson regression with 3.0% error,33 AdaBoost 
with 3.0% errors,38 random forest with 3.0% errors,38 
DNN with 1.8% mean prediction error,51 CNN with 
1.1% error,35 ANN with less than 1.0% mean prediction 
error,46 regression tree analysis with less than 1.0% 
mean prediction errors,46 and multiple regression anal-
ysis with less than 1.0% mean prediction error.46 Here, 
we emphasize on reporting multiple evaluation metrics 
for each developed model so that meaningful compar-
ison between models can be performed. When a DL 
and an ML model were evaluated on the same dataset, 
the DNN model outperformed Poisson regression ML 
model in gamma passing rate predictions with absolute 
prediction error of 1.8% versus 2.1%.51 Similarly, when 
various ML models were evaluated on the same data-
set, models that have shown the highest performance 
regardless of their prediction accuracy are regression 
tree analysis,46 AdaBoost and random forest,38 and 
SVM.48 As demonstrated from the analyzed results, 
prediction accuracy within 3% can be achieved for 
IMRT/VMAT patient-specific QA gamma passing rate 
results. Most of the reported results in the literature 
were for QA data analyzed with 3%/3mm gamma cri-
teria which is not stringent. More stringent gamma cri-
teria such as 2%/2 mm was found to be more sensitive 
and exhibited dramatically improved clinically relevant 
errors detection.6 However, large-scale QA dataset 
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with this gamma criteria is not available currently, and 
the very limited available dataset had a high inherent 
noise for accurate modeling.34,35

Machine learning/deep learning models detection 
of different types of errors for IMRT/VMAT QA were 
evaluated. Deep learning has shown the potential for 
accurate error detection for patient-specific QA.52 It 
was not surprising that the CNN model achieves the 
highest performance in this classification task among 
all reported models with an overall accuracy of 0.94 
in predicting three classes of MLCs positioning errors 
(error-free, random, and systematic).52 The CNNs excel 
at tasks involving analysis of images such as gamma or 
fluence/dose maps. This result also indicates that fea-
tures derived from dose difference map directly reflect 
the MLC positional errors. However, this high predic-
tion accuracy of DL models is compromised with low 
model interpretability. In predicting every single error 
such as error-free versus MLC error, error-free versus 
dosimetric leaf gap error, the SVM ML model achieved 
the best performance.42 Various studies39,40,42 showed 
the superior performance of SVM models for errors de-
tection when evaluated with different ML models on the 
same dataset. The reported results show that ML/DL 
has the potential to improve error detection and pro-
vide decision support for classification of root causes 
of QA failure. Larger datasets from multiple institutions 
are required to re-train the developed models as well 
as to ensure the models generalizability to other clinics. 
However, curating a large library of QA images with an-
notated error types remains a challenge.

Overall, patient-specific QA gamma passing rate re-
sults could be accurately predicted within 3% accuracy 
using ML/DL models for IMRT and VMAT. Similarly, 
errors associated with failed QA plans could also be 
identified with high degree of accuracy. Reporting just 
a single evaluation metric such as AUC or MAE is not 
sufficient for fair and meaningful comparison of the 
model performance results. Establishing a consensus 
regarding preferred metrics for the performance of 
these models is recommended. The comparison made 
here is for different models using different datasets. A 
more objective comparison might be achieved if all the 
models were tested on a common open-source data-
set. Due to limitation of availability of a large dataset for 
each treatment site, the reported results for the most 
predictive models were trained using multiple anatomic 
treatment sites data such as head and neck, pros-
tate, lungs, abdomen, pelvis, etc. Only two reviewed 
studies used a dataset of one anatomic site which is 
prostate.35,52 These two site-specific models (CNNs) 
achieved higher performance compared to other mod-
els. The degree of complexity in an IMRT or VMAT plan 
is likely to depend on the treated site, hence the accu-
racy of the reported models trained on data of multiple 
sites could be improved by building an specific model 
for each anatomical treatment site.34 To achieve this 

target, more data for each treatment site is required. 
These prediction models were trained on different sets 
of relatively small data size. The reported performance 
could further be improved as larger datasets from dif-
ferent institutions become available.

4.8  |  Clinical applicability

Based on the patient-specific IMRT/VMAT QA results, 
a clinical decision is made whether a plan is accurate 
and safe for patient treatment. When ML/DL algorithms 
are used for development of a model for a clinical task 
such as IMRT/VMAT QA outcome predictions, then the 
model should be accurate and interpretable thereby 
providing confidence for clinical utility.

Presently, the patient-specific IMRT/VMAT QA 
gamma passing rate results could be predicted with 
ML and DL models within 3% errors. This accuracy 
was achieved by various DL and ML models, which 
makes these models promising for clinical application. 
However, it should be highlighted that the reported per-
formances of these models lack the generalizability be-
cause they were trained on institution-specific dataset. 
The reported accuracies might degrade when the mod-
els are tested in other clinics that use different TPSs, 
delivery machines, and measurement devices. These 
models depend on the combination of technologies 
used which can vary from one institution to another. 
Requiring each institution to train or tweak a ML or DL 
model to make it suitable for their particular technolo-
gies is probably unacceptable.

The overall evaluation of a model should consider 
assessing the model prediction accuracy, robustness, 
and interpretably for clinical applicability. Generally, as 
the model prediction accuracy increases its interpret-
ability becomes more difficult. Tree-based ML models 
have easy (decision trees) to moderate (random forests) 
interpretability and prediction accuracy. Consequently, 
one can understand each feature's contribution to the 
prediction results. The performance of a model can be 
greatly improved by using an ensemble through bagging 
(random forests) and boosting (e.g. adaptive boosting). 
Linear regressions are the easiest ML models to inter-
pret but their prediction accuracy is lower with higher 
possibility of underfitting the data. In contrast, deep 
neural networks are frequently surpassing the others 
models performances36,51 but they suffer from being 
hard to interpret with more likelihood of overfitting. 
Although the overfitting problem could be minimized by 
applying a proper regularization technique.

If a facility wanted to verify the accuracy of a trained 
ML/DL model for their Linac for IMRT/VMAT QA, they 
should perform patient-specific QA measurements 
for a number of plans and compare the gamma pass-
ing rate values with the predicted ones. A comparison 
of the gamma passing rate for a specific plan with 
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other institutions could also be valuable to compare 
the accuracy of their commissioning and TPS data. 
This will require building models for each combina-
tion of equipment or methodology for pretreatment 
verification used by different institutions. For errors 
detection of IMRT/VMAT plans that fail the QA, de-
velopment of an ML/DL model that could accurately 
identify all potential sources of errors is required for 
effective clinical application. Therefore, this task is an 
ongoing field of research and it is presently far from 
the clinical usage.

To our knowledge, the deployment of the developed 
patient-specific QA prediction models into clinical prac-
tice is still lagging due to of some challenges. For in-
stance, standardization guidelines are needed for data 
content. Another challenge is the availability of large 
dataset to confirm the model stability, consistency, and 
generalizability. Moreover, model verification and com-
prehensive clinical validation should be done to ensure 
that the model is robust. Patient-specific QA outcome 
prediction offers no help if the outcome predicted does 
not actually correlate with clinical results.60

All the reviewed papers were published within the 
last 5  years, making it a new area of interest with 
high potential for future research and development to 
achieve clinical acceptance and integration. Proper 
understanding of the mathematical principles behind 
the chosen algorithm, identifying the model strengths 
and weakness, and interpreting the predicted results 
knowledge are extremely important and should be ade-
quately transferred to the clinicians. Full understanding 
of these aspects would greatly help the physicists to 
effectively perform QA and gain confidence in the QA 
prediction models. The physicist needs to ensure the 
quality and safety of the virtual QA task before it can 
be integrated into clinical practice. In order to achieve 
clinical applicability, close and effective collaboration 
among the clinicians, mathematicians, computer scien-
tists, and data scientists is required.

4.9  |  Potential clinical impact

An accurate prediction ML/DL model is practical and 
can help clinical workers reduce the burden of per-
forming measurements for patient-specific QA. This 
is important for resource-limited countries where ma-
chine time is typically not available for IMRT/VMAT QA 
for all patients, or for adaptive radiation therapy tech-
niques which involve changing the plan while the pa-
tient is on the table. It would enable the dosimetrists 
to know in advance whether a plan would pass or fail 
QA as well as the potential root cause(s) of failure im-
mediately after the treatment plan is created. A prior 
information regarding the deliverability of plans during 
the optimization stage could provide many benefits that 
include minimizing the time wasted in performing QA 

measurement. In this way, failing plans could be poten-
tially eliminated and a treatment delay due to the failure 
of IMRT QA can be avoided. Virtual IMRT/VMAT QA 
could be performed during the planning process, thus 
avoiding QA measurements. It also helps to achieve a 
fully automated patient-specific QA tool for treatment 
plan verification.

5  |   CONCLUSIONS, 
RECOMMENDATIONS, AND 
FUTURE DIRECTIONS

A comprehensive review on various successfully devel-
oped ML/DL-based models for patient-specific IMRT/
VMAT QA outcome predictions was performed. Patient-
specific QA gamma passing rate can be predicted with 
errors within 3.0% with various ML/DL models for differ-
ent treatment machines and different underlying data-
sets. Types of errors for an IMRT/VMAT plan that failed 
the QA have been identified using ML and DL models 
with promising accuracy. Developing errors detection 
ML/DL models would provide more effective, efficient, 
and robust tool for patient-specific QA. The potential 
clinical benefits of this virtual patient-specific QA tool 
lie in reducing the time of actual measurements and 
the physicist's workload hence making the treatment 
process more efficient.

In order to be integrated into clinical practice, the QA 
prediction model performances need to be validated 
on large-scale multi-institution datasets to evaluate 
their generalizability to different clinics. Treatment site-
specific models are highly recommended whenever the 
dataset size permits. We recommend training ML and 
DL models on a large-scale dataset from multiple in-
stitutions. As this review showed that DL has overall 
higher prediction accuracy compared to ML models. 
We recommend the use of pre-trained DL models on 
the QA data as a base to train the models via trans-
fer learning and not to train the models from scratch at 
every clinic to get improved performance.

The future directions of research in this subject 
would be in training the ML/DL models on anatomi-
cal region-specific IMRT/VMAT plans (e.g. brain and 
head and neck, chest, abdomen, and pelvic regions) 
to improve the current reported performance results of 
patient-specific QA. Future studies should also focus 
on improving the model prediction accuracy. For error 
detection, extension to additional errors associated 
with QA failure such as machine-related errors, setup 
errors, detector calibration errors, should be adopted.
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