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Abstract: Obesity is a chronic low-grade inflammatory condition in which hypertrophied adipocytes
and adipose tissue immune cells, mainly macrophages, contribute to increased circulating levels
of proinflammatory cytokines. Obesity-associated chronic low-grade systemic inflammation is
considered a focal point and a therapeutic target in insulin resistance and metabolic diseases.
We evaluate the effect of Poncirus fructus (PF) on insulin resistance and its mechanism based on
inflammatory responses in high-fat diet (HFD)-induced obese mice. Mice were fed an HFD to induce
obesity and then administered PF. Body weight, epididymal fat and liver weight, glucose, lipid,
insulin, and histologic characteristics were evaluated to determine the effect of PF on insulin resistance
by analyzing the proportion of macrophages in epididymal fat and liver and measured inflammatory
gene expression. PF administration significantly decreased the fasting and postprandial glucose,
fasting insulin, HOMA-IR, total-cholesterol, triglycerides, and low-density lipoprotein cholesterol
levels. The epididymal fat tissue and liver showed a significant decrease of fat accumulation in
histological analysis. PF significantly reduced the number of adipose tissue macrophages (ATMs),
F4/80+ Kupffer cells, and CD68+ Kupffer cells, increased the proportion of M2 phenotype macrophages,
and decreased the gene expression of inflammatory cytokines. These results suggest that PF could be
used to improve insulin resistance through modulation of macrophage-mediated inflammation and
enhance glucose and lipid metabolism.

Keywords: Poncirus fructus; insulin resistance; inflammation; adipose tissue macrophages;
Kupffer cells

1. Introduction

Obesity, an excess accumulation of body fat resulting from energy imbalance, is a chronic state of
low-grade inflammation [1] that is well documented as a contributing factor in the development of
diabetes, cardiovascular disease, and non-alcoholic fatty liver disease [2,3]. Adipose tissue, in addition
to its ability to store lipids, is now recognized as an endocrine organ that produces various types of
molecules to induce metabolic changes [4]. Adipocytes are hypertrophied in response to over-nutrition,
increased adipose tissue ER stress, and hypoxia. Adipose tissue stress induces chemokine and
pro-inflammatory cytokine production and leads to the progressive infiltration of immune cells [5,6].
Among these immune cells, macrophages play a critical role in obesity-associated adipose tissue
inflammation [7]. Macrophage-derived TNF-α increases the release of free fatty acids via lipolysis,
leading to ectopic fat deposition in liver and skeletal muscle [8,9]. Elevated circulating free fatty
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acids serve as ligands for the TLR4 complex [10], and the activated TLR4/NF-kB pathway induces
cytokines, such as TNF-α and IL-6, which cause chronic inflammation and inhibit insulin signaling
pathways [11]. Therefore, modulating the inflammation of adipose tissue should be a key treatment
for obesity associated metabolic complications [12].

Poncirus fructus (PF), the dried immature fruits of Poncirus trifoliata Rafinesque, has been
used in the treatment of dyspepsia, as a prokinetic [13], and for improving blood circulation [14].
Many pharmacological studies have shown that Poncirus exerts anti-inflammatory [15], antioxidant [16],
and lipid-lowering activities [17] along with gastroprotective effects [18] both in vitro and in vivo.
Thus, in this study, we investigated the effects of PF on macrophage-mediated inflammatory responses
and insulin resistance in high-fat diet fed C57BL/6 mice.

2. Results

2.1. Effects of PF on Body Weight and Epididymal Fat and Liver Weight Changes

Higher body weight gain was observed in the high-fat diet (HFD) and PF groups than in the
normal chow (NC) group. While body weight of the PF group was relatively low compared to the HFD
group (43.14 ± 2.34 g vs. 48.42 ± 3.10 g, respectively), no significant difference in body weight gain was
seen (Figure 1A). The HFD group showed a meaningfully higher epididymal fat pad weight compared
to the NC group (p < 0.001), but the PF group did not show significant reductions in epididymal fat pad
weight compared to the HFD group (2.01 ± 0.10 g vs. 2.00 ± 0.25 g, respectively, Figure 1B). The gap
in liver weight was significant, with the HFD group being heavier than the NC group (p < 0.001).
The PF group showed an even lower liver weight than the HFD group (1.56 ± 0.23 g vs. 2.15 ± 0.10 g,
respectively; p < 0.05, Figure 1C).
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Figure 1. Effects of Poncirus fructus (PF) on (A) body weight, (B) epididymal fat, (C) liver weight,
and (D,E) histological changes in epididymal fat and liver. Representative histological images were
assessed by hematoxylin and eosin (H&E) staining, scale bar indicates 100 µm. (D) Adipocyte size in epi
fat and (E) adipocyte size and fat area in liver. n = 6 in each group. Data shown are the mean ± standard
error of the mean (SEM). * p < 0.05, ** p < 0.01, *** p < 0.001, compared with high-fat diet (HFD).
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2.2. Effects of PF on Fat Accumulation on Epididymal Fat and Liver

In the case of adipocyte size, the HFD group was significantly larger than the NC group (p < 0.001),
and the PF group was significantly lower compared to that of the HFD group in epididymal fat tissue
(8606.53 ± 2130.54 µm2 vs. 13,832.32 ± 2875.07 µm2, respectively; p < 0.001, Figure 1D). Liver fat area
was also significantly higher in the HFD group compared to the NC group (p < 0.001), and liver fat area
in the PF group was significantly lower than in the HFD group (33.05 ± 23.55 µm2 vs. 67.51 ± 29.20 µm2,
respectively; p < 0.001, Figure 1E).

2.3. Effects of PF on Insulin Resistance and Glucose Tolerance Test

Insulin resistance was identified through measuring homeostatic model assessment for insulin
resistance (HOMA-IR). HOMA-IR was significantly higher in the HFD group compared with the
NC group (52.73 ± 8.74 vs. 7.28 ± 1.63, respectively; p < 0.001), and it was significantly lower in
the PF group compared with the HFD group (28.31 ± 3.63 vs. 52.73 ± 8.74, respectively; p < 0.05,
Figure 2C). Fasting glucose level was significantly higher in the HFD group compared with the NC
group (198.33 ± 20.69 vs. 92.50 ± 3.07, respectively; p < 0.001), but it was significantly decreased by PF
treatment (152.00 ± 4.12, p < 0.05, Figure 2A). Fasting insulin level also was significantly higher in the
HFD group compared with the NC group (3.732 ± 0.54 vs. 1.09 ± 0.22, respectively; p < 0.001), and it
was significantly lower in the PF group compared with the HFD group (2.58 ± 0.30 vs. 3.732 ± 0.54,
respectively; p < 0.05, Figure 2B). From the oral glucose tolerance test (OGTT), glucose levels of all
groups were highest at 30 min and then gradually decreased. The HFD group had a significantly
higher blood glucose level than the NC group at every time point, while the PF group had significantly
lower blood glucose levels than the HFD group at 0 min and 30 min (0 min, p < 0.05; 30 min, p < 0.01,
Figure 2D). The HFD group had a significantly higher glucose area under curve (AUC) compared to
the NC group (p < 0.01) and the PF group had a significantly lower AUC compared to the HFD group
(35,724.00 ± 985.65 vs. 50,292.50 ± 7196.67, respectively; p < 0.05, Figure 2E).
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Figure 2. Effects of PF on (A) fasting glucose, (B) fasting insulin, (C) homeostatic model assessment
for insulin resistance (HOMA-IR), and (D,E) oral glucose tolerance test (OGTT) and area under curve
(AUC), respectively. n = 6 in each group. Data shown are the mean ± SEM. * p < 0.05, ** p < 0.01,
*** p < 0.001, compared with HFD.
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2.4. Effects of PF on Lipid Metabolism and Fat Tolerance Test

For the evaluation of lipid profiles, total cholesterol (TC), triglyceride (TG), and low-density
lipoprotein (LDL), cholesterol levels were measured. The HFD group showed higher levels of serum
TC, TG, and LDL cholesterol than the NC group (p < 0.001). The PF group had significantly lower
TC (184.60 ± 3.21 mg/dL vs. 224.00 ± 15.90 mg/dL, respectively; p < 0.05, Figure 3A), lower TG
(104.60 ± 5.54 mg/dL vs. 150.33 ± 11.71 mg/dL, respectively, p < 0.01, Figure 3B) and lower LDL
cholesterol (36.20 ± 1.52 mg/dL vs. 49.00 ± 4.97 mg/dL, respectively; p < 0.05) levels compared to the
HFD group (Figure 3C). Additionally, the oral fat tolerance test (OFTT) was performed to evaluate the
effect of PF on lipid metabolism. During the OFTT, the TG levels of all groups were highest at 120 min
and then gradually decreased. The HFD group showed a higher TG level compared to the NC group
throughout the test, and the PF group showed a lower TG level at 120 min (p < 0.05) and 180 min
(p < 0.05) compared to the HFD group (Figure 3D). The HFD group was also significantly higher in the
TG AUC compared to the NC group (p < 0.05), and the PF group had a lower TG AUC than the HFD
group as well (117,618.00 ± 6167.01 vs. 139,920.00 ± 7367.54, respectively; p < 0.05, Figure 3E).
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cholesterol, and (D,E) oral fat tolerance test (OFTT) and area under curve (AUC), respectively. n = 6 in
each group. Data shown are the mean ± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, compared with HFD.

2.5. Effects of PF on Adipose Tissue Macrophages (ATMs) and Liver Kupffer Cells

The HFD group showed a significantly higher ATM percentage compared to the NC group
(p < 0.001), and the PF group had a significantly lower ATM percentage compared to the HFD group
(27.54 ± 6.08% vs. 42.32 ± 4.60, respectively; p < 0.005, Figure 4A). In the case of ATM subpopulations,
the proportion of inflammatory CD11c+ ATM cells in the total ATM was significantly higher in the
HFD group than in the NC group (61.33 ± 5.72% vs. 18.39 ± 4.31%, respectively; p < 0.001) while no
such significant gap was seen between the PF and the HFD groups (55.44 ± 5.82% vs. 61.33 ± 5.72%,
respectively; Figure 4C). Regarding the proportion of anti-inflammatory CD206+ ATMs, the total ATM
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was significantly lower in the HFD group compared to the NC group (p < 0.001) and was significantly
higher in the PF group compared to the HFD group (48.33 ± 4.94% vs. 18.92 ± 5.69%, respectively;
p < 0.01, Figure 4E).
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To study the effect of PF on liver immune cell composition, the percentage of Kupffer cells among
the total mononuclear cells and the percentages of CD68+ and CD11b+ Kupffer cells were measured.
The Kupffer cell percentage was significantly higher in the HFD group compared to the NC group
(p < 0.05) and was lower in the PF group compared to the HFD group (27.56 ± 2.05% vs. 48.77 ± 9.74%,
respectively; p < 0.05, Figure 4B). The ratio of phagocytic CD68+ Kupffer cells was also significantly
higher in the HFD group than in the NC group (p < 0.05) and was significantly lower in the PF group
compared to the HFD group (16.26 ± 4.07 vs. 28.33 ± 3.84, respectively; p < 0.05, Figure 4D). The ratio
of cytokine-producing CD11b+ Kupffer cells was significantly higher in the HFD group than in the
NC group (p < 0.05). The PF group showed a lower percentage of CD11b+ Kupffer cells compared
to the HFD group, but the results were not significant (15.73 ± 5.30% vs. 21.33 ± 3.35%, respectively;
Figure 4F).

2.6. Effects of PF on Inflammatory Gene Expression

To evaluate the action of PF on inflammatory cytokines, TNF-α, IFN-γ, and F4/80 mRNA expression
was measured in liver tissue. The TNF-α mRNA level was significantly increased in the HFD group
compared to the NC group (p < 0.001) and was significantly decreased in the PF group compared to
the HFD group (p < 0.05, Figure 5A). The F4/80 mRNA expression was significantly higher in the HFD
group than in the NC group (p < 0.001) and was significantly lower in the PF group compared to the
HFD group (p < 0.05, Figure 5B); however, the three groups shared similar results regarding IFN-γ
expression (Figure 5C).
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3. Discussion

More than ever before, worldwide prevalence of obesity has been an increasing and influencing
factor threatening health [19]. Obesity contributes to the development of various metabolic diseases
via altered glucose and lipid homeostasis as well as systemic inflammation [20]. While macrophages
are the key immune cells involved in the early inflammatory response, obesity patients have increased
numbers of ATMs and Kupffer cells. Activated macrophages accelerate systemic inflammation
by secreting their own pro-inflammatory mediators, which leads to a disturbance in the insulin
signaling pathway [21]. Therefore, regulating inflammatory reactions in adipose tissues and liver
to ameliorate insulin resistance could be critical in the treatment of metabolic complications [22].
In this study, PF significantly reduced fat accumulation in liver, enhanced glucose and lipid metabolism,
and modulated inflammatory macrophage infiltration as well as cytokine expression in adipose tissue
and liver. PF contains high amounts of flavonoids, such as poncirin (over 2%), naringin (over 0.7%),
narirutin, hesperidin, neohesperidin, and exhibits anti-inflammatory and anti-obesity properties
in vivo and vitro study [15]. Naringin (4’,5,7-trihydroxy flavonone-7-rhamnoglucoside), one of the
major PF compounds, was found to ameliorate insulin resistance, dyslipidemia, hepatic steatosis,
and kidney damage in a type 2 diabetic rat model by partly regulating oxidative stress, inflammation,
and dysregulated adipocytokines production [23]. After treatment with 0.2 g/kg naringin for 10 weeks,
reduction in the body weight, liver weight, Lee’s index, and visceral fat were observed in high diet fed
C57BL/6 mice [24]. Furthermore, naringin at dosage of 50 and 100 mg/kg for 28 days corrected impaired
glucose utilization and insulin insensitivity in diabetic rats [23]. Poncirin, flavanone glycoside,
inhibited adipocyte differentiation in mesenchymal stem cells [25]. Further, poncirin exerts an
anti-inflammatory effect by inhibiting the LPS-induced expression of inducible nitric oxide synthase,
cyclooxygenase 2, TNF-α, and IL-6 through the suppression of NF-kB binding activity in RAW 264.7
macrophages [26].

In this experiment, the PF group did not show a significant decrease in weight gained from the
HFD and in the epididymal fat pad weight compared to the HFD group. Since the rodent’s epididymal
adipose tissue weight is proportional to body weight [27], there was no significant epididymal
fat pad loss in the PF group. It is thought that the experiment duration may not have been long
enough for weight loss. However, liver weight and liver fat area showed a significant decrease in
the PF group compared to the HFD group. High caloric diet impacts fat accumulation in the liver
by intra- and extra-hepatic alteration of fat metabolism via directly increasing de novo lipogenesis
and indirectly increasing free fatty acid (FFA) influx to the liver by adipose tissue lipolysis [28,29].
Hence, increased liver fat accumulation can be an indirect indicator of obesity and insulin resistance [30].
From the results of liver weight reduction in the PF group, positive effects on insulin resistance can
be expected. Several studies have reported the effects of PF extract on anti-obesity. Shim et al.
reported that an aqueous extract of PF (200 mg/2 mL/animal/day) suppressed body weight gain by
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6% in Sprague-Dawley rats after 10 weeks, likely due to increased rate of intestinal transit time [31],
whereas Jia S et al. proved PF extract reduced body weight by 9.21% and modulated glucose and lipid
metabolism and hypoglycemic effects on C57BL/6 mice fed a high-fat diet for 13 weeks [17].

In this study, HOMA-IR and OGTT were measured to evaluate the effect of Poncirus on the
improvement of insulin resistance. The PF group showed significantly lower HOMA-IR compared to
the HFD group. HOMA-IR is a useful indicator for evaluating insulin resistance, which is calculated
by FBS and fasting insulin level [32]. In the insulin resistance background, a major feature is
abnormal glucose and lipid metabolism caused by an abnormal response to insulin, impaired muscle
glucose uptake, muscle and liver glycogen synthesis, and overt hyperglycemia [33]. FFA flux is
high, TG synthesis and storage are increased, and excess TG is secreted in the form of VLDL in
the liver [34]. The excessively produced lipoprotein (VLDL, IDL, LDL) and decreased LPL due to
insulin resistance [35] have high TG content and are not efficiently absorbed by the liver, thus creating
small dense LDLs, which are the main constituents for atherosclerosis [36]. As such, the treatment of
dyslipidemia is also essential in the treatment of metabolic complications [34]. The Poncirus group
showed significantly lower glucose levels at the 30 min point during OGTT compared to the HFD
group. The first 30 min of OGTT is deeply related to the early stages of insulin reaction, and is called
the “first phase insulin release”, which is an indicator as to whether insulin resistance or type 2 diabetes
will develop [37]. In the OFTT conducted here, the PF group showed a significantly lower level of
triglyceride concentration at the 120 and 180 min time points. The concentration of total cholesterol,
TG, and LDL-cholesterol were also significantly lower than in the HFD group, showing the positive
effects of PF on dyslipidemia.

Apart from increasing in numbers, adipose tissue macrophages (ATMs) are also phenotypically
changed during obesity-induced inflammation [38]. Upon cytokine polarization, macrophages are
divided into classically activated macrophages (M1) and alternatively activated macrophages (M2),
which present different activators, markers, and functions. While the M1 phenotype stimulates the
generation of inflammatory cytokines such as TNF-α, iNOS, CCR2, and IL-12, the M2 phenotype
promotes anti-inflammatory cytokines like IL-4 and IL-13, which relieve inflammatory reactions and
inhibit the development of insulin resistance [39]. In HFD-induced inflammation mice, the M1/M2 ratio
of the macrophages increases by more than 4 times [39,40]. Cell surface markers of M1 ATMs include
CD11c, CD40, CD86, HLA-DR, and TLR4 [38,41]. CD11c is predominantly in the pro-inflammatory
state [42]. Additionally, cell surface markers of M2 ATMs include CD163, CD204, and CD206 [38,41].
In the analysis of ATM subpopulations, the proportion of CD206+ ATMs (M2 phenotype) was
significantly higher in the Poncirus group compared to the HFD group. Kupffer cells, which are
liver macrophages with the F4/80 surface marker in mice [43], are mainly classified into two subsets,
CD11b−CD68+ and CD11b+CD68−, based on their markers and function [44]. CD68+ Kupffer cells have
high phagocytic and bactericidal activity, while CD11b+ Kupffer cells are involved in the inflammatory
response due to their high cytokine-producing capacity [44]. In the study of PF on Kupffer cells,
PF significantly lowered the proportion of total Kupffer cells and phagocytic CD68+ Kupffer cells.
The proportion of cytokine-producing CD11b+ Kupffer cells decreased but not significantly, indicating
that PF could regulate the expression of phagocytic CD68+ cells and inhibit inflammatory conditions.

In inflammatory cytokine gene expression in Kupffer cells, the HFD group had significantly
increased TNF-α and F4/80 mRNA expression levels compared to the NC group, and the PF group
was significantly lower in TNF-α and F4/80 mRNA expression compared to the HFD group.

Once infiltrated into obese adipose tissue, macrophages interact with adipocytes in a paracrine
manner through TNF-α production [45], thus increasing lipolysis and activating the TLR4/NF-kB
pathway [8,11]. This leads to inflammatory cytokine production, which causes a disturbance in the
insulin signaling pathway via inhibiting tyrosine phosphorylation of insulin receptor substrates [46].

In this study, we found that PF has favorable effects on hyperglycemia, glucose tolerance,
hyperinsulinemia, dyslipidemia, and histopathological fat accumulation in the epididymal fat
pad and liver. These results suggest that PF could improve insulin resistance through the
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inhibition of macrophage-mediated inflammation and enhance glucose and lipid metabolism.
Therefore, we conclude that PF is a promising therapeutic agent for insulin resistance and metabolic
complications, and additional further research including clinical trials will be necessary to confirm
these results.

4. Materials and Methods

4.1. Preparation of Poncirus fructus

Poncirus fructus was obtained from the Department of Pharmaceutical Preparation of Korean
Medicine, Korean Medical Hospital, Kyung Hee University, Seoul, Korea. We tested the drug quality
according to the standards of the Korea Food & Drug Administration and those of our hospital.
Dried PF (1000 g) was added to ethanol (1500 mL, 80%) and boiled for 2 h at 100 ◦C. The sieve-filtrated
solvents were concentrated with a rotary evaporator (Model NE-1, EYELA Co., Tokyo, Japan) and
dried with a freeze dryer (Model FD-1, EYELA Co., Tokyo, Japan). The extracts were added to distilled
water (1 g/10 mL) and boiled for 2 h at 95 ◦C. The boiled solution was centrifuged at 14,000 rpm for 20
min, and supernatant was obtained. The final extract weight of PF was 160 g.

4.2. Experimental Design and Animals

Six-week-old male C57BL/6 mice weighing 19 ± 2 g were purchased from Central Lab Animal Inc.
(Seoul, Korea) and were housed in stainless steel cages in an air-conditioned room controlled at
22 ± 1 ◦C and at 40% to 70% relative humidity under a 12:12 h dark/light schedule. Animals freely
received diet and water for one week. After adapting to the lighting conditions for that one week,
the mice were randomly assigned to one of three groups: Normal chow (NC, n = 6), high-fat diet
(HFD, n = 6), and PF (n = 6). Except for those in the NC group, all mice were fed an HFD (60% energy
by fat, % kcal; carbohydrate/protein/fat = 20:20:60), which is known to induce obesity, for 17 weeks.
After confirmation that 8 weeks of HFD feeding made a significant difference (p < 0.001) in body
weight between the NC group and the other groups, PF (500 mg/kg body weight, dissolved in distilled
water) was orally administered daily for 9 weeks, while the NC and HFD group received normal
saline. The PF dose was selected based on the yield of PF extract (16%) and the content of naringin
(0.7%) which is a major flavonoid of PF, and showed anti-obesity and anti-inflammatory effects in the
previous study [23].

All experiments were carried out according to the principles outlined in the NIH Guide for the
care and use of laboratory animals and study protocol was approved at 13-04-2018 by the Animal Care
Committee of the Animal Center at Kyung Hee Medical Center (KHMC-IACUC201813).

4.3. Oral Glucose Tolerance Test and Blood Analysis

Oral glucose tolerance tests (OGTTs) were carried out at week 14. Glucose was added to distilled
water and administered to each mouse (2 g glucose per kg body weight) through a stomach tube after 14
h of fasting. Blood glucose was measured at 0, 30, 60, 120, and 180 min time points after administration
using a strip-operated blood glucose sensor (Accu-Chek Performa, Australia). Blood was collected
from the tail vein of each mouse. Glucose area under the curve (AUC) in the OGTT was calculated
from measurements taken before (0 min) and after (up to 180 min) glucose administration using the
trapezoidal rule, which is a numerical integration method used to approximate the integral or the AUC.

At week 15, blood was obtained from the tail vein of each mouse after 6 h of fasting to measure
insulin concentration. Serum insulin concentration was measured using an ultrasensitive mouse insulin
ELISA kit (Crystal Chem Inc., Elk Grove Village, IL, USA). From fasting blood glucose and insulin
concentration, insulin resistance was assessed using the homeostatic model assessment of insulin
resistance (HOMA-IR). At the end of the experiment, after 14 h of fasting, serum total cholesterol (TC),
low density lipoprotein (LDL) cholesterol, and TG levels were measured.
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4.4. Oral Fat Tolerance Test (OFTT)

At week 15, fasting triglyceride (TG) levels (0 min) were measured from tail vein blood after 14 h
of fasting. Then, olive oil (2 mL/kg body weight) was administered orally, and TG measurements were
taken from tail vein blood samples taken at 120, 180, 240, and 360 min time points after fat administration.
The TG measurements were performed using an Accutrend Plus meter (Roche, Brighton, MA, USA).
The TG AUC in the OFTT was calculated from measurements taken before (0 min) and after (up to
360 min) fat administration.

4.5. RNA Isolation and Analysis of Gene Expression

At week 17, the mice were sacrificed, and livers were dissected, and total RNA was extracted
from livers using a Mini RNA Isolation IITM kit (ZYMO RESEARCH, Irvine, CA, USA) according to
the manufacturer’s instructions. To evaluate gene expression including TNF-α, interferon gamma
(IFN-γ), and F4/80, quantitative real time-polymerase chain reaction (qRT-PCR) assays were performed.
Prior to qRT-PCR, the complementary DNA (cDNA) was synthesized using an Advantage RT for
PCR Kit (Clontech, Mountain View, CA, USA). To the cDNA obtained through reverse transcription
PCR, 2X SYBR Reaction buffer, primers, and dH2O were added, and qRT-PCR was carried out using a
7900HT Fast Real-Time PCR System (Applied Biosystems®, Waltham, MA, USA). For gene expression
analysis, the threshold cycle for each gene, obtained with SDS Software 2.4 (Applied Biosystems®,
Waltham, MA, USA), was converted to relative quantitation based on GAPDH, and the fold change
was calculated. The fold change value of each experimental group was normalized according to the
NC group, which was defined as 1.

4.6. Isolation of Stromal Vascular Cells (SVCs) and Liver Immune Cells

At week 17, harvested epididymal fat pads were put into a solution composed of
phosphate-buffered saline (PBS, Gibco, Waltham, MA, USA) and 2% bovine serum albumin (BSA, Gibco,
Waltham, MA, USA) and minced into 1 to 2 mm pieces with round-shaped scissors. After adding
collagenase (Sigma, St. Louis, MO, USA) and DNase I (Roche, Brighton, MA, USA), a 100 µm cell
strainer (BD Biosciences, San Jose, CA, USA) was used to remove extraneous tissue. The liver was
perfused with PBS (pH 7.0) through a needle inserted into the portal vein, and then liver tissue was
placed in a 60 mm petri dish with RPMI 1640 medium containing 100 mL/L fetal calf serum (FCS) and
pulverized into small pieces. The sample was filtered through a 200-gauge stainless mesh and mixed
with 9 mL of PBS, 8 mL of Percoll (final 36.3%), and 200 µL heparin, and the mixture was centrifuged
at 2000 rpm for 20 min. After removal of the supernatant containing parenchymal cells, 1X ACK lysis
buffer (Lonza, Houston, TX, USA) was added to the pellet to dissolve the red blood cells. The sample
was finally centrifuged at 1500 rpm for 5 min to obtain non-parenchymal cells containing immune cells
collected in the lower layer.

4.7. Fluorescence-Activated Cell Sorting (FACS) Analysis of Adipose Tissue Macrophages (ATMs) and
Kupffer Cells

Each sample was prepared to contain 106 cells. A mixture of FcBlock reagent (BD Pharmingen,
San Jose, CA, USA) and fluorophore-conjugated antibodies was added to each sample. The antibodies
used for the analysis of ATMs were CD45-APC Cy7 (BioLegend, San Diego, CA, USA),
CD68-APC (BioLegend), CD11c-phycoerythrin (CD11c-PE, BioLegend), and CD206-FITC (BioLegend).
Antibodies for liver Kupffer cell analysis included CD45-FITC (BioLegend), F4/80-APC (BioLegend),
CD68-PE (BioLegend), and CD11b-PerCp CY5.5 (BioLegend). After washing with 2% FBS/PBS solution,
each sample was centrifuged at 1500 rpm and transferred in a fluorescence-activated cell sorting
(FACS) tube. The analysis was conducted using a FACS Calibur flow cytometer (BD Bioscience, USA).
The percentage of ATMs with CD45+ CD68+, CD45+ CD68+ CD206+, and CD45+ CD68+ CD11c+
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expressed and the percentage of Kupffer cells with CD45+ F4/80+, CD45+ F4/80+ CD68+, and CD45+

F4/80+ CD11b+ expressed were analyzed using FlowJo (Tree Star, Inc., Ashland, OR, USA).

4.8. Histological Analyses of Adipose Tissue and Liver

Obtained epididymal fat pad and liver samples were fixed in 10% neutral buffered formalin
and embedded in paraffin to make paraffin blocks. Each block was sliced into 4 µm-thick sections
with a microtome and attached to a gelatin coated slide. Two sections per animal were stained with
hematoxylin and eosin, and digital images were obtained using a high-resolution camera-mounted
optical microscope (Olympus BX-50, Olympus Optical, Tokyo, Japan) connected to a computer.
Using ImageJ, the adipocyte size in fat tissue and the fat area in liver tissue were measured.

4.9. Statistical Analysis

Statistical significances were examined by one-way analysis of variance (ANOVA) followed by
Tukey’s post hoc test using the GraphPad PRISM statistical package (version 4.03, GraphPad Software
Inc., San Diego, CA, USA). The data are presented as the mean ± standard error. P values were
determined at p < 0.05.
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