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Abstract

Background: The advances of sequencing technology accelerate the development of theory of molecular
quantitative genetics such as QTL mapping, genome-wide association study and genomic selection. This paper was
designed to study genomic selection in large yellow croaker breeding. The aims of this study were: (i) to estimate
heritability values of traits in large yellow croaker; (i) to assess feasibility of genomic selection in the traits of growth
rate and meat quality; (iii) to compare predictive accuracies affected by different algorithms and training sizes, and
to find what training sizes could reach ideal accuracies; (iv) to compare results of GWAS with genomic prediction,
and to assess feasibility of pre-selection of significant SNPs in genomic selection. 500 individuals were tested in the
trait of body weight and body length, while 176 were tested in the percentage of n-3 highly unsaturated fatty
acids (n-3HUFA) in muscle. GBLUP and emBayesB were used to perform genomic prediction.

Results: Genotyping-By-Sequencing method was used to construct the libraries for the NGS sequencing and find
~30,000 SNPs. Heritability estimates were 0.604, 0.586 and 0.438 for trait of body weight, body length and n-3HUFA,
respectively. The predictive abilities estimated by GBLUP showed higher than that by emBayesB in traits of body
weight and body length. However, the result was just the opposite in n-3HUFA. According to fit the curve of
predictive accuracy, we estimated that at least 1000 individuals in training set could reach an accuracy of 0.8 in
body weight and body length. GBLUP, emBayesB and GWAS could not always find significant SNPs associated with
phenotypes consistently. Significant SNPs were selected by emBayesB could obtain the largest proportions to
explain total additive genetic variances.

Conclusions: This research showed that genomic selection was feasible in large yellow croaker breeding. We
suggest doing a test before deciding to use which algorithm in specific trait in genomic prediction. We estimated
required training sizes to reach ideal predictive accuracies and assessed feasibility of pre-selection of SNPs
successfully. Because of high mortality rate of fish and high cost in genomic sequencing, genomic selection may be
more suitable for applying on some traits which cannot be measured on candidates directly.
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Background

With the advent of next generation sequencing tech-
nologies, plants and animals can be genotyped for thou-
sands of single nucleotide polymorphisms (SNPs) at one
time. Sequencing technologies accelerate the develop-
ment of theory of molecular quantitative genetics. Quan-
titative trait loci (QTL) mapping and genome-wide
association study (GWAS) have been considered as new
methods applied in breeding programs. Quantitative
traits, however, were verified to be affected by many
genes termed as QTLs [1]. In GWAS, each QTL is iden-
tified based on a significance test. As a result, many
QTLs will be ignored because most QTLs have smaller
effects and can’t reach the significant levels [2, 3]. In
order to avoid the above defect, a new method termed
as genomic selection (GS) was proposed by Meuwissen
et al. [4]. Genomic selection uses entire genomic data to
explain observed phenotypic variation, but not selects
single locus based on a significance test. With high dens-
ity markers, each QTL can be highly in linkage disequi-
librium (LD) with at least one marker [5]. Due to the
advantages of high accuracy of prediction and reduction
of generation interval [6], genomic selection has been
widely used in dairy cattle [7-13] and has been studied
in other species [14-21]. Compared with livestock and
plant breeding, genomic selection is relatively late to be
applied in aquatic breeding [22]. Sonesson et al. [23]
have studied genomic selection in aquaculture breeding
programs by using simulation data but not real data. Re-
cently, an experiment on genomic selection in Atlantic
salmon was studied by Hsin-Yuan et al. [24]. This paper
was designed to discuss the feasibility of genomic selec-
tion applying in large yellow croaker breeding.

Large yellow croaker (Larimichthys crocea) is one of
the most important commercial marine fish species in
southeast China and Eastern Asia [25]. However, the
genetic diversity of large yellow croaker is seriously lost
because of over-fishing and environmental degradation
[26]. In addition, the fishing technology reserving larger
and abandoning smaller individuals gives rise to negative
selection for large yellow croaker. Therefore, a good
breeding technique is necessary for this species. In trad-
itional animal breeding, genetic values are predicted
from the phenotypic data of individuals and their rela-
tives. This algorithm is termed as best linear unbiased
prediction (BLUP) [27]. However, BLUP cannot estimate
Mendelian sampling term very well [28]. Using genome-
wide SNP genotypes may be a better choice to obtain
more accurate relationship among relatives. Nielsen
et al. [29] have used simulation method and Hsin-Yuan
et al. [24] have used real data to compare the accuracies
for genomic estimated breeding values (GEBV) with
traditional BLUP estimated breeding values (BLUPEBV),
and have suggested that accuracy for GEBV was higher
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than that for BLUPEBV in aquaculture. Therefore, it
may be a trend to apply marker-assisted selection (MAS)
in fish breeding programs. Especially for some traits,
such as meat quality and disease resistance, which can-
not be measured on candidates directly, are more suit-
able to use MAS schemes for breeding.

Various algorithms are used to predict GEBV in gen-
omic selection, including Genomic BLUP (GBLUP) [30]
and Bayesian methods [4]. GBLUP was deduced by Van-
Raden by using genomic relationship matrix (G matrix)
to obtain GEBV directly. Another algorithm termed as
RR-BLUP (ridge-regression BLUP) can obtain the same
results as GBLUP by calculating SNP effects firstly,
which was firstly proposed by Meuwissen et al. [4]. The
prior distribution of GBLUP algorithm assumes an equal
variance across each locus, which is not an accurate as-
sumption when number of QTLs is small [31]. Never-
theless, it is closer to reality if many QTLs exist in the
genome. Another assumption is that there are many loci
with no variance and a few loci with their own variances
[4]. This algorithm is termed as BayesB, which has a
mixture of prior distribution. The GEBV are estimated
based on MCMC (Monte Carlo Markov Chain) technol-
ogy in BayesB, which needs much more computing time.
The reason is that the prior distribution of markers is
proposed in term of variances but not of effects. There-
fore, in order to save the computing time, Meuwissen
et al. [32] proposed to use a mixture of a distribution
with zero effects and an exponential distribution as a
prior for the marker effects:

1/ xydexp(-A or g=0
n(g) = {({—y))/ xp(-Algl) f i!forg:() (1)

where y is the proportion of makers existing effects,
and A is the parameter of exponential distribution. This
algorithm termed as fast BayesB or iterated conditional
expectation (ICE) is not based on MCMC technology,
therefore the computing speed is several orders of mag-
nitude faster than MCMC based BayesB. On the basis of
the study of ICE, Shepherd et al. [33] developed an algo-
rithm (named emBayesB) by combining expectation-
maximization (EM) algorithms with fBayesB. Besides the
fast computational speed and relatively high estimation
accuracy, emBayesB has other advantages: (i) the algo-
rithm can adjust the value of proportion that SNPs are
in LD with QTLs in the calculating process; (ii) herit-
ability, which is set beforehand, hardly affects the
estimation results even if the heritability deviates from
the actual situation significantly.

Predictive accuracy of GEBV is one of the most im-
portant indicators in genomic selection, which has been
studied by various methods based on real or simulated
data [4, 34-37]. It is affected by many factors, such as
training sizes, trait heritability, number of QTLs, and
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also by marker density and statistical methods. This re-
search would estimate trait heritability and assesse the
predictive abilities via cross-validation, and compare pre-
dictive abilities within various training records and two
algorithms (GBLUP and emBayesB). Combined with the
formula for predictive accuracy in genomic selection
[34], we would predict the training sizes required to
reach ideal predictive accuracies. We would also com-
pare results of GWAS with genomic prediction, and
assess feasibility of pre-selection of significant SNPs in
genomic selection.

Methods

Materials

The experimental materials were large yellow croaker.
All fish were reared in a breeding nucleus farm named
‘Jinling Aquaculture Science and Technology Co. Ltd." in
Ningde City, Fujian Province, P.R.China. The trail was car-
ried out in Key Laboratory of Healthy Mariculture for the
East China Sea when the age of fish was two years old. All
fish were injected the hormone named Luteinizing hor-
mone releasing hormone A3 (LRH-A3) simultaneously.
Approximately 36 h after injection the LRH-A3, all fish
would release sperms or eggs almost at the same time, so
all progenies which were used as experimental materials
had the same age. Three quantitative traits were tested:
body weight (BW), body length (BL) and percentage of n-
3 highly unsaturated fatty acids (n-3HUFA) in muscle.
Growth rate and meat quality are the most important eco-
nomic traits in large yellow croaker, so the three traits
were chosen for research. BW and BL data was derived
from the live body directly. n-3HUFA data, however, must
be measured by dissection. 500 individuals were tested
on traits of BW and BL while 176 individuals sampled
randomly from the 500 individuals were tested on trait of
n-3HUFA, which would be used as the experimental ma-
terials in this research. The parameters of the three traits
were shown in Table 1.

Library preparation and sequencing

Fin samples of all 500 fish shown in Table 1 were col-
lected for genotyping. To detect whole-genomic SNP
markers for all fish, EcoRI and Nlalll based on
Genotyping-By-Sequencing (GBS) method were used to
construct the libraries for the NGS sequencing (had not
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been published). Briefly, genomic DNA of each fish indi-
vidual was incubated at 37 °C with EcoRI and Nlalll
(New England Biolabs, NEB), CutSmart™ buffer and
MilliQ water. Digestion reactions were heat-inactivated
at 65 °C for 20 min and the reaction system was held in
8 °C. The digested DNA was ligated to adapter se-
quences with CutSmart™ buffer, ATP, T4 DNA ligase,
adapter mix and MilliQ water at 16 °C. Restriction-
ligation reaction was also heat-inactivated at 65 °C for
20 min and the reaction system was held in 8 °C. The
PCR reaction was performed using diluted restriction-
ligation samples, dNTP, Tag DNA polymerase (NEB)
and IluminaF primer and indexing primer containing
barcodes. The PCR productions were separated by 8 %
PAGE. Fragments with 150 ~ 350 bp (with indexes and
adaptors) in size were isolated by using a Gel Extraction
Kit (Qiagen), which was diluted for sequencing. Then,
pair-end sequencing was performed upon the selected
libaries by using an Illumina high-throughput sequen-
cing platform (Illumina, Inc; San Diego, CA; USA).

SNP calling and imputation

The raw sequencing reads were quality checked by
FastQC [38]. The reads were then quality filtered by the
following steps: (1) adaptor sequences were removed
from the raw reads; (2) the reads with the ratio of am-
biguous ‘N’ bases greater than 5 % were filtered; (3) de-
leted the continuous base windows of 5 bp that the
average quality smaller than 20 at two ends of reads; (4)
removed short reads with a length below 50 bp. The
cleaned reads were mapped to large yellow croaker refer-
ence genome sequence [39] by BWA version 0.7.10 [40].
The alignments files were then sorted and duplicate
marked by Picard (http://picard.sourceforge.net) and ap-
plied to GATK package [41] for SNP calling. The result-
ing SNPs were discarded according to any of the
criterions: (1) missing rate >20 %; (2) MAF (minor allele
frequency) < 0.05; (3) significantly deviation from Hardy-
Weinberg equilibrium (HWE) (p-value < 0.001). As a re-
sult, 29,748 SNPs were retained for BW and BL, and
32,249 SNPs were retained for n-3HUFA, and the aver-
age missing rate of markers was 11.9 %. Fig. 1 showed
the distribution of minor allele frequency after filtration.
Beagle Version 3.3.2 software [42] was used to impute all
missing SNPs.

Table 1 Statistical results of phenotypic data for three quantitative traits

Trait Male Female

Number Mean? Standard deviation® Number Mean Standard deviation
Body weight 237 202.22 77.15 263 24741 99.96
Body length 237 227.19 25.19 263 234.85 29.04
n-3HUFA 61 23.50 4.22 115 24.39 478

“The unit was gram (g) for BW, millimeter (mm) for BL and percentage (%) for n-3HUFA
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Fig. 1 Distribution of minor allele frequency (MAF) for three traits. The left figure (a) showed the distribution of MAF for body weight and body
length and the right figure (b) showed that for percentage of n-3 highly unsaturated fatty acids
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Statistical methods
The following linear model is fitted to explain the com-
position of trait Y

)2
Yi:/,t—i-sexk—i—ZXiigj—i—ei (2)
=1

where Y] is the phenotypic record of individual i (i=1, 2,
..., n), ¢ is an overall mean, sex; is the fixed effect of the
kth sex (k=1 for male or 2 for female). X; is a I x p vector
of SNP genotypes on individual i (The SNP genotypes are
coded as 0 for genotype ‘A_A; 1 for ‘A_a’ and 2 for ‘a_a). g;
is the effect of the jth locus, so g is a p x I vector of SNP
effects, and e; is a residual effect. In most conditions, the

j4
value p is much larger than n. ZX 5g; can be replaced by
=1
g; which is the breeding value of individual i. If need to
calculate SNP effects, the genotype codes will be standard-

ized using the formula: X; = (X,»,r—ij)/,ﬂpj (l—pj) )

where p; is the frequency of allele @’ at locus j. After stand-
ardizing, the mean of genotype at locus j is 0 and variance
is 1, so the variance of locus j is only decided by the effect
8» which was described by Meuwissen et al. in detail [32].

Two algorithms were used to calculate the effects of
SNPs in this study: GBLUP [30] and emBayesB [33]. The
GEBV of GBLUP are calculated by the following mixed
model equation (MME):

lnyln ln'X /’2 _ ln'y (3)
X1, XX+K\||¢g X'y
where A =o0,2/0,? = p(1-h*)/h*, K’ is heritability of

trait, ¢ is a vector of GEBV, and K is an inverse of G
matrix in GBLUP algorithm. G matrix is calculated by

the formula ~S<2XP)_ [30], where P is the vector of
D pp)

frequency of allele ‘@ in all loci, and p; is the frequency of
allele ‘@’ at locus i. The MME in RR-BLUP is very similar
with formula (3), but is used to calculate SNP effects, and
K is not the inverse of G matrix but an identity matrix,
and 1 = 0.2/, > = p(1-h*) /h*. The two algorithms are
equivalent in predicting GEBV of candidates, so we de-
fined both two algorithms as GBLUP in this study. o7 and
oﬁ were estimated by the algorithm ‘REML (Restricted
Maximum Likelihood) [43]. Another way could obtain the
similar results of o7 and 0§ by using the R-package ‘EMM-
REML, Version 3.1 (http://mirror.bjtu.edu.cn/cran/web/
packages/EMMREML/index.html). The formula (1) was
still used as the prior distribution of SNP effects in
emBayesB. All calculation process were written by Fortran
codes (the codes of emBayesB were supplied by Shepherd
et al. [33], http://www.biomedcentral.com/1471-2105/11/
529/additional) and run in the server of Jimei University.

Cross-validation

In order to reduce the errors caused by random sampling,
a replicated training-testing method was used to evaluate
the results of genomic prediction. Cross-validation of 20
replicates was performed in this research. 400 individuals
were randomly sampled as training set and the rest 100
individuals were used as testing set in each repeat in the
BW and BL experiment. The same way was used to study
n-3HUFA but the number of individuals in training set
and testing set was changed to 140 and 36 respectively. In
each replicate, the same training set and testing set were
used to perform the GBLUP and emBayesB predic-
tion, so the results would have sufficient comparabil-
ity for the two algorithms. Paired-t tests were used to
test whether predictive abilities estimated by two
algorithms had significant differences.
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The evaluation index was predictive ability obtained
by calculating the correlation between GEBV and ob-
served values in the testing set, i.e., r,). The relation-
ship between predictive ability and predictive accuracy
was deduced by Legarra et al. [20]:

gy) =Tgg) *h (4)

where y is observed values, ¢ is genomic estimated breed-
ing values (GEBV), g is true breeding values (TBV), and 4
is the square root of trait heritability. rg is the correl-
ation between GEBV and TBV, which is termed as predict-
ive accuracy. True breeding values, however, can only be
observed in simulation data. Therefore, we had to substi-
tute phenotypic data for true breeding values. Neverthe-
less, the predictive abilities still had comparability because
h could be considered as a constant in the same trait and
the same population.

In order to observe the changes of predictive abilities by
the sizes of training set, the training sizes were also chan-
ged from the level 100 to 400 (4 levels were used with 100
as a spacing) in BW and BL experiment. Because the
number of individuals was very small in n-3HUFA, the
training sizes affecting predictive abilities would not be
studied any longer. 20 replicates were also used in the
experiment. The empirical formula for predictive accuracy
was proposed by Daetwyler et al. [34]:

| NK s
"=\ NE M )
where M is the number of independent loci affecting a
trait. #” is the trait heritability which can be obtained
from REML algorithm. rg is derived from the formula
(4), ie, rgg=rgylh. To fit the regression equation,
Olrike et al. used least-squares curve-fitting method
[19]. In this study, we linearized the formula (5) to

derive a linear regression equation:

lrgg® M 1
reg’ HON

(6)

. 1-ri; 52
Here the assumption was that y was ﬁ and x was %,
gL

so we obtained a linear model y =kx with no intercept,
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where k = hMl According to formula (6), we could derive
how many individuals in training set were required to
reach an ideal predictive accuracy. The number of inde-
pendent loci (M) could be also derived from the equation.

Comparison of GS with GWAS

Although the objective of genomic selection is different
with GWAS, it is still informative to compare the signifi-
cant SNP loci which are analyzed by GWAS and calcu-
lated by GS, and it is helpful to find the best method of
pre-selecting SNPs for genomic prediction. All individ-
uals were used to perform GWAS analysis and to calcu-
late SNP effects, i.e., 500 individuals were used in BW
and BL while 176 individuals were used in n-3HUFA. A
linear regression model was used to perform the GWAS
analysis. Two algorithms, i.e, RRBLUP (GBLUP) and
emBayesB were still used to calculate the SNP effects.
We also compared the proportions of total additive gen-
etic variances (V,) explained by the most significant
SNPs by GWAS with that explained by the largest abso-
lute effects calculated by GBLUP and emBayesB. The
genetic variances explained by significant SNPs were also
estimated by REML algorithm [43]. Theoretically, gen-
etic variance of a locus decides the contribution to the
phenotypic variance, but when the genotype has been
standardized with mean 0 and variance 1, the absolute
SNP effect can reflect the contribution of a locus to
phenotypic variance [32].

Results

Heritability estimate

The heritability values estimated by algorithm REML were
0.604, 0.586 and 0.438 for trait of body weight, body
length and n-3HUFA, when the number of phenotypic re-
cords was 500, 500 and 176 respectively. The results were
very similar when heritability estimated by different num-
ber of phenotypic records (shown in Table 2).

Predictive abilities

Table 3 showed the means and standard errors of predict-
ive abilities estimated by GBLUP and emBayesB when
training sizes were 400 for BW and BL, and 140 for n-
3HUFA. The results showed that predictive abilities

Table 2 Heritability estimates by REML in different number of phenotypic records

Trait No. of phenotypic records
100 200 300 400 140
Body weight 0.561 (0.054) 0.625 (0.034) 0.620 (0.018) 0.619 (0.013)
Body length 0.555 (0.054) 0.607 (0.032) 0.580 (0.018) 0.596 (0.015)
n-3HUFA 0454 (0.026)

The results were average of 20 replicates. Standard errors of means were in the parentheses
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Table 3 Predictive abilities of GBLUP and emBayesB for three
quantitative traits

Predictive ability (mean = se)

GBLUP emBayesB
Body weight 0406 (0.020) 0371 (0.020)
Body length 0404 (0.017) 0.374 (0.013)
n-3HUFA 0.304 (0.042) 0.320 (0.032)

Predictive ability was the correlation between GEBV and observed values in
testing set. Training size was 400 for BW and BL, and 140 for n-3HUFA. The
results were average of 20 replicates

estimated by GBLUP were higher than that by emBayesB
in trait of body weight and body length. Through the
paired t-tests, the differences were extremely significant
(P<0.001) in body weight and significant (P =0.015) in
body length. However, the result was just the opposite in
n-3HUFA, i.e., predictive ability estimated by emBayesB
was higher than that by GBLUP, but the result of paired ¢
test did not show significant difference (P =0.496)
between the two algorithms.

Table 4 showed trend of the predictive abilities with
different number of individuals in training set. In gen-
eral, the increase of predictive abilities accompanied with
the increase of training sizes. In this study, we assumed
the formula (5) was appropriate for both GBLUP and
emBayesB algorithms. Combined with formula (6), we
obtained the curve fitting equations of predictive accur-
acies, which were shown in Table 5.

Results of GWAS, GBLUP and emBayesB

Figures 2, 3 and 4 showed the results of GBLUP,
emBayesB and GWAS. Y-axes represented the absolu-
tion values of SNP effects estimated by GBLUP and
emBayesB. The vertical lines indicated the significant
SNP loci analyzed by GWAS. The results showed that
significant SNPs found by GWAS tended to cluster to-
gether in some regions. By comparing the results of
three algorithms, we found that three algorithms could
not always found the SNPs associated with phenotypes
consistently. Using body weight as an example, all algo-
rithms could find coincident SNP loci associated with
phenotypes in chromosome 1, 6, 10, 11, 13 and 24.
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However, some significant loci (in chromosome 4, 8 and
23) were found by GBLUP and GWAS but not found by
emBayesB. Similarly, some significant loci (in chromo-
some 12, 15 and 16) were found by GBLUP and
emBayesB but not found by GWAS. The proportions of
total additive genetic variances explained by significant
SNPs (or SNPs with the largest absolute effects) were
shown in Table 6. We could find that the same number
of significant SNPs by GWAS explained the least pro-
portion of total additive genetic variance, and that by
emBayesB could explain the largest proportion (even
more than 100 % in n-3HUFA).

Discussion

Heritability estimation

Although the heritability estimated by different pheno-
typic records was very similar, the stability was poorer
when the number of phenotypic records used to esti-
mate heritability became smaller. For example, when
400 individuals had phenotypic records, the standard
error of mean for heritability estimation was 0.013 in
body weight, but the result became 0.054 when only 100
individuals had records. Therefore, we suggest using as
many individuals having phenotypes as possible to esti-
mate heritability.

Predictive abilities

The predictive abilities by GBLUP were slightly higher
than that by emBayesB in BW and BL, which was not
coincident with simulation results but coincident with
some real data. In most simulation results, the accur-
acies of Bayesian method were higher than that of
GBLUP [4, 32, 33]. However, the results in some real
data showed that the accuracies of GBLUP were simi-
lar to or even higher than that of Bayesian method
[10, 11, 19, 44]. One point we need to pay attention
to is that relatively small number (~50 or fewer) of
QTLs was used in simulation study [4, 32, 33, 37].
GBLUP, however, has no advantage when number of
QTLs is smaller. Therefore, we speculate more QTLs
(more than 50) affecting BW and BL exist in the gen-
ome of large yellow croaker. We think another reason
maybe the exponential distribution is not a suitable

Table 4 Predictive abilities of GBLUP and emBayesB in different number of phenotypic records

Trait Algorithm No. of phenotypic records
100 200 300 400
Body weight GBLUP 0315 (0.022) 0350 (0.023) 0.384 (0.021) 0.406 (0.020)
emBayesB 0.293 (0.019) 0.350 (0.021) 0.359 (0.020) 0.371 (0.020)
Body length GBLUP 0.284 (0.015) 0342 (0.019) 0375 (0.018) 0.404 (0.017)
emBayesB 0.268 (0.017) 0314 (0.017) 0356 (0.018) 0374 (0.013)

The results were average of 20 replicates. Standard errors of means were in the parentheses
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Table 5 Curve fitting equations of accuracies and required
training sizes to reach ideal accuracies

Trait Algorithm Equation Required size®

Body weight ~ GBLUP 60 = oS 1093
emBayesB 1) = 4/ TeNTs 1258

Body length GBLUP "a.9 =/ TS0 1246
emBayesB 1) =/ TS 1453

“Required training size when predictive accuracy reached 0.8

prior distribution in large yellow croaker. Maybe a
better distribution needs to be studied in this species.
However, the result was just the opposite in n-
3HUFA, which may be explained by the reason that
not many QTLs affecting n-3HUFA exist in genome.
Another evidence could support this viewpoint in
Table 6. Only 48 significant SNPs could explain most
(even more than 100 %) proportion of total additive
genetic variance. In view of the advantages in differ-
ent algorithms, we suggest doing a test before decid-
ing to use which algorithm to calculate marker effects
and GEBV. According to results of this research, we
suggest GBLUP is more suitable to perform genomic
prediction in body weight and body length in large
yellow croaker. The result of significance test in n-
3HUFA did not show significant difference between
the two algorithms. We think the reason may be rela-
tively small training sizes were used to perform gen-
omic prediction, which may be also the reason why
the standard errors of predictive abilities in n-3HUFA
were higher than that in BW and BL.
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According to the predictive accuracy equations shown
in Table 5, we can derive the training sizes required to
reach ideal accuracies. That is to say, at least 1000 indi-
viduals are needed to reach predictive accuracy of 0.8.
We think this is a very good result that only ~1000 indi-
viduals can reach a so high accuracy. The reason may be
high trait heritability and the consistent rearing environ-
ment. The number of independent QTL loci (i.e., M
value), was also observed from the equation, which was
far more than 50, which may support our speculation in
the above discussion.

Comparison of GWAS and GS

At the present time, it is quite expensive to perform gen-
omic selection in large yellow croaker breeding. The
genotyping of a candidate by GBS still costs more than 2
to 3 broodstock, so it is necessary to compare the results
of GWAS with GS, and find the best method of pre-
selecting SNPs for genomic prediction. Figures 2, 3 and
4 showed significant SNPs by GWAS tend to cluster to-
gether in specific regions. The reasons may be that
strong correlations exist between adjacent SNPs and
single-marker analysis was used by GWAS in this study.
When one SNP locus is correlated with phenotypes sig-
nificantly, the adjacent locus may show similar result.
Table 6 showed the significant SNPs by GWAS could
explain the least proportion of total additive genetic var-
iances, which is still caused by the clusters phenomenon.
Although 83 SNP loci with P-value<10™> in body
weight, many clustered significant SNPs just corre-
sponded to one QTL actually.
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Figures 2, 3 and 4 showed that the distributions of by GBLUP. We think the reason may be prior distribu-

SNP effects were very different between GBLUP and
emBayesB. The main reason is the different prior as-
sumptions. emBayesB assumes most loci having no
effects, and therefore compresses effects of most loci to
near zero. GBLUP, however, assumes all loci having
equal variance, and therefore QTLs seem to be every-
where in genome. Table 6 shows the largest absolute
SNP effects estimated by emBayesB can explain more
proportions of total additive genetic variance than that

tion of emBayesB highlights loci with large effects.
According to proportion of total additive genetic vari-
ance explained by significant SNPs (shown in Table 6),
we can speculate the number of QTLs in n-3HUFA is
fewer than that in BW and BL, which can offer a refer-
ence for using pre-selection of SNPs in genomic selec-
tion. Using n-3HUFA as an example, the largest absolute
effects by emBayesB can explain more than 100 % of
total additive genetic variance, which means the 48 SNPs
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Table 6 Proportions of additive genetic variances explained by significant SNPs or SNPs with large absolute effects

No. of SNPs* Variance (Proportiom)b Va©
GWAS GBLUP emBayesB
Body weight 83 0.187 (30.1 %) 0.387 (62.3 %) 0489 (78.7 %) 0621
Body length 43 0.175 (29.7 %) 0.356 (60.3 %) 0436 (73.9 %) 0.590
n-3HUFA 48 0.281 (63.9 %) 0.382 (86.8 %) 0454 (103.2 %) 0440

*The number of significant SNPs (or SNPs with the largest absolute effects) was selected to analyze additive genetic variance components
PAdditive genetic variance explained by significant SNPs and the proportion in total additive genetic variance

“Total additive genetic variance estimated by using all SNPs

is enough to perform genomic prediction in n-3HUFA.
It is reasonable that a portion of SNPs explain slightly
more than 100 % of total genetic variance, because not
all SNP loci are associated with the trait and the SNPs
with no effect may interfere with the estimation. Ulrike
et al. [19] have suggested pre-selection of SNPs can im-
prove predictive accuracies in genomic selection, which
means it is possible to obtain higher additive genetic
variance using a portion of SNPs.

GS in fish breeding

Through analyzing the data in the experiment, using
genome-wide markers to estimate genetic values is feas-
ible in large yellow croaker. However, it still has some
limitation to apply genomic selection in fish breeding.
The reason is high mortality rate in fish, which causes
genomic selection applied in fish is not the same as do-
mestic animals completely. For example, dairy cattle and
pigs can be selected in an early stage by using GEBV as
a reference because they have low death rates. Most of
fish, however, will die in the process of growth, which
leads to the result that an early-stage selection is not a
good scheme in fish breeding. If we want to select the
broodfish in the early stage, more fish are required to se-
lect to meet the quantity of adult broodfish, which
means more fish are required to be measured and geno-
typed. Therefore, the costs will increase a lot if an early-
stage selection is performed in fish genomic breeding.
The better way to save costs is selecting the broodfish in
adult stage. In this stage, the fish have relatively low
mortality, but the traits such as body size are also easy
to be measured, which means phenotypic selection is vi-
able for these traits. However, some traits such as meat
quality and disease resistance are not suitable to be mea-
sured in candidates, so phenotypic selection is not suit-
able in these traits. Therefore, we suggest genomic
selection is more suitable for some traits which cannot
be measured on candidates directly. Without doubt, the
selection age of fish is still in adult stage but not in early
stage. In addition, because of high cost of genotyping,
other methods such as pre-selection of significant SNPs
[45, 46] or using extreme phenotypic records [47] can be
considered in genomic prediction of fish breeding.

Conclusions

In this study, heritability estimates by REML were 0.604,
0.586 and 0.438 for trait of body weight, body length and
n-3HUFA respectively. The research showed that using
genome-wide sequence data to estimate genetic values was
feasible in large yellow croaker, which is helpful to promote
this technology to apply in fish breeding. GBLUP and
emBayesB had respective advantages on different traits, so
we suggest doing a test before deciding to use which algo-
rithm in specific trait in genomic selection. Combined with
the predictive accuracy equations, we derived that at least
1000 individuals in training set could reach a predictive ac-
curacy of 0.8 in body weight and body length. Three algo-
rithms, i.e, GBLUP, emBayesB and GWAS, cannot always
find significant SNPs associated with phenotypes consist-
ently. The significant SNPs by emBayesB could explain
the maximal proportion of total additive genetic variance,
while that by GWAS explained the minimal proportion,
which can offer a reference for pre-selection of SNPs in
genomic selection. Because of high mortality rate of fish
and high cost in genomic sequencing, genomic selection
may be more suitable for applying on the traits which can-
not be measured on candidates directly.
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