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Objective: The thalamus is a key node for sleep-wake pathway gate switching during

acute sleep deprivation (ASD), and studies have shown that it plays a certain role

in emotion changes. However, there are no studies on the association between the

thalamus and emotion changes in ASD. In this study, we used resting-state functional

magnetic resonance imaging (R-fMRI) to explore whether changes in the functional

connections between the thalamus and other brain regions are related to emotion

changes and further explored the function of the thalamus under total ASD conditions.

Method: Thirty healthy, right-handed adult men underwent emotional assessment

according to the Profile of Mood States Scale and R-fMRI scans before and after ASD.

The correlations between changes in functional connectivity between the thalamus and

other brain regions and emotion changes were then studied.

Results: Positive emotions and psychomotor performance were reduced, and negative

emotions were increased following ASD. The functional connections between the left

thalamus and left middle temporal gyrus, left inferior frontal gyrus, right thalamus, right

inferior temporal gyrus, left middle temporal pole gyrus, right calcarine, left cuneus,

left rectus and left medial superior frontal gyrus were significantly altered. Decreased

functional connectivity between left thalamus and left inferior frontal gyrus related to

emotion changes following ASD.

Conclusion: This study finds that functional changes in the thalamus are associated

with emotion changes during ASD, suggesting that the left thalamus probably plays an

essential role in emotion changes under ASD conditions.

Keywords: mood, functional connectivity, resting-state functional magnetic resonance imaging, thalamus, inferior

frontal gyrus, acute sleep deprivation
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INTRODUCTION

“Sleep deprivation” can be summarized as less sleep than is
usually required. It can be acute or chronic, with the effects
of a small amount of sleep deprivation accumulating over
days, weeks or longer (1). With the rapid development of
social modernization, people often actively or passively suffer
from the adverse effects of chronic sleep deprivation (CSD)
and acute sleep deprivation (ASD) (2, 3). Sleep deprivation
leads to a series of neurological and behavioral changes
that can significantly interfere with the brain’s cognitive and
emotional abilities. The short-term consequences of sleep
deprivation include increased stress response, physical pain,
decreased quality of life, emotional disorders and performance
impairment (4), while the long-term consequences of sleep
deprivation in healthy individuals include cardiovascular disease,
weight-related problems, metabolic syndrome, dyslipidemia, and
colorectal cancer (4). There is also an increase in all-cause
mortality among men suffering from sleep deprivation (4).
Furthermore, following sleep deprivation, brain function is
significantly impaired in terms of attention, decision-making,
spatial navigation, working memory and emotional and social
processing (5, 6).

It is well known that sleep plays a critical role in emotional
processing and regulation (5). Functional magnetic resonance
imaging (fMRI) studies have shown that sleep-deprived people
have altered emotional brain networks, mainly in the limbic
system (5). Compared with healthy people, the volume, activity
and functional connections of the amygdala, insula, cingulate
area and prefrontal lobe in patients with emotional disorders,
such as various types of anxiety and bipolar disorder, are
significantly changed, which further confirms that these are
the main brain areas responsible for the related emotions (7–
9). Correlations between these brain regions and emotion have
mainly been identified in studies of people with CSD, but a
growing number of studies show that ASD has a wide range
of effects on emotion (10, 11). Further research shows that the
amygdala, anterior insula, medial prefrontal cortex and anterior
cingulate cortex are also significantly altered under ASD, and
associated with emotion changes caused by ASD (6, 12). The
above research findings provide preliminary evidence that the
areas of the brain associated with emotion changes are largely the
same in both ASD and CSD.

All brain regions are affected by emotions (13). However, the
research on human brain by fMRI mainly focuses on the higher
cortical regions, and there are few studies on the involvement
of subcortical structures in emotional changes. As an important
structure involved in the sleep-wake pathway, the thalamus
has been shown to be involved in alert-related brain cognitive
functions (6). And in certain chronic progressive diseases such
as anxiety disorder and insomnia, the thalamus is involved in
the emotional neural networks. Research into the emotional
dysregulation circuit shows that the thalamus plays a particular
role in emotion changes (14, 15). Furthermore, studies have
shown that CSD (insomnia, etc.) can cause functional changes
in the thalamic-emotional core region (16, 17). To date, the
emotional role of the chronically sleep-deprived thalamus has

been documented, but the fact that the thalamus is involved
in emotion changes has not been adequately studied. At the
same time, there were almost no studies have investigated the
emotional role of the thalamus during ASD. While the vast
majority of studies show that the thalamus plays a key central
role in the sleep-wake pathway and involved in a variety of
brain cognitive functions (6, 18–21), and the thalamus is located
anatomically in the core area of the brain, Therefore, there is good
evidence to speculate that the thalamus may play a unique role in
emotion changes caused by ASD. However, ASD and insomnia
show extensive changes in the microstructure of gray matter and
share common but different neurobiological characteristics in
brain morphology (22). It is necessary to provide direct evidence
to test this hypothesis.

We hypothesized that the functional connections between the
thalamus and brain regions proven to be associated with emotion
would be altered following ASD, and the functional changes
between the thalamus and other regions would correlate with the
emotion changes. To test this hypothesis, we devised a within-
subject statistical design of 36 h total ASD, then used f-MRI to
assess whether changes in the functional connections between the
thalamus and other brain regions were correlated with emotion
changes under ASD conditions.

MATERIALS AND METHODS

Participants
We recruited 30 young male college students (right-handed,
age range: 20–30 years) and offered them a financial reward
to participate in this study. During the recruitment process,
we explained in detail the main purpose of the study and its
whole process, as well as the possible risks and countermeasures.
All subjects voluntarily signed their informed consent. Prior to
the beginning of the experiment, we invited qualified Chinese
specialists to conduct standardized physical examinations. The
main forms of medical examination were subjective and objective
physical examinations, as well as related self-reporting scale tests,
to exclude subjects who may have serious diseases or be at risk
of accidents during the experiment. The inclusion criteria we
set were as follows: ① No disease history of the circulatory
system or respiratory system, no nervous system structure or
function impairment, and no history of severe infectious disease,
mental disorder or sleep disorder; ② No colds or other diseases
in progress that may affect the experiment; ③ The subjects
had regular daily life and rest habits, and their score was <7
on the Pittsburgh Sleep Quality Index (PSQI) scale; ④ No
significant events leading to the possible emotional fluctuation of
the subjects had occurred within 1 month before the experiment;
⑤ Subjects were required to carry out their daily activities in
accordance with the standard procedures in the week before the
start of the experiment, and advised to refrain from consuming
stimulating beverages, carbonated beverages, tea, coffee and
certain foods, as well as refraining from smoking. The study
was approved by the Research Ethics Committee of Beihang
University (Beijing, China). We conducted it in strict accordance
with the protocol approved by the Ethics Committee, and strictly
followed the requirements of the Hellenic Declaration.
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Behavioral Measures
In this study, we used the Profile of Mood States Scale (POMS)
to assess emotion changes (23). The advantage of this scale
is that it can provide a reasonable and timely assessment of
emotion changes through changes in the score. It consists of
a questionnaire containing 65 items over six sections: anxiety,
anger, fatigue, depression, confusion, and vitality. The scores for
these items range from 0 (not at all) to 4 (very). According to
the scoring principle, the scores for the 65 items are added to
obtain the scores for the six sections. The top five sections form
the negative emotional state assessment, and the sixth section is
the positive emotional state assessment. The total score is the
sum of the top five sections minus the score for the sixth section.
The higher the negative emotion score, the more serious the
emotional disorder, while the higher the positive score, the better
the emotional state. In our study, Cronbach’s alpha coefficients
were satisfactory (Cronbach’s alpha is 0.909).

We used the Chinese version of the PSQI, which has good
psychometric properties (24). The PSQI is a self-reporting
questionnaire which measures sleep quality over the previous
month (25). Scores for each sleep item range from 0 (not at all)
to 3 (maximum dysfunction). The scores for the sleep items are
then added according to the coefficient to obtain the overall sleep
quality score. We classified PSQI scores of equal to or >7 as low
sleep quality.

Procedures
The design of the experiment is presented in Figure 1.

We experimented in the sleep laboratory of Beihang
University and the magnetic resonance room of the General
Hospital of the People’s Liberation Army of China. All subjects
participating in the experiment were divided into four batches
to monitor their status more accurately and reduce the bias
caused by an excessive number of subjects during the scale
assessment and R-fMRI scan. During the experiment, we ensured
that there were two experimenters (no fewer than one operator
with a medical qualification) to guide the subjects to complete the
relevant experiment contents and supervise their physical health
status and experiment cooperation degree.

After preparing for the experiment in their living quarters,
the subjects arrived at the laboratory at 8:00 on the first day
of the experiment. They wore exercise watches to record their
activity and sleep during the experiment. In the daytime of Day
1, they familiarized themselves with the experimental site and
completed the evaluation. From 22:00 on Day 1 to 8:00 on Day
2, the subjects slept for at least 8 h under the supervision of the
operator. After these preparations were completed, ASD started
at 8:00 on Day 2 and ended at 20:00 on Day 3, during which
time all subjects completed 36 h of continuous sleep deprivation.
During the experiment, subjects were allowed to carry out daily
activities, including playing games, reading, sitting, eating, and
chatting. During the whole experiment stage, especially during
the sleep deprivation stage, at least two experimenters were on
hand at the same time to monitor the status of the subjects,
thereby avoiding the occurrence of influencing factors such as
naps during the sleep deprivation period.

We performed two R-fMRI scans during rested wakefulness
(RW), and they were carried out at least 3 weeks apart to dull
the effects of the exercise. The R-fMRI scan during RW used the
same scan sequence as the R-fMRI scan during ASD and was
performed within the same period, while the subjects completed
their POMS evaluation immediately before each scan. The two
scans were performed by a 3T Siemens MAGNETOM Skyra
(Siemens Medical Solutions, Germany) located in the General
Hospital of the People’s Liberation Army. During each scan, the
T1 sequence was scanned first to obtain high resolution T1-
weighted anatomical images (176 images). Next, R-fMRI data
collection was performed for 8min (240 images per time). At
the beginning of the scan, the subjects were asked to lie on their
backs on an MRI bed with their heads fixed in a sponge and
bandage. During the scan, the subjects were told to close their
eyes, think of nothing and try to keep their heads and bodies
still. To ensure that the subjects were awake during the scan, the
operator communicated with them through a microphone before
each scan to remind them to stay awake, and they were again
asked if they were awake between scans of different sequences.
Throughout each scan, the operator monitored the subject’s body
movements and other states through the viewing window. After
each scan, the subjects were asked if they had been awake during
the scan.

Data Processing
We used CONN toolbox software (Version 18a, Neuroimaging
Informatics Tools and Resources Clearinghouse; http://www.
nitrc.org/projects/conn) and SPM software (Version 12,
University College London, http://www.fil.ion.ucl.ac.uk/spm) to
preprocess the R-fMRI images. The two types of software are both
cross-platform software based on MATLAB (Version R2018a,
MathWorks, Inc. United States). First, the T1-weighted images
underwent translation, segmentation and MNI normalization.
Second, the first 10 volumes of the functional images were
disregarded. Third, functional slice-timing correction and
subject motion estimation and correction were carried out. We
excluded all subjects whose mean head movements were more
than 2mm and 2◦. While in the remaining subjects, the images
were deleted if the head moved more than 0.5◦ or 0.5mm from
the adjacent images. Finally, functional indirect segmentation
and normalization were carried out. In the space standardization
step, the functional images were indirectly normalized to the
standard space through the corresponding structural images, and
the normalized bias correction is generated. The EPI template
was used to normalize the structural images directly into the
standard Montreal Neurological Institute (MNI) 152 standard
space (voxel size of 3 × 3 × 3mm). The full width at half
maximum in smoothing was 6mm, and the low frequency filter
was 0.01–0.08Hz. Fisher’s transformation was used to normalize
the distribution of variables (26, 27).

Functional Connectivity Analysis
A measure of functional connectivity between each pair of seed
regions was typically calculated by region of interest to the
region of interest (ROI-to-ROI) analysis. The seed regions to
be studied were selected using the CONN toolbox’s Automated
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FIGURE 1 | The design of the experiment. ASD, acute sleep deprivation; RW, rested wakefulness.

Anatomical Labeling (AAL), and the location of these seed points
was based on the details given by Tzourio-Mazoyer (28). A
total of 90 seed regions were selected through AAL (18 seeds
were removed from the cerebellar region). We then calculated
the functional connectivity of the left and right thalami to the
other seed regions separately for each subject. Next, Pearson
correlation analysis was performed on the time series of each
seed region. Finally, the Fisher Z-transformation was used to
transform the correlation coefficient of each voxel and smooth
the obtained data. After several corrections to the dataset, the
inter-condition effect was considered to be significant at p <

0.05, and the group-level false discovery rate (FDR) correction
p-value was <0.05.

Behavioral Measures and Correlation Analysis
SPSS (Version 21.0, IBM, Inc., USA) software was used to
process the collected POMS data and other demographic data.
First, descriptive statistics were carried out on each index, and
a normality test was carried out on each item result and total
POMS score. The measurement data was presented in the form
of mean ± standard deviation. Later, a paired sample t-test was
used for each section score and total POMS score before and after
ASD, and p< 0.05 was considered statistically significant. Finally,
the changes in functional connectivity coefficient between the
thalamus and various brain regions (p < 0.05, FDR-corrected)
were compared with the difference between POMS scores before
and after ASD. Under the premise that the p-value was <0.05, we
defined the correlation coefficients (r) ≤ 0.4 as low correlation,
0.4 < r ≤ 0.6 as moderate correlation, and 0.6 < r as
high correlation.

RESULTS

Initial Data Quality Assessment
In the demographic description, we gave a statistical description
of 28 subjects with complete data. They were all males with an

average age of 24.48 ± 2.57 years, average height of 175.93 ±

5.01 cm, and average Body Mass Index (BMI) of 23.64 ± 1.73.
Their PSQI scores were all <7, and their average score was 3.37
± 1.19.

Behavioral Measures and Correlation
Analysis
We used POMS to assess emotion changes before and after ASD.
These scores were in line with the normal distribution, and
a paired sample t-test was used to measure emotion changes.
Following ASD, there were statistically significant increases in
scores for anxiety (t = 2.635, p = 0.014), anger (t = 2.066, p =

0.049), fatigue (t = 5.217, p < 0.001) and confusion (t = 4.719,
p < 0.001), and there was a statistically significant decrease in
scores for vitality (t =−6.464, p < 0.001). The total POMS score
also showed a statistically significant increase (t = 6.215, p <

0.001). In addition, decrease in depression was not statistically
significant (Table 1).

The effect sizes of functional connectivity between the
thalamus and whole-brain ROIs significantly changed (p
< 0.05, FDR-corrected) under ASD > RW conditions are
shown in Table 2. The ROI-to-ROI analysis demonstrated
a decreased functional connectivity between the thalamus
and other brain regions mainly distributed in the frontal
temporal lobe, including the left middle temporal gyrus (l-
MTG), right middle temporal gyrus (r-MTG), left middle
temporal pole gyrus (l-MTPG), right inferior temporal gyrus
(r-ITG), left orbital inferior frontal gyrus (l-OrbIFG) and left
opercular inferior frontal gyrus (l-OperIFG). In contrast, an
increase in functional connectivity between the left thalamus
(l-Tha), left medial superior frontal gyrus (l-MSFG), right
thalamus (r-Tha), left cuneus (l-Cun) and right calcarine (r-
Cal) occurred during ASD. Figure 2 shows the ROI-to-ROI
functional connectivity of the left thalamus under RW, ASD
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TABLE 1 | POMS statistics: comparisons between RW and ASD (paired t-test, n = 28).

Mood RW ASD Mean (ASD > RW) SD t Sig. (2 tailed)

Confusion 13.04 ± 2.40 15.00 ± 2.85 1.96 2.20 4.72 <0.001

Anxiety 14.79 ± 3.67 16.29 ± 3.73 1.50 3.01 2.64 0.014

Depression 20.61 ± 6.37 22.21 ± 7.29 1.61 5.21 1.63 0.114

Anger 16.54 ± 5.39 18.32 ± 6.63 1.79 4.57 2.07 0.049

Vitality 27.57 ± 4.39 21.04 ± 7.17 −6.54 5.35 −6.46 <0.001

Fatigue 11.14 ± 3.14 15.82 ± 5.21 4.68 4.75 5.22 <0.001

Total score 48.54 ± 20.07 66.61 ± 25.44 18.07 15.39 6.22 <0.001

TABLE 2 | ROI-to-ROI functional connectivity statistics: comparisons between RW and ASD scans (ASD > RW, paired t-test, n = 28).

Target region Abbreviation AAL label MNI center t Uncorrected p-value FDR-corrected p-value

Left thalamus l-Tha Thalamus_L –12, –18, 8

Left medial superior frontal gyrus l-MSFG Frontal_Sup_Med_L −6, 49, 31 5.03 <0.001 0.003

Left middle temporal gyrus l-MTG Temporal_Mid_L −57, −34, 30 −4.41 <0.001 0.007

Left orbital inferior frontal gyrus l-OrbIFG Frontal_Inf_Orb_L −37, 31, −12 −3.81 <0.001 0.022

Right thalamus r-Tha Thalamus_R 12, −18, 8 3.35 0.002 0.045

Right inferior temporal gyrus r-ITG Temporal_Inf_R 53, −31, −22 −3.3 0.003 0.045

Left cuneus l-Cun Cuneus_L −7, −80, 27 3.26 0.003 0.045

Left opercular inferior frontal gyrus l-OperIFG Frontal_Inf_Oper_L −49, 13, 19 −3.19 0.004 0.045

Left middle temporal pole gyrus l-MTPG Temporal_Pole_Mid_L −37, 15, −34 −3.12 0.004 0.047

Right calcarine r-Cal Calcarine_R 15, −73, 9 3.04 0.005 0.049

Left rectus l-Rec Rectus_L −6, 37, −18 −3.01 0.006 0.049

Right thalamus r-Tha Thalamus_R 12, –18, 8

Right middle temporal gyrus r-MTG Temporal_Mid_R 56, −37, −1 −3.79 0.001 0.049

Left medial superior frontal gyrus l-MSFG Frontal_Sup_Med_L −6, 49, 31 −3.66 0.001 0.049

ROI, region of interest; FDR, false discovery rate; ASD, Acute sleep deprivation; RW, rested wakefulness; AAL, Automated Anatomical Labeling; MNI, Montreal Neurological Institute.

FIGURE 2 | ROI-to-ROI functional connectivity of left thalamus during RW, ASD, and ASD > RW conditions. False discovery rate-corrected (p < 0.05) for ROI-to-ROI

tests. The functional connectivity between l-Tha and l-OperIFG, l-OrbIFG, l-MTPG, l-Rec, l-MTG, and r-ITG decreased during ASD. The functional connectivity

between l-Tha and l-Cun, r-Cal, l-MSFG, and r-Tha increased during ASD. l-MSFG, left medial superior frontal gyrus; l-MTPG, left middle temporal pole gyrus;

l-OrbIFG, left orbital inferior frontal gyrus; l-OperIFG, left opercular inferior frontal gyrus; l-Rec, left rectus; l-MTG, left middle temporal gyrus; r-ITG, right inferior

temporal gyrus; r-Tha, right thalamus; l-Cun, left cuneus; r-Cal, right calcarine; ROI, region of interest; ASD, acute sleep deprivation; RW, rested wakefulness.
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FIGURE 3 | ROI-to-ROI functional connectivity of left thalamus during RW, ASD, and ASD > RW conditions. False discovery rate-corrected (p < 0.05) for ROI-to-ROI

tests. The functional connectivity between r-Tha and r-ITM, l-MSFG decreased decreased during ASD. r-Tha, right thalamus; r-ITM, right middle temporal gyrus;

l-MSFG, left medial superior frontal gyrus; ROI, region of interest; ASD, acute sleep deprivation; RW, rested wakefulness.

and ASD > RW conditions. Figure 3 shows the ROI-to-
ROI functional connectivity of the r-Tha under the three sets
of conditions.

The correlation analyses showed that emotion changes are
associated with changes in the functional connections between
the thalamus and parts of brain regions following ASD
(Figure 4). The decrease in functional connectivity between the
left thalamus and left orbital inferior frontal gyrus was correlated
with change in emotion: r (anxiety) = −0.446, p = 0.017;
r (confusion) = −0.516, p = 0.005; r (fatigue) = −0.420, p
= 0.026; r (total score) = −0.500, p = 0.007. The decrease
in functional connectivity between the left thalamus and left
opercular inferior frontal gyrus was also correlated with emotion
changes: r (anxiety) = −0.426, p = 0.024; r (total score) =

−0.396, p = 0.037. However, no extra significant correlation
was found between the alterations of functional connectivity and
emotion changes during ASD (Table 3).

DISCUSSION

The role played by the thalamus in emotion changes following
ASD remains unclear, although ASD can lead to emotion changes
(6, 12), and the thalamus has been shown to be involved in
emotion changes under CSD conditions. As an essential node in
the sleep pathway, the role of the thalamus in sleep is beyond
doubt (6). It is of great interest to explore the role of the
thalamus in emotion changes following ASD. Our study provides
preliminary evidence that the thalamus as a node is associated
with emotion changes. In this study, the results of POMS
confirmed that negative emotions significantly increased and
positive emotions significantly decreased before and after ASD.
Next, through R-fMRI analysis, significant changes were found in
the functional connections between the thalamus and the brain
regions that are mainly responsible for emotional processing.
Finally, through correlation analysis, significant changes in the
functional connections between the thalamus and related brain
regions were found to be closely related to emotion changes.

Emotion Changes Following ASD
Compared to the RW state, there were significant emotion
changes following ASD. The total score of the POMS scale and
its five parts of anxiety, confusion, anger, vitality and fatigue
all changed significantly. This is consistent with other relevant
studies (10, 11, 29–31). Furthermore, these results largely support
those of Short and Louca (32) and Babson et al. (31), which
show that ASD is sensitive to different emotional deficits under
different emotional states, and has a more significant impact on
confusion, energy and fatigue than on depression, anxiety and
anger (31, 32). Moderate sleep deprivation aggravates confusion,
vigor and fatigue, and emotional states such as anger and anxiety
often worsen with more severe sleep deprivation, especially after
complete sleep deprivation (31, 32). We agree with Mischel’s
reasoning about this changing trend and argue that people
with different emotional states are sensitive to sleep deprivation
differently. It’s important to note that our study found no
significant change in depressive mood following ASD. This is
consistent with relevant studies to a certain extent, as ASD is an
effective treatment for depression, with well-documented efficacy
around 50% (33, 34). This may explain the absence of significant
changes in depression in healthy subjects following ASD. Besides,
our subjects within each group knew each other and did not
undergo high-intensity experimental content, which may have
reduced the degree of specific negative emotion changes such as
depression during the experiment.

Changes in Brain Functional Connectivity
The functional connectivity between the thalamus and other
brain regions was significantly changed following ASD, and
these regions are mainly located in the frontal and parietal
cortex which are involved in almost all functions related to
emotion (5–7, 35). We observed significantly changed functional
connections between the thalamus and the left inferior frontal
gyrus, left middle temporal gyrus, right middle temporal gyrus,
right inferior temporal gyrus and left medial superior frontal
gyrus, all of which are involved in emotional function to
some extent. Actually, almost the entire brain network is

Frontiers in Neurology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 642411

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Functional Connectivity With Sleep Deprivation

FIGURE 4 | Relation of functional connectivity between left thalamus and other brain regions to emotion changes following acute sleep deprivation (ASD > RW, n =

28). The decrease in functional connectivity between l-Tha and l-OperIFG (A), between l-Tha and l-OrbIFG (D) was significantly negatively correlated with the Change

of total score of the POMS. The decrease in functional connectivity between l-Tha and l-OperIFG (B), between l-Tha and l-OrbIFG (C) was significantly negatively

correlated with the change of anxiety. The decrease in functional connectivity between l-Tha and l-OrbIFG (E,F) was significantly negatively correlated with the change

of confusion and fatigue. FC, functional connectivity; ASD, acute sleep deprivation; RW, rested wakefulness; l-Tha, left thalamus; l-OperIFG, left opercular inferior

frontal gyrus; l-OrbIFG, left orbital inferior frontal gyrus.

TABLE 3 | Correlation between changes in functional connectivity and changes in POMS (n = 28).

Mood Brain regions (changed to the left thalamus)

l-MSFG l-MTPG l-OrbIFG l-OperIFG l-Rec l-MTG r-ITG r-Tha l-Cun r-Cal

Confusion −0.117 0.041 −0.516* −0.116 −0.158 0.022 0.031 0.181 0.335 0.109

Anxiety −0.253 0.114 −0.446* −0.426* −0.123 −0.277 −0.26 0.278 0.368 0.052

Depression −0.115 −0.096 −0.199 −0.315 −0.097 −0.252 −0.029 0.292 0.385* 0.064

Anger −0.114 0.161 −0.172 −0.242 0.12 −0.206 0.039 0.271 0.114 0.017

Vitality 0.285 −0.07 0.261 0.15 0.245 0.009 −0.067 −0.137 0.208 −0.147

Fatigue −0.176 −0.163 −0.420* −0.21 −0.257 −0.249 −0.143 0.159 0.192 0.207

Total Score −0.292 0.018 −0.500* −0.396** −0.208 −0.277 −0.066 0.356 0.271 0.167

Pearson correlation analysis: *p < 0.05 and 0.4 < r ≤ 0.6, moderate correlation; **p < 0.05 and r ≤ 0.4, low correlation.

l-MSFG, left medial superior frontal gyrus; l-MTPG, left middle temporal pole gyrus; l-OrbIFG, left orbital inferior frontal gyrus; l-OperIFG, left opercular inferior frontal gyrus; l-Rec, left

rectus; l-MTG, left middle temporal gyrus; r-ITG, right inferior temporal gyrus; r-Tha, right thalamus; l-Cun, left cuneus; r-Cal, right calcarine.

involved in emotional functions (36), and sleep deprivation can
reliably trigger changes in negative emotional processes including
irritability, anxiety, aggression, andmood swings (6). Meanwhile,
although the thalamus is an essential node of wakefulness
switching in the sleep-wake pathway, we noticed no significant
change in the functional connections between the thalamus
and the amygdala, an emotion-processing region of the limbic
system which is susceptible to ASD (6, 37). These changes in
functional connections between the thalamus and other brain
regions associated with emotion changes strongly suggest that the

thalamus may be involved in emotion changes to some extent.
This may support the idea that in emotional experience and the
perception of a set of discrete categories of emotion, a group of
interactive brain regions is usually involved in emotional and
non-emotional basic psychological operations (37).

Relation of Altered Functional Connectivity
to Emotion Changes
Our study of the relation of altered functional connectivity
to emotion changes further confirms that the thalamus is

Frontiers in Neurology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 642411

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Li et al. Functional Connectivity With Sleep Deprivation

involved in emotion changes following ASD. It was found
that the functional connections between the left thalamus and
left orbital inferior frontal gyrus were negatively correlated
with the total POMS score and confusion, anxiety and fatigue.
The orbital frontal gyrus consists of medial ventral parts of
the superior, middle and inferior frontal gyrus. It processes
emotional responses to internal cues and modulates emotions
and rewards in the decision-making process. In particular, the
left orbital inferior frontal gyrus is closely related to emotion
changes, and the impairment of the orbital frontal regulation of
limbic emotional processing is considered the cause of the bipolar
disorder (38, 39).

Our study also observed that the functional connections
between the left thalamus and left opercular inferior frontal
gyrus were negatively correlated with the total POMS score and
anxiety (Table 3). The left opercular inferior frontal gyrus is an
essential area for language processing (40), and the relatively
few relevant studies have pointed out that there is a specific
correlation between the left opercular inferior frontal gyrus and
social anxiety disorder (15, 41–43).

The above results show that the functional connections
between the left thalamus and left inferior frontal gyrus are
correlated with emotion changes following ASD, especially
anxiety (Figure 4). The inferior frontal gyrus is comprised of the
orbital inferior frontal gyrus, triangular inferior frontal gyrus and
opercular inferior frontal gyrus (44). The study found significant
changes in frontal lobe function during sleep deprivation (45),
and certain studies have suggested that functional changes in the
left inferior frontal gyrus during sleep deprivation are associated
with anxiety, depression and mood swings (7, 43, 46, 47). Given
the various functions of the left inferior frontal gyrus, it is difficult
to distinguish whether it is the responsible center or relay station
of emotion changes according to the existing research, but it is
clear that the left inferior frontal gyrus is an important hub of the
emotional pathways.

The left thalamus engages in a variety of emotion changes
presented in many diseases such as anxiety disorder, bipolar
disorder, posttraumatic stress disorder, major depressive
disorder, and hyperalexithymia (8, 48). Patients with high
stress are specifically associated with lesions in the left
thalamus (49) since both the left thalamus and left inferior
frontal gyrus are involved in a variety of emotion changes,
and the inferior frontal gyrus interacts closely with the
thalamic nuclei (44). Furthermore, studies have suggested that
CSD is characterized by structural and functional changes
between the thalamus and left inferior frontal gyrus (50–
52). Meanwhile, the functional connections between the
thalamus and frontal lobe seem sensitive to mild sleep-wake
changes (53) which are similar to those observed following
ASD in our study. Most importantly, our experiment shows
that the functional connections between the left thalamus
and left inferior frontal gyrus are strongly associated with
emotion changes such as anxiety. Taken together, there
is sufficient preliminary evidence to demonstrate the
involvement of the thalamus in emotion changes induced
by ASD.

Furthermore, although the functional connections between
the bilateral thalamus and medial superior frontal gyrus
decreased, there was no clear correlation between this decrease
and emotion changes. The medial superior frontal gyrus,
one of the most important brain regions in the emotional
network, showed altered functional connections with the bilateral
thalamus during ASD, but this did not seem to be the leading
cause of the emotion changes. Meanwhile, our results showed
that the functional connections between the thalamus and
other brain regions mainly responsible for emotion were not
significantly changed following ASD, which further suggests that
the brain regions affected by ASD and those affected by CSDmay
not be entirely consistent.

We further speculate that the emotion changes under
ASD related to the left inferior frontal gyrus and thalamus
are not entirely consistent with the traditional emotional
network. The thalamus has been observed to participate in
a variety of functional networks that have different response
patterns (54). This suggests that functional tissues allow
spatially overlapping networks of resting states of the brain,
facilitating the description of various interpersonal relationships
between overlapping regions and different functional systems
in other regions of the brain (54). This partly explains the
decreased functional connections between the left thalamus
and left inferior frontal gyrus associated with emotion changes
after sleep deprivation. It is also possible that there is a
network mechanism for new emotion changes in the context
of ASD.

In summary, our study finds that functional changes in
the thalamus following 36 h of total ASD are associated
with emotion changes. The changes in functional connection
between the left thalamus and left inferior frontal gyrus were
negatively correlated with emotion changes, and the thalamic-
related emotion regulation circuit was affected. This means
that the left thalamus plays a vital role in emotion changes
following ASD.

LIMITATIONS OF THE STUDY

First, the subjects of our study were all young male men
limited to the experimental conditions, and literature has pointed
out that gender may have different effects on emotional state
(e.g., depression) during sleep deprivation (55). Gender and
age may affect the accuracy of the experimental conclusion, we
should take the gender differences into consideration in future
fMRI studies, especially the treatment of brain-related diseases.
We will build on the present study and refine our study in
future studies to cover left-handedness and sleep deprivation
in women. Second, the thalamus is a big ROI in AAL, and
calculations based on this seed point may be general. However,
for the selection of ROI in AAL, we mainly considered that this
template was widely used, especially in the previous thalamic
research articles. Therefore, we chose this conservative seed
point in this exploratory study. Furthermore, we will study the
function of the thalamus by using a more detailed method
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in further studies to further improve this conservative but
robust conclusion.
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