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The innervation of skeletal myofibers exerts a crucial influence on the maintenance
of muscle tone and normal operation. Consequently, denervated myofibers manifest
atrophy, which is preceded by an increase in sarcolemma permeability. Recently, de novo
expression of hemichannels (HCs) formed by connexins (Cxs) and other none selective
channels, including P2X7 receptors (P2X7Rs), and transient receptor potential, sub-family
V, member 2 (TRPV2) channels was demonstrated in denervated fast skeletal muscles.
The denervation-induced atrophy was drastically reduced in denervated muscles deficient
in Cxs 43 and 45. Nonetheless, the transduction mechanism by which the nerve represses
the expression of the above mentioned non-selective channels remains unknown. The
paracrine action of extracellular signaling molecules including ATP, neurotrophic factors
(i.e., brain-derived neurotrophic factor (BDNF)), agrin/LDL receptor-related protein 4
(Lrp4)/muscle-specific receptor kinase (MuSK) and acetylcholine (Ach) are among the
possible signals for repression for connexin expression. This review discusses the possible
role of relevant factors in maintaining the normal functioning of fast skeletal muscles and
suppression of connexin hemichannel expression.
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INTRODUCTION
The control of skeletal muscle function by the nervous system
has been of interest to researchers for more than 100 years in
studies examining diverse aspects from the effects of mechanical
loading to functions of specific molecular signals (Baldwin et al.,
2013). The nervous system exerts control over skeletal muscles
by two mechanisms: (1) neuromotor control, by which mus-
cle contraction is initiated by nerve impulses generated in the
brain cortex or the brainstem, depolarization of the sarcolemma
and electromechanical coupling; and (2) neurotrophic control,
which is independent of the electrical activity of motoneu-
rons, and depends on the release of soluble factors from the
nerve terminals of motor neurons at the neuromuscular junction
(NMJ).

The importance of neural influences on skeletal muscle is
evident from the rapid and severe muscular atrophy that occurs
whenever there is loss of neural continuity (e.g., due to CNS
injury, or the transection or compression of a nerve) (Tomanek
and Lund, 1973; Zeman et al., 2009); the ensuing atrophy is
considerably more rapid than that from other etiologies such
as immobilization (Tomanek and Lund, 1974), cachexia (Dell,
2002; Tisdale, 2002), malnutrition (Morley, 2012), severe burns
(Wu et al., 2010), aging (Demontis et al., 2013), dystrophies
(Rahimov and Kunkel, 2013), and myasthenia gravis (Keesey,
2004; Ishii et al., 2005). Muscle atrophy results in great extent from
accelerated turnover of proteins by the ubiquitin-proteasome
pathway, often coupled with diminished rates of protein syn-
thesis (Glass, 2003). Critical roles for signaling by myostatin,

NF-kB, and FoxO1 and FoxO3A have been defined and have
been reviewed in detail (Rüegg and Glass, 2011; Jackman et al.,
2013).

Application of electrical stimulation to nerves to elicit mus-
cle contractions can prevent or largely reverse muscle wasting
due to paralysis indicating the critical role of muscle contrac-
tion in suppressing the signaling responsible for muscle atrophy
(Dudley-Javoroski and Shields, 2008; Kim et al., 2008). There is
also a vital role for presence of an intact lower motor neuron
and NMJ, as demonstrated by findings of slowed muscle atro-
phy after spinal isolation (a variant of spinal cord injury, SCI)
as compared to nerve transection (Hyatt et al., 2003). On the
other hand, denervated muscle after temporary sensory nerve
innervation, which provides support to the denervated muscle,
improves functional recovery (Bain et al., 2001; Zhao et al.,
2004).

One consequence of nerve transection is increased mem-
brane permeability, reduced membrane potential, and increased
membrane excitability. Most of these changes have recently
been proposed to result from the de novo synthesis and
insertion of connexin 39, 43 and 45 channels into the sar-
colemma, which in turn have been found to mediate atrophy
of fast skeletal muscle (Cea et al., 2013). This review compiles
and discusses the information on the influence of the ner-
vous system on skeletal muscles and their atrophy, and intro-
duces the current state of knowledge regarding mechanisms
by which the nervous system regulates skeletal muscle and its
function.
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MUSCULAR ATROPHY INDUCED BY DENERVATION
When muscle is denervated due to injury of lower motor neu-
rons there ensues a flaccid paralysis and rapid atrophy with
reduction in muscle mass, strength and myofiber diameter;
apoptosis of myofiber occurs (Siu and Alway, 2005) together
with loss of muscle fibers (Tews, 2002). Most reports indi-
cate that as early as 7 days post-denervation there is a signif-
icantly decreased diameter of myofibers in mice (Bruusgaard
and Gundersen, 2008; Cea et al., 2013), rats (Pellegrino
and Franzini, 1963) and guinea-pigs (Tomanek and Lund,
1973).

It is well documented that the axonal stump that remains
after nerve injury undergoes a degenerative process known as
Wallerian degeneration (Salzer and Bunge, 1980). However, the
axonal stump maintains some physiological activity on skeletal
muscles for up to 1 day. Pioneering investigations in denervation
showed that there is a direct relationship between the length of the
axonal stump and time course of failure of the stump to transmit
impulses to the muscle (Eyzaguirre et al., 1952; Gutmann et al.,
1955; Birks et al., 1960). The axonal stump was demonstrated
to retain the ability to generate spontaneous miniature end-plate
potentials (MEPPs) and end-plate potentials (EPPs) that evoke
muscle contraction for 8–10 h. Failure of the stump to generate
MEPPs is preceded by a gradual decrease in their frequency, while
EPPs fail abruptly (Miledi and Slater, 1970). In addition, it was
established that the ability of the stump to transmit impulses
is prolonged by about 45 min for each additional centimeter in
the axonal stump, suggesting that there is a direct relationship
between the length of the axonal stump and the transmission
of impulses to the muscle (Miledi and Slater, 1970). Similarly,
the axonal stump length also influences the onset of muscular
disorders such as fibrillation and hypersensitivity to acetylcholine
(Ach; Luco and Eyzaguirre, 1955). This finding suggests that there
is transport and release of factor(s) from the axonal stump, which
ultimately are depleted as axonal reserves are consumed by the
myofibers. This idea was strengthened with a clinical observation
of weakness and muscle atrophy after accidental overdose of
vincristine, which blocks axonal transport (Maeda et al., 1987).
Together, these observations indicate need for renewal of the
synaptic machinery of the nerve endings responsible for the
MEPPs and EPPs.

The onset of fibrillation potentials in denervated muscles
(Luco and Eyzaguirre, 1955; Hník and Skorpil, 1962), usually
coincides with the reduction of resting membrane potential (Ware
et al., 1954; Thesleff, 1963; Albuquerque and Thesleff, 1968), and
was one of the first changes described; it has been suggested
that fibrillation is the result of membrane depolarization (Ware
et al., 1954; Li, 1960; Gage et al., 1989). However, there is no
conclusive evidence about the origin of these alterations or their
interrelationship.

The membrane depolarization after denervation is associated
with several changes in ion current, permeability and concentra-
tions. During the first post-denervation week, there is an increase
in intracellular Na+ concentration, a decrease in intracellular K+

concentration, and an increase in total calcium content, as well
as increased Na+ permeability (PNa+) and Na+ conductance, and
decreased PK+ (Purves and Sakmann, 1974b; Picken and Kirby,

1976; Smith and Thesleff, 1976; Kotsias and Venosa, 2001). This
can be explained in part by the massive expression of ion channels
such as cardiac-type voltage-gated Na+ channels (Sekiguchi et al.,
2012), fetal acetyl choline receptor (Emmanouilidou et al., 2010)
isoform and associated hypersensitivity to ACh (Rosenblueth
and Luco, 1937), the tetrodotoxin (TTX) Na+-resistant channels
(Harris and Thesleff, 1971), hemichannels (HCs) formed by
connexins (Cxs 39, 43, and 45; Cx HCs), pannexin1 (Panx1)
channels, purinergic ionotropic P2X7 receptors (P2X7Rs), tran-
sient receptor potential, sub-family V, member 2 (TRPV2), all
of which are channels that are found at high levels in the sar-
colemma within the first week after denervation (Cea et al.,
2013). There is also increased expression of the cardiac Ca2+

permeable dihydropyridine receptor isoform, but this occurs at
25 days post-denervation (Péréon et al., 1997), and thus is not
directly related to the onset of resting membrane potential decay.
Recently, it was demonstrated that absence of two Cxs (43 and
45) significantly decreased the loss of myofiber size in muscles
studied at day 7 post-denervation and prevented activation of the
p65 subunit of NF-kB and up regulation of pro-inflammatory
cytokines (TNF-α and IL-1β) (Cea et al., 2013). This finding
raises the question of whether de novo expression of Cxs is an
upstream response to many of the changes observed in myofibers
after denervation. If so, their expression and activation might be
somehow regulated by the innervation state or activity of the
myofibers.

MUSCULAR ATROPHY INDUCED BY SPINAL CORD INJURY
The disruption of continuity of the nervous system at the level of
upper motor neurons may occur as a consequence of neurological
conditions such as stroke, multiple sclerosis, or injury to the
spinal cord (SCI) and acutely results in paralysis and atrophy of
muscles; in SCI, affected muscles are those innervated by motor
neurons arising from spinal cord segments below the level of the
injury (Shields and Dudley-Javoroski, 2007; Qin et al., 2010).
These neurological conditions result in diverse abnormalities,
including spastic paralysis (Maynard et al., 1990; Sköld et al.,
1999), weakness (Thomas et al., 1997), and extensor plantar
responses. In SCI the lower motor neurons remain intact (Kaelan
et al., 1988; Bjugn et al., 1997) but deterioration of motor neuron
arborization and motor endplates occurs. Very heterogeneous
NMJ subgroups (pre and post synaptic) are observed, with
some present massive sprouting of nerve terminals, some loss
of concentrated clusters of ACh receptors (AChRs) and others
remaining intact (Burns et al., 2007); neuromuscular transmis-
sion is impaired (Ollivier-Lanvin et al., 2009). While denervation
rapidly results in flaccid paralysis and late fibrillation, SCI initially
presents as spinal shock and flaccid paralysis and is followed
by the development over a period of several weeks or more of
hyperreflexia and spasticity (Ditunno et al., 2004; Harris et al.,
2006). Following SCI there ensues a brisk and extensive atro-
phy of skeletal muscle in mice, rats, and humans (Qin et al.,
2010). In rodents, transection of the spinal cord, which results
in complete loss of volitional activation of motor neurons arising
below the anatomical level of the SCI, causes hindlimb muscle
atrophy by as much as 40–60% (Ung et al., 2010; Wu et al.,
2012). Similarly, muscle biopsy studies in humans suggest that
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following SCI, muscle fibers atrophy by 27 to 56% within the
first 6–18 months after injury (Castro et al., 1999). These changes
are associated with marked reductions in contractile force and
fatigue resistance, loss of slow- and fast-twitch oxidative fibers,
and diminished levels of enzymes for oxidative phosphorylation
(Qin et al., 2010). It has been shown that in muscle from SCI
rats studied at 56 days after the onset of paralysis, there are
elevated sarcolemmal levels of Cxs 39, 43 and 45, and Panx 1
(Cea et al., 2013), which as noted above stimulates activation of
the p65 subunit of NF-kB and drives muscle atrophy in muscle
paralyzed by nerve transection. These findings suggest that ele-
vation of membrane hemichannel expression may be involved in
initiating muscle atrophy after SCI, and other neurological disor-
ders that spare lower motor neurons such as stroke or multiple
sclerosis.

ELECTRICAL STIMULATION REVERSES MUSCLE ATROPHY
Evidence supporting the view that the lack of neuromotor
activity is responsible for the characteristics of muscle atrophy
comes from the experiments with electrical stimulation (Hník
et al., 1962; Salmons et al., 2005; Adami et al., 2007). After
denervation, the early initiation functional electrical stimula-
tion (FES) reverses the fibrillation potentials (Jones and Vrbová,
1970; Purves and Sakmann, 1974a), ACh hypersensitivity (Lomo
and Rosenthal, 1972; Lomo and Westgaard, 1975), and TTX-
resistant Na+ channel expression (Award et al., 1965). However,
it does not prevent loss of membrane potential (Squecco et al.,
2009). In SCI, loss of muscle mass is also reversed by FES
(Scremin et al., 1999). When used for extended periods, FES
greatly increases muscle volume, strength and endurance, and
the expression of slow myosin heavy chain isoforms (Dudley-
Javoroski and Shields, 2008; Qin et al., 2010). It was recently
demonstrated that muscle responds rapidly to FES with the
greatest number of gene expression changes occurring within
the first 1–3 days after initiating electrical stimulation (Ma
et al., 2007; Wu et al., 2013). Genes regulated by FES included
those for nicotinic AChRs (Adams and Goldman, 1998; Wu
et al., 2013), suggesting remodeling of NMJs, possibly to support
more efficient neuromuscular transmission. A striking difference
between the effects of FES on chronically paralyzed muscle of
rats or humans, and physical activity in the absence of SCI
is the delayed and impaired upregulation of genes, support-
ing oxidative phosphorylation in response to FES (Rochester
et al., 1995; Wu et al., 2013). Whether this reflects an effect
of a non-physiologic pattern of neural and neuromuscular acti-
vation, improperly organized signaling molecules at the NMJ,
or impaired mechanisms downstream of AChR activation, such
as absence of key transcription factors or slowly reversible
epigenetic modifications, is unclear. Eventually, more normal
gene expression responses are induced in humans by FES, sug-
gesting that the deficit, regardless of its cause, is reversible.
Intriguingly, even brief periods of FES are sufficient to pre-
vent muscle atrophy after SCI (Baldi et al., 1998; Kim et al.,
2008), suggesting that ACh actions on skeletal muscle per-
sist long after the membrane depolarization and contraction
have ceased. The nature of these persistent effects remains
unclear.

CONNEXINS AND SKELETAL MUSCLE
Connexins are membrane proteins that form poorly selective
channels in the cellular membrane that are also called HCs or
connexons. Classically, an HC forms an axially aligned complex
with another HC present in the membrane of an adjacent cell to
form an intercellular pore (gap junction channel), which directly
connects the cytoplasm of adjoining cells (Sáez et al., 2005).
More recently, HCs have been found to connect the intra and
extra-cellular compartments, allowing transfer of ions such as
Na+ (Li et al., 2001), K+ (Wallraff et al., 2006), and Ca2+ (Li
et al., 2001; Sánchez et al., 2009; Schalper et al., 2010; Fiori
et al., 2012), entry of nutrients such as glucose (Retamal et al.,
2007), release of metabolic products such as glutathione (Rana
and Dringen, 2007), as well as of autocrine and paracrine signals
such as ATP (Stout et al., 2002), NAD+ (Bruzzone et al., 2001),
cADPR (Song et al., 2011), IP3 (Gossman and Zhao, 2008),
glutamate (Ye et al., 2003), and prostaglandin E2 (Cherian et al.,
2005).

Myoblasts express Cxs and form gap junctions that are essen-
tial for development during early and late stages of myogenesis
(Constantin and Cronier, 2000). These gap junctions are likely
to coordinate gene expression and metabolic responses among
differentiating myoblasts (Kalderon et al., 1977; Dennis et al.,
1981; Constantin and Cronier, 2000; Araya et al., 2003, 2004;
von Maltzahn et al., 2004; Belluardo et al., 2005). In the terminal
stage of myogenesis there is down regulation of Cx expression
(Armstrong et al., 1983; Proulx et al., 1997; Constantin and
Cronier, 2000), and the progressive decline of electrical cou-
pling between myofibers (Dennis et al., 1981; Ling et al., 1992).
Connexins are absent in normal skeletal muscle fibers but they
have been detected in myofibers of adult muscles undergoing
regeneration after injury (Araya et al., 2004; von Maltzahn et al.,
2004; Belluardo et al., 2005) and in the sarcolemma of muscle
fibers at 7 days post-denervation or 56 days after SCI (Cea et al.,
2013). Studies of denervation atrophy in mice deficient for skeletal
muscle Cx43 and Cx45 have also demonstrated important roles
for these HCs in the signaling through which atrophy occurs. As
noted above, the double knockout reduced denervation atrophy
by ∼70% for fast muscles at 7 days associated with complete
inhibition of the activation of the p65 subunit of NF-kB, which
as mentioned above, has been shown to be a critical regulator
of denervation atrophy. To summarize, Cxs are expressed during
myogenesis, when muscle cells are not innervated, disappear
within few days after birth, when muscle cells are innervated,
rapidly emerge after denervation or paralysis due to upper motor
neuron injury, and mediate key signals responsible for denerva-
tion atrophy.

These findings strongly suggest that innervation and/or neu-
romuscular activity suppress Cx expression in the sarcolemma
of adult. The mechanism(s) that controls the expression of Cxs
in skeletal muscle is, however, unknown, and the only existing
evidence relates to the process of myogenesis and points to
microRNAs (miRNAs). Anderson et al. showed that miRNA-206
down-regulates Cx43 after birth (Anderson et al., 2006), and that
this miRNA is up-regulated in turn by the myogenic transcrip-
tion the factors myogenin and MyoD which promote myogenic
commitment (Rao et al., 2006). In adulthood, miRNA-206 is
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FIGURE 1 | Neuronal involvement in muscular atrophy: proposed
model. (1) Injury of upper- or lower motor neuron. (2) Repression of
connexin expression by motor neuron through an unknown mechanism is
interrupted. (2a) neurotrophin signaling; (2b) AChR signaling; ACh:
acetylcholine; AChR: acetylcholine receptor. ATP co-released with ACh
increases AChR activity. (2c) agrin/Lrp4/APP/MuSK signaling; MuSK:
Muscle-Specific Kinase; Dok-7: docking protein-7; Lpr4: LDL

receptor-related protein 4; APP: amyloid precursor protein. (3)
Hemichannels formed by connexins are expressed; Cx HC: connexin
hemichannel. (4) Increases probability of opening of Cx HC by an
unknown mechanism. (5) Entering Ca2+ and Na+ ions through
non-selective ion channels such as Cx HC (6), increased cytoplasmic
resting concentrations of these ions. (7) Protein unbalance. (8) Reduction
in the membrane potential is generated.

dramatically induced in a mouse model of ALS, and delays the
disease progression and promotes regeneration of neuromuscu-
lar synapses (Williams et al., 2009). However, it is known that
transcription factors responsible for up-regulation of miRNA-
206, MyoD and myogenin, show an increase in expression within
the first week after denervation (Nikolic et al., 2010) and SCI
(Dupont-Versteegden et al., 1998), which raises questions about
the importance of miRNAs as regulators of the expression of
Cxs during adulthood, since as mentioned above, Cxs are up-
regulated under conditions of loss of nerve continuity. This
situation suggests the existence of other mechanisms that reg-
ulate expression of Cxs in the adult skeletal muscle (Oyamada
et al., 2005). The above-mentioned findings that the expression
of Cxs in skeletal muscles is inhibited after birth, long after
innervation occurs, but at a time when a marked increase in
neuromotor activity is required, indicates that Cx expression
levels are most likely influenced by a neuromotor activity-related
mechanism.

MECHANISMS THAT COULD MAINTAIN THE LOW
EXPRESSION OF Cxs IN ADULT SKELETAL MYOFIBERS
The importance of Cxs throughout the life of the myofibers is
rather well established, and there is considerable evidence that
the neuromotor activity is related to their down-regulation in
adulthood. However, the mechanism responsible for this regu-
lation is not known. In this section we will discuss the possible
mechanisms related to this issue (Figure 1).

ACETYLCHOLINE (ACh)
The most studied function of ACh is its role in the conversion
of a neuron electrical signal into a chemical signal in the NMJs
to produce a mechanical response in the muscle. However, there
is also another function that is less well known, but equally
important regarding the development and maintenance of the
NMJ.

During postsynaptic differentiation, AChR clustering is initi-
ated by a nerve-independent mechanism (Lin et al., 2001; Yang
et al., 2001). The muscle-specific receptor tyrosine kinase (MuSK)
together with Wnt ligands are involved in the prepatterning of
adult AChRs, organizing them into concentrated clusters (Jing
et al., 2009). From the time that a motor neuron innervates a
myofiber, ACh through the cyclin-dependent kinase 5 (Cdk5)
pathway disperses the AChR clusters that failed to be positioned
with the nerve terminal (Fu et al., 2005; Lin et al., 2005), and
remains as negative signal in the formation of AChR clusters
in adulthood (Misgeld et al., 2005). The Cdk5-mediated reg-
ulation of AChR localization is poorly understood; we know
however that the intermediate filament protein nestin interacts
with Cdk5 and is required for ACh-induced association of p35,
the co-activator of Cdk5, with the muscle membrane (Yang et al.,
2011).

At level of the synaptic junction, blocking the release of the
synaptic vesicle with botulinum neurotoxin (Kinder et al., 2001;
Jirmanova et al., 1964), or blocking of AChR with alpha bun-
garotoxin (Ringel et al., 1975; Shen et al., 2006), also produces
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a rapid onset of atrophy. Moreover, in myasthenia gravis, a
pathological condition characterized by the generation of anti-
AChR antibodies, also show changes in skeletal muscles similar
to those induced by denervation (Berrih-Aknin and Le Panse,
2014).

On the other hand, immobilization and denervation induce
de novo expression of neuronal nicotinic α7 AChRs (α7AChRs)
in myofibers, which is Ca2+ permeable (Dickinson et al., 2007),
and contributes to neurotransmission (Tsuneki et al., 2003; Lee
et al., 2014). Thus, α7AChRs together with aforementioned non-
selective channels could contribute to the increase in intracellular
Ca2+ that occurs after denervation.

AGRIN
Agrin is a proteoglycan released by the motor nerve terminal. This
protein binds MuSK and its crucial co-receptors LDL receptor-
related protein 4 (Lrp4) and amyloid precursor protein (APP;
Choi et al., 2013). Agrin plays a positive role in post-synaptic
differentiation by inducing and maintaining AChR clustering in
vitro and in vivo (Nitkin et al., 1987; McMahan, 1990; Ferns
et al., 1992; Ruegg et al., 1992; DeChiara et al., 1996; Gautam
et al., 1996; Glass et al., 1996; Lin et al., 2001; Yang et al., 2001).
Different studies showed that the prepatterning of AChR begins
before innervation (Yang et al., 2000, 2001; Lin et al., 2001).
Analysis in agrin, MuSK and Lrp4 mutant mice showed that these
animals die after birth due a general defect in the assembly of
the postsynaptic machinery when NMJ function is required for
breathing (DeChiara et al., 1996; Gautam et al., 1996; Hesser
et al., 2006; Weatherbee et al., 2006). On the other hand, in
absence of ACh (or synaptic transmission) and agrin, the NMJs
do form normally, but mice die at birth due to respiratory failure
in the absence of neuromuscular transmission (Misgeld et al.,
2005). Thus, agrin appears to be responsible for stabilizing the
nascent postsynaptic apparatus formed through the action of
MuSK/Lrp4.

The cell signaling downstream of MuSK requires the cyto-
plasmic adaptor protein (Dok-7), which is essential for both
MuSK-mediated prepatterning of AChRs and agrin-stimulated
AChR cluster stabilization upon innervation though the mech-
anism is not clear (Okada et al., 2006; Inoue et al., 2009); as
might be expected, mice carrying loss of function mutations of
Dok-7 die shortly after birth (Beeson et al., 2006; Okada et al.,
2006).

In humans, 5–10% cases of myasthenia gravis are caused by
autoantibodies against MuSK, which prevent binding between
MuSK and Lrp4, and inhibit agrin-stimulated MuSK phospho-
rylation (Huijbers et al., 2013). LDL receptor-related protein 4
has also been shown to be a target of autoantibodies in some MG
patients; being a new diagnostic marker for this disease (Pevzner
et al., 2012).

ATP
ATP is recognized as an important signaling molecule that
mediates diverse biological processes. In skeletal muscle, ATP is
released at the NMJ by synaptic vesicles and by myofibers and
has a postulated role in various regulatory processes including cell
proliferation, differentiation, and muscle contraction.

Synaptic vesicles isolated from vertebrates contain ACh and
ATP at a ratio of ∼10:1 (Dowdall et al., 1974; Zimmermann
and Denston, 1976; Volknandt and Zimmermann, 1986). An
ADP/ATP translocase enables the synaptic vesicle to accumulate
ATP (Luqmani, 1981; Lee and Witzemann, 1983; Stadler and
Fenwick, 1983); inside the vesicle, ATP is not, however complexed
with ACh (Kobos and Rechnitz, 1976). ATP is released with ACh
at NMJ in a pulsatile way in response to nerve impulses (Silinsky,
1975; Redman and Silinsky, 1994; Silinsky and Redman, 1996;
Vizi et al., 2000; Santos et al., 2003). The significance of this
pulsatile release is not clear. In development, ATP bound to P2X
receptors is equally effective with ACh acting through nicotinic
receptors in calcium mobilization (Kolb and Wakelam, 1983;
Häggblad and Heilbronn, 1988). In adults, the co-transmitter role
of ATP is less prominent than during development. Adenosine
generated by the hydrolysis of ATP was proposed as physiological
mediator of prejunctional neuromuscular depression (Redman
and Silinsky, 1994); at postjunctional sites, extracellular ATP
facilitates the action of ACh (Ribeiro, 1977), increases AChR
activity (Ewald, 1976; Akasu et al., 1981; Lu and Smith, 1991),
and K+ channel activation (Thomas and Hume, 1993), and
inhibits Cl− channels, by activating P2Y1 receptors (Voss, 2009);
overall, ATP enhances neuromuscular signaling in adult skeletal
muscle.

During skeletal muscle contraction, ATP is released from mus-
cle fibers (Cunha and Sebastião, 1993; Sandonà et al., 2005; Li
et al., 2008). This ATP can be released through ATP permeable
channels, including Cx HC and Panx channels (Bao et al., 2004;
Kang et al., 2008; Buvinic et al., 2009; Riquelme et al., 2013). As
was mentioned in Section Connexins and Skeletal Muscle, Cxs are
not expressed in the adult skeletal muscle. However, the Panx1
is expressed and forms Panx1 HCs in T-tubules. Thus Panx1
channels could be responsible for the release of ATP in adult
skeletal muscles. This ATP is necessary for the muscle potentiation
that occurs during repetitive electrical stimulation (Riquelme
et al., 2013).

The accumulation of ATP outside the sarcolemma has also
been shown to be necessary for the increased membrane per-
meability observed in muscle in pathological conditions where it
activates Cx HCs and Panx1 channels as well as P2X7Rs leading
to membrane permeabilization to ions and small molecules (Cea
et al., 2013); this accumulation of extracellular ATP is likely to
be facilitated after denervation of skeletal muscles or spinal cord
injury by the de novo expression of P2X7Rs and Cxs (39, 43 and
45) and up-regulation of Panx1 (Cea et al., 2013) as discussed
above.

NEUROTROPHIC FACTORS
The neurotrophic factors are critical for the development of
the nervous system (Skaper, 2012). In adulthood, there is well-
established interdependence between glial cells and motor neu-
rons (Michailov et al., 2004; Schulz et al., 2014). However, little
is known about the relationship between neurons, neurotrophic
factors, and trophic actions on myofibers.

Neuregulin 1 (NRG1) has been proposed as an extracellular
signal that induces synapse-specific transcription, because NRG1
induces AChR transcription in cultured muscle cells (Falls, 2003).
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However, mice lacking NRG1 in both motor neurons and skele-
tal muscles, or deficient for both the NRG-1 receptors ErbB2
and ErbB4 in skeletal muscles, have morphologically normal
synapses, although the amounts of AChRs and AChR mRNA at
synapses are modestly reduced (Escher et al., 2005; Jaworski and
Burden, 2006). A recent work elucidates that NRG1/ErbB signal-
ing maintains the efficacy of synaptic transmission by stabilizing
the NMJs via phosphorylation of α-dystrobrevin (Schmidt et al.,
2011).

Ciliary neurotrophic factor (CNTF), a member of the
interleukin-6 (IL-6) superfamily, induces cachectic effects
(Martin et al., 1996) and several inflammatory responses on
innervated skeletal muscle, including induction of fever and a
hepatic acute phase protein response (Espat et al., 1996). Also, it
has been postulated to CNTF acts as a neurotrophic factor that
regulates the expression of its receptor (CNTFR; Helgren et al.,
1994; Ip et al., 1996) and acetylcholinesterase in adult rat skeletal
muscle (Boudreau-Larivière et al., 1996).

Brain-derived neurotrophic factor (BDNF) is expressed at
relatively high levels during muscle development and then down
regulated postnatally (Griesbeck et al., 1995; Mousavi et al.,
2004). In adult rat muscle the constitutive expression of BDNF
is confined to the myofibers, satellite cells, Schwann cells and
endothelial cells (Liem et al., 2001), and is up-regulated in muscles
as response to acute or repeated exercise (Cuppini et al., 2007;
Matthews et al., 2009), but its possible effects on myofibers are
unknown.

In co-cultures of dissociated DRG neurons and skeletal
myofibers nerve growth factor (NGF) and neurotrophin 3 (NT-3)
increase the levels of messenger RNAs (mRNAs) of prepro-
tachykinin (PPT), calcitonin-gene related peptide (CGRP), neu-
rofilament 200 (NF-200), and microtubule associated protein
2 (MAP-2; Zhang et al., 2012), suggesting trophic effects
although one could not assess how these growth factors altered
neuromuscular function. Due to the limited information avail-
able, more studies are needed to elucidate the true impor-
tance of neurotrophic factors in the maintenance of muscle
characteristics.

CONCLUDING REMARKS
Electrical and metabolic coupling mediated by Cx-based gap
junctions are characteristics of smooth and cardiac muscles,
which must achieve coordinated contraction of large groups of
myocytes. The expression of Cx proteins is required for the
formation of gap junction channels that play critical roles in coor-
dinating diverse normal tissue functions in smooth and cardiac
muscle, including propagation of cardiac action potentials and
smooth muscle slow contraction waves. By contrast, skeletal mus-
cles are characterized by precise and rapid contraction responses
of single fibers or groups of fibers innervated by a common
nerve fiber (motor units) that must be activated independently of
muscle fibers in other motor units. This feature is accomplished
by the direct command of the nervous system through nerve
fibers with similar conduction velocity that innervate individual
motor units with similar electrical threshold. Thus, electrical
coupling of muscle fibers through gap junctions appears to be
unnecessary for rapid and coordinated contraction of skeletal

muscle fibers. Notably, neuromuscular activation represses the
expression or translation of several non-selective ion channels
during development.

Neuromuscular activation represses the expression or transla-
tion of several non-selective ion channels including HCs formed
by Cxs 39, 43 or 45, P2X7R, TRPV2 channel and alpha-7 nico-
tinic receptor in skeletal myofibers (Cea et al., 2013; Lee et al.,
2014). However, disruption of neural continuity at any level
between upper motor neuron and motor end plate elevates the
membrane incorporation of those gene products, with major
adverse effects on myofiber biology. Moreover, the membrane
expression of Panx1 channels is up-regulated. The sarcolemmal
incorporation of these protein subunits results in the cell surface
expression of non-selective ion channels, all permeable to mono-
valent cations and Ca2+ and some of them are also permeable
to small molecules (e.g., Cx HCs). Therefore, all of them could
contribute to different extents to reducing the resting membrane
potential of denervated myofibers as well as to the activation
of intracellular metabolic response activated by free cytoplasmic
Ca2+, including protein degradation. The overlapping features
of non-selective ion channels expressed in denervated muscle
might be taken as evidence that their expression is controlled by a
common mechanism (e.g., the same transcription factor). Thus,
a critical issue to be unraveled in the future is the identification
of the signal transduction mechanism activated at NMJs/motor
end plates that repress the expression of all these non-selective
ion channels. So far, it is known that early electrical stimulation
of muscles under disuse due to denervation does not prevent
the reduction in resting membrane potential and thus is insuffi-
cient to maintain the homeostasis of the sarcolemma. Likewise,
the presence of an intact lower motor neuron and NMJ does
not appear sufficient to prevent incorporation of these HCs
and channels into the sarcolemma. Contact between the nerve
terminal and motor end plate allows interaction of a series of
molecules released by axon terminals and glial cells and their
receptors present in myofibers. The main molecules are: ACh that
is responsible for the end-plate potential and dispersal of Ach
receptor clusters, ATP which is involved in muscle potentiation,
agrin that acts as positive signal in the clustering of AChRs,
and neurotrophins, whose effect on adult muscle fibers is poorly
understood (Figure 1). Therefore, more studies are needed to
elucidate the role of these substances in repressing incorporation
of the above channels and HCs into the sarcolemma of skeletal
muscle. miRNAs are recognized as regulators of diverse gene
networks and pathways and bind to their target mRNAs, causing
mRNA degradation or preventing protein translation. However,
miRNA expression levels do not fully explain changes in myofiber
expression levels of HCs and channels, and further studies are
required to identify the role of miRNA, and to identify alterna-
tive mechanisms that determine sarcolemmal expression levels
of them.

The discovery of the humoral factor that prevents the expres-
sion of protein subunits that form non-selective ion channels
in denervated muscles might unveil a valuable molecular tar-
get to design a rational therapeutic to prevent degeneration of
denervated myofibers that might also be useful to treat diverse
myopathies with compromised NMJs.

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 6

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cisterna et al. Muscle atrophy due denervation

ACKNOWLEDGMENTS
This work was partially funded by FONDECYT grants 1111033
(to Juan C. Sáez), millennium institute (to Juan C. Sáez), and
Bruno A. Cisterna acknowledge the support of a CONICYT
fellowship, and the Department of Veterans Affairs Rehabilitation
Research and Development Service (B9212C) and the James J.
Peters VA Medical Center.

REFERENCES
Adami, N., Kern, H., Mayr, W., Carraro, U., Biral, D., and Sandra, Z. (2007).

Permanent denervation of rat Tibialis Anterior after bilateral sciatectomy:
determination of chronaxie by surface electrode stimulation during progression
of atrophy up to one year. Basic Appl. Myol. 17, 237–243.

Adams, L., and Goldman, D. (1998). Role for calcium from the sarcoplas-
mic reticulum in coupling muscle activity to nicotinic acetylcholine receptor
gene expression in rat. J. Neurobiol. 35, 245–257. doi: 10.1002/(SICI)1097-
4695(19980605)35:3%3C245::AID-NEU2%3E3.0.CO;2-Z

Akasu, T., Hirai, K., and Koketsu, K. (1981). Increase of acetylcholine-receptor
sensitivity by adenosine triphosphate: a novel action of ATP on ACh-sensitivity.
Br. J. Pharmacol. 74, 505–507. doi: 10.1111/j.1476-5381.1981.tb09997.x

Albuquerque, E. X., and Thesleff, S. (1968). A comparative study of membrane
properties of innervated and chronically denervated fast and slow skeletal
muscles of the rat. Acta Physiol. Scand. 73, 471–480. doi: 10.1111/j.1365-201x.
1968.tb10886.x

Anderson, C., Catoe, H., and Werner, R. (2006). MIR-206 regulates connexin43
expression during skeletal muscle development. Nucleic Acids Res. 34, 5863–
5871. doi: 10.1093/nar/gkl743

Araya, R., Eckardt, D., Riquelme, M. A., Willecke, K., and Sáez, J. C. (2003).
Presence and importance of connexin43 during myogenesis. Cell Commun.
Adhes. 10, 451–456. doi: 10.1080/cac.10.4-6.451.456

Araya, R., Riquelme, M. A., Brandan, E., and Sáez, J. C. (2004). The formation
of skeletal muscle myotubes requires functional membrane receptors activated
by extracellular ATP. Brain Res. Brain Res. Rev. 47, 174–188. doi: 10.1016/j.
brainresrev.2004.06.003

Armstrong, D. L., Turin, L., and Warner, A. E. (1983). Muscle activity and the
loss of electrical coupling between striated muscle cells in Xenopus embryos.
J. Neurosci. 3, 1414–1421.

Award, E. A., Swaiman, K. F., and Kottke, F. J. (1965). Changes in the structure,
innervation, electromyographic patterns and enzymes of skeletal muscle result-
ing from experimental treatment with triamcinolone. Arch. Phys. Med. Rehabil.
46, 297–306.

Bain, J. R., Veltri, K. L., Chamberlain, D., and Fahnestock, M. (2001). Improved
functional recovery of denervated skeletal muscle after temporary sensory nerve
innervation. Neuroscience 103, 503–510. doi: 10.1016/s0306-4522(00)00577-7

Baldi, J. C., Jackson, R. D., Moraille, R., and Mysiw, W. J. (1998). Muscle atrophy
is prevented in patients with acute spinal cord injury using functional electrical
stimulation. Spinal Cord 36, 463–469. doi: 10.1038/sj.sc.3100679

Baldwin, K. M., Haddad, F., Pandorf, C. E., Roy, R. R., and Edgerton, V. R.
(2013). Alterations in muscle mass and contractile phenotype in response to
unloading models: role of transcriptional/pretranslational mechanisms. Front.
Physiol. 4:284. doi: 10.3389/fphys.2013.00284

Bao, L., Locovei, S., and Dahl, G. (2004). Pannexin membrane channels are
mechanosensitive conduits for ATP. FEBS Lett. 572, 65–68. doi: 10.1016/j.
febslet.2004.07.009

Beeson, D., Higuchi, O., Palace, J., Cossins, J., Spearman, H., Maxwell, S., et al.
(2006). Dok-7 mutations underlie a neuromuscular junction synaptopathy.
Science 313, 1975–1978. doi: 10.1126/science.1130837

Belluardo, N., Trovato-Salinaro, A., Mudò, G., and Condorelli, D. F. (2005).
Expression of the rat connexin 39 (rCx39) gene in myoblasts and myotubes in
developing and regenerating skeletal muscles: an in situ hybridization study. Cell
Tissue Res. 320, 299–310. doi: 10.1007/s00441-005-1087-7

Berrih-Aknin, S., and Le Panse, R. (2014). Myasthenia gravis: a comprehensive
review of immune dysregulation and etiological mechanisms. J. Autoimmun. 52,
90–100. doi: 10.1016/j.jaut.2013.12.011

Birks, R., Katz, B., and Miledi, R. (1960). Physiological and structural changes at the
amphibian myoneural junction, in the course of nerve degeneration. J. Physiol.
150, 145–168.

Bjugn, R., Nyengaard, J. R., and Rosland, J. H. (1997). Spinal cord transection–no
loss of distal ventral horn neurons. Exp. Neurol. 148, 179–186. doi: 10.1006/exnr.
1997.6610

Boudreau-Larivière, C., Sveistrup, H., Parry, D. J., and Jasmin, B. J. (1996).
Ciliary neurotrophic factor: regulation of acetylcholinesterase in skeletal muscle
and distribution of messenger RNA encoding its receptor in synaptic versus
extrasynaptic compartments. Neuroscience 73, 613–622. doi: 10.1016/0306-
4522(96)00033-4

Bruusgaard, J. C., and Gundersen, K. (2008). In vivo time-lapse microscopy reveals
no loss of murine myonuclei during weeks of muscle atrophy. J. Clin. Invest. 118,
1450–1457. doi: 10.1172/JCI34022

Bruzzone, S., Guida, L., Zocchi, E., Franco, L., and De Flora, A. (2001). Connexin 43
hemi channels mediate Ca2+-regulated transmembrane NAD+ fluxes in intact
cells. FASEB J. 15, 10–12. doi: 10.1096/fj.00-0566fje

Burns, A. S., Jawaid, S., Zhong, H., Yoshihara, H., Bhagat, S., Murray, M., et al.
(2007). Paralysis elicited by spinal cord injury evokes selective disassembly of
neuromuscular synapses with and without terminal sprouting in ankle flexors
of the adult rat. J. Comp. Neurol. 500, 116–133. doi: 10.1002/cne.21143

Buvinic, S., Almarza, G., Bustamante, M., Casas, M., López, J., Riquelme, M., et al.
(2009). ATP released by electrical stimuli elicits calcium transients and gene
expression in skeletal muscle. J. Biol. Chem. 284, 34490–34505. doi: 10.1074/jbc.
M109.057315

Castro, M. J., Apple, D. F. Jr., Staron, R. S., Campos, G. E., and Dudley, G. A.
(1999). Influence of complete spinal cord injury on skeletal muscle within 6 mo
of injury. J. Appl. Physiol. (1985) 86, 350–358.

Cea, L. A., Cisterna, B. A., Puebla, C., Frank, M., Figueroa, X. F., Cardozo, C., et al.
(2013). De novo expression of connexin hemichannels in denervated fast skeletal
muscles leads to atrophy. Proc. Natl. Acad. Sci. U S A 110, 16229–16234. doi: 10.
1073/pnas.1312331110

Cherian, P. P., Siller-Jackson, A. J., Gu, S., Wang, X., Bonewald, L. F., Sprague, E.,
et al. (2005). Mechanical strain opens connexin 43 hemichannels in osteocytes: a
novel mechanism for the release of prostaglandin. Mol. Biol Cell 16, 3100–3106.
doi: 10.1091/mbc.e04-10-0912

Choi, H. Y., Liu, Y., Tennert, C., Sugiura, Y., Karakatsani, A., Kroger, S., et al.
(2013). APP interacts with LRP4 and agrin to coordinate the development
of the neuromuscular junction in mice. Elife 2:e00220. doi: 10.7554/elife.
00220

Constantin, B., and Cronier, L. (2000). Involvement of gap junctional com-
munication in myogenesis. Int. Rev. Cytol. 196, 1–65. doi: 10.1016/S0074-
7696(00)96001-7

Cunha, R. A., and Sebastião, A. M. (1993). Adenosine and adenine nucleotides
are independently released from both the nerve terminals and the muscle fibres
upon electrical stimulation of the innervated skeletal muscle of the frog. Pflugers
Arch. 424, 503–510. doi: 10.1007/bf00374914

Cuppini, R., Sartini, S., Agostini, D., Guescini, M., Ambrogini, P., Betti, M., et al.
(2007). Bdnf expression in rat skeletal muscle after acute or repeated exercise.
Arch. Ital. Biol. 145, 99–110.

DeChiara, T. M., Bowen, D. C., Valenzuela, D. M., Simmons, M. V., Poueymirou,
W. T., Thomas, S., et al. (1996). The receptor tyrosine kinase MuSK is required
for neuromuscular junction formation in vivo. Cell 85, 501–512. doi: 10.
1016/s0092-8674(00)81251-9

Dell, D. D. (2002). Cachexia in patients with advanced cancer. Clin. J. Oncol. Nurs.
6, 235–238. doi: 10.1188/02.CJON.235-238

Demontis, F., Piccirillo, R., Goldberg, A. L., and Perrimon, N. (2013). Mechanisms
of skeletal muscle aging: insights from Drosophila and mammalian models. Dis.
Model. Mech. 6, 1339–1352. doi: 10.1242/dmm.012559

Dennis, M. J., Ziskind-Conhaim, L., and Harris, A. J. (1981). Development of
neuromuscular junctions in rat embryos. Dev. Biol. 81, 266–279. doi: 10.
1016/0012-1606(81)90290-6

Dickinson, J. A., Hanrott, K. E., Mok, M. H., Kew, J. N., and Wonnacott, S. (2007).
Differential coupling of alpha7 and non-alpha7 nicotinic acetylcholine receptors
to calcium-induced calcium release and voltage-operated calcium channels
in PC12 cells. J. Neurochem. 100, 1089–1096. doi: 10.1111/j.1471-4159.2006.
04273.x

Ditunno, J. F., Little, J. W., Tessler, A., and Burns, A. S. (2004). Spinal shock
revisited: a four-phase model. Spinal Cord 42, 383–395. doi: 10.1038/sj.sc.
3101603

Dowdall, M. J., Boyne, A. F., and Whittaker, V. P. (1974). Adenosine triphosphate.
A constituent of cholinergic synaptic vesicles. Biochem. J. 140, 1–12.

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 7

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cisterna et al. Muscle atrophy due denervation

Dudley-Javoroski, S., and Shields, R. K. (2008). Muscle and bone plasticity after
spinal cord injury: review of adaptations to disuse and to electrical muscle
stimulation. J. Rehabil. Res. Dev. 45, 283–296. doi: 10.1682/jrrd.2007.02.0031

Dupont-Versteegden, E. E., Houlé, J. D., Gurley, C. M., and Peterson, C. A. (1998).
Early changes in muscle fiber size and gene expression in response to spinal cord
transection and exercise. Am. J. Physiol. 275, C1124–C1133.

Emmanouilidou, E., Melachroinou, K., Roumeliotis, T., Garbis, S. D., Ntzouni,
M., Margaritis, L. H., et al. (2010). Cell-produced alpha-synuclein is secreted
in a calcium-dependent manner by exosomes and impacts neuronal survival. J.
Neurosci. 30, 6838–6851. doi: 10.1523/JNEUROSCI.5699-09.2010

Escher, P., Lacazette, E., Courtet, M., Blindenbacher, A., Landmann, L., Bezakova,
G., et al. (2005). Synapses form in skeletal muscles lacking neuregulin receptors.
Science 308, 1920–1923. doi: 10.1126/science.1108258

Espat, N. J., Auffenberg, T., Rosenberg, J. J., Rogy, M., Martin, D., Fang, C. H., et al.
(1996). Ciliary neurotrophic factor is catabolic and shares with IL-6 the capacity
to induce an acute phase response. Am. J. Physiol. 271, R185–R190.

Ewald, D. A. (1976). Potentiation of postjunctional cholinergic sensitivity of rat
diaphragm muscle by high-energy-phosphate adenine nucleotides. J. Membr.
Biol. 29, 47–65. doi: 10.1007/bf01868951

Eyzaguirre, C., Espildora, J., and Luco, J. V. (1952). Alterations of neuromuscular
synapsis during Wallerian degeneration. Acta Physiol. Lat. Am. 2, 213–227.

Falls, D. L. (2003). Neuregulins and the neuromuscular system: 10 years of answers
and questions. J. Neurocytol. 32, 619–647. doi: 10.1023/b:neur.0000020614.
83883.be

Ferns, M., Hoch, W., Campanelli, J. T., Rupp, F., Hall, Z. W., and Scheller, R. H.
(1992). RNA splicing regulates agrin-mediated acetylcholine receptor cluster-
ing activity on cultured myotubes. Neuron 8, 1079–1086. doi: 10.1016/0896-
6273(92)90129-2

Fiori, M. C., Figueroa, V., Zoghbi, M. E., Sáez, J. C., Reuss, L., and Altenberg, G. A.
(2012). Permeation of calcium through purified connexin 26 hemichannels. J.
Biol. Chem. 287, 40826–40834. doi: 10.1074/jbc.M112.383281

Fu, A. K., Ip, F. C., Fu, W. Y., Cheung, J., Wang, J. H., Yung, W. H., et al.
(2005). Aberrant motor axon projection, acetylcholine receptor clustering and
neurotransmission in cyclin-dependent kinase 5 null mice. Proc. Natl. Acad. Sci.
U S A 102, 15224–15229. doi: 10.1073/pnas.0507678102

Gage, P. W., Lamb, G. D., and Wakefield, B. T. (1989). Transient and persistent
sodium currents in normal and denervated mammalian skeletal muscle. J.
Physiol. 418, 427–439.

Gautam, M., Noakes, P. G., Moscoso, L., Rupp, F., Scheller, R. H., Merlie, J. P.,
et al. (1996). Defective neuromuscular synaptogenesis in agrin-deficient mutant
mice. Cell 85, 525–535. doi: 10.1016/s0092-8674(00)81253-2

Glass, D. J. (2003). Molecular mechanisms modulating muscle mass. Trends Mol.
Med. 9, 344–350. doi: 10.1016/s1471-4914(03)00138-2

Glass, D. J., Bowen, D. C., Stitt, T. N., Radziejewski, C., Bruno, J., Ryan, T. E.,
et al. (1996). Agrin acts via a MuSK receptor complex. Cell 85, 513–523. doi: 10.
1016/s0092-8674(00)81252-0

Gossman, D. G., and Zhao, H. B. (2008). Hemichannel-mediated inositol 1,4,5-
trisphosphate (IP3) release in the cochlea: a novel mechanism of IP3 intercellular
signaling. Cell Commun. Adhes. 15, 305–315. doi: 10.1080/15419060802357217

Griesbeck, O., Parsadanian, A. S., Sendtner, M., and Thoenen, H. (1995). Expres-
sion of neurotrophins in skeletal muscle: quantitative comparison and signifi-
cance for motoneuron survival and maintenance of function. J. Neurosci. Res.
42, 21–33. doi: 10.1002/jnr.490420104

Gutmann, E., Vodicka, Z., and Zelená, J. (1955). Veranderungen in quergestreiften
Muskel bei Durchtrennung in Abhangigkeit von der Lange des peripheren
Stumpfes. Physiologia Bohemoslov. 4, 200–204.

Häggblad, J., and Heilbronn, E. (1988). P2-purinoceptor-stimulated phosphoinosi-
tide turnover in chick myotubes. Calcium mobilization and the role of guanyl
nucleotide-binding proteins. FEBS Lett. 235, 133–136. doi: 10.1016/0014-
5793(88)81248-1

Harris, R. L. W., Bobet, J., Sanelli, L., and Bennett, D. J. (2006). Tail muscles become
slow but fatigable in chronic sacral spinal rats with spasticity. J. Neurophysiol. 95,
1124–1133. doi: 10.1152/jn.00456.2005

Harris, J. B., and Thesleff, S. (1971). Studies on tetrodotoxin resistant action
potentials in denervated skeletal muscle. Acta Physiol. Scand. 83, 382–388.
doi: 10.1111/j.1748-1716.1971.tb05091.x

Helgren, M. E., Squinto, S. P., Davis, H. L., Parry, D. J., Boulton, T. G., Heck, C. S.,
et al. (1994). Trophic effect of ciliary neurotrophic factor on denervated skeletal
muscle. Cell 76, 493–504. doi: 10.1016/0092-8674(94)90113-9

Hesser, B. A., Henschel, O., and Witzemann, V. (2006). Synapse disassembly
and formation of new synapses in postnatal muscle upon conditional inac-
tivation of MuSK. Mol. Cell. Neurosci. 31, 470–480. doi: 10.1016/j.mcn.2005.
10.020

Hník, P., Kkorpil, V., and Vyklický, L. (1962). “Diagnosis and therapy of dener-
vation muscle atrophy,” in The Denervated Muscle, ed E. Gutmann (Prague:
Publishing House of the Czechoslovak Academy of Science), 433–466.

Hník, P., and Skorpil, V. (1962). “Fibrillation activity in denervated muscle,” in
The Denervated Muscle, ed E. Gutmann (Prague: Publishing House of the
Czechoslovak Academy of Sciences), 136–150.

Huijbers, M. G., Zhang, W., Klooster, R., Niks, E. H., Friese, M. B., Straasheijm,
K. R., et al. (2013). MuSK IgG4 autoantibodies cause myasthenia gravis by
inhibiting binding between MuSK and Lrp4. Proc. Natl. Acad. Sci. U S A 110,
20783–20788. doi: 10.1073/pnas.1313944110

Hyatt, J. P., Roy, R. R., Baldwin, K. M., and Edgerton, V. R. (2003). Nerve activity-
independent regulation of skeletal muscle atrophy: role of MyoD and myogenin
in satellite cells and myonuclei. Am. J. Physiol. Cell Physiol. 285, C1161–C1173.
doi: 10.1152/ajpcell.00128.2003

Inoue, A., Setoguchi, K., Matsubara, Y., Okada, K., Sato, N., Iwakura, Y., et al.
(2009). Dok-7 activates the muscle receptor kinase MuSK and shapes synapse
formation. Sci. Signal. 2:ra7. doi: 10.1126/scisignal.2000113

Ip, F. C., Fu, A. K., Tsim, K. W., and Ip, N. Y. (1996). Differential expression
of ciliary neurotrophic factor receptor in skeletal muscle of chick and rat
after nerve injury. J. Neurochem. 67, 1607–1612. doi: 10.1046/j.1471-4159.1996.
67041607.x

Ishii, W., Matsuda, M., Okamoto, N., Shimojima, Y., Yazaki, M., Motomura, M.,
et al. (2005). Myasthenia gravis with anti-MuSK antibody, showing progressive
muscular atrophy without blepharoptosis. Intern. Med. 44, 671–672. doi: 10.
2169/internalmedicine.44.671

Jackman, R. W., Cornwell, E. W., Wu, C. L., and Kandarian, S. C. (2013). Nuclear
factor-kappaB signalling and transcriptional regulation in skeletal muscle atro-
phy. Exp. Physiol. 98, 19–24. doi: 10.1113/expphysiol.2011.063321

Jaworski, A., and Burden, S. J. (2006). Neuromuscular synapse formation in mice
lacking motor neuron- and skeletal muscle-derived Neuregulin-1. J. Neurosci.
26, 655–661. doi: 10.1523/jneurosci.4506-05.2006

Jing, L., Lefebvre, J. L., Gordon, L. R., and Granato, M. (2009). Wnt signals organize
synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK
receptor. Neuron 61, 721–733. doi: 10.1016/j.neuron.2008.12.025

Jirmanova, I., Sobotkova, M., Thesleff, S., and Zelena, J. (1964). Atrophy in skeletal
muscles poisoned with botulinum toxin. Physiol. Bohemoslov. 13, 467–472.

Jones, R., and Vrbová, G. (1970). Effect of muscle activity on denervation hyper-
sensitivity. J. Physiol. 210, 144P–145P.

Kaelan, C., Jacobsen, P. F., and Kakulas, B. A. (1988). An investigation of possible
transynaptic neuronal degeneration in human spinal cord injury. J. Neurol. Sci.
86, 231–237. doi: 10.1016/0022-510x(88)90101-3

Kalderon, N., Epstein, M. L., and Gilula, N. B. (1977). Cell-to-cell com-
munication and myogenesis. J. Cell Biol. 75, 788–806. doi: 10.1083/jcb.75.
3.788

Kang, J., Kang, N., Lovatt, D., Torres, A., Zhao, Z., Lin, J., et al. (2008). Connexin
43 hemichannels are permeable to ATP. J. Neurosci. 28, 4702–4711. doi: 10.
1523/JNEUROSCI.5048-07.2008

Keesey, J. C. (2004). Clinical evaluation and management of myasthenia gravis.
Muscle Nerve 29, 484–505. doi: 10.1002/mus.20030

Kim, S. J., Roy, R. R., Kim, J. A., Zhong, H., Haddad, F., Baldwin, K. M., et al.
(2008). Gene expression during inactivity-induced muscle atrophy: effects of
brief bouts of a forceful contraction countermeasure. J. Appl. Physiol. (1985)
105, 1246–1254. doi: 10.1152/japplphysiol.90668.2008

Kinder, F. R. Jr., Versace, R. W., Bair, K. W., Bontempo, J. M., Cesarz, D., Chen,
S., et al. (2001). Synthesis and antitumor activity of ester-modified analogues of
bengamide B. J. Med. Chem. 44, 3692–3699. doi: 10.1021/jm010188c

Kobos, R. K., and Rechnitz, G. A. (1976). Acetylcholine-ATP binding by direct
membrane electrode measurement. Biochem. Biophys. Res. Commun. 71, 762–
767. doi: 10.1016/0006-291x(76)90896-2

Kolb, H. A., and Wakelam, M. J. (1983). Transmitter-like action of ATP on patched
membranes of cultured myoblasts and myotubes. Nature 303, 621–623. doi: 10.
1038/303621a0

Kotsias, B. A., and Venosa, R. A. (2001). Sodium influx during action potential in
innervated and denervated rat skeletal muscles. Muscle Nerve 24, 1026–1033.
doi: 10.1002/mus.1106

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 8

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cisterna et al. Muscle atrophy due denervation

Lee, D. A., and Witzemann, V. (1983). Photoaffinity labeling of a synaptic vesicle
specific nucleotide transport system from Torpedo marmorata. Biochemistry 22,
6123–6130. doi: 10.1021/bi00295a013

Lee, S., Yang, H. S., Sasakawa, T., Khan, M. A., Khatri, A., Kaneki, M., et al. (2014).
Immobilization with atrophy induces de novo expression of neuronal nicotinic
alpha7 acetylcholine receptors in muscle contributing to neurotransmission.
Anesthesiology 120, 76–85. doi: 10.1097/ALN.0000000000000025

Li, C. L. (1960). Mechanism of fibrillation potentials in denervated mam-
malian skeletal muscle. Science 132, 1889–1890. doi: 10.1126/science.132.3443.
1889

Li, J., Gao, Z., Kehoe, V., Xing, J., King, N., and Sinoway, L. (2008). Intersti-
tial adenosine triphosphate modulates muscle afferent nerve-mediated pressor
reflex. Muscle Nerve 38, 972–977. doi: 10.1002/mus.21014

Li, F., Sugishita, K., Su, Z., Ueda, I., and Barry, W. H. (2001). Activation of
connexin-43 hemichannels can elevate [Ca(2+)]i and [Na(+)]i in rabbit ventric-
ular myocytes during metabolic inhibition. J. Mol. Cell. Cardiol. 33, 2145–2155.
doi: 10.1006/jmcc.2001.1477

Liem, R. S., Brouwer, N., and Copray, J. C. (2001). Ultrastructural localisation
of intramuscular expression of BDNF mRNA by silver-gold intensified non-
radioactive in situ hybridisation. Histochem. Cell Biol. 116, 545–551. doi: 10.
1007/s00418-001-0349-z

Lin, W., Burgess, R. W., Dominguez, B., Pfaff, S. L., Sanes, J. R., and Lee,
K. F. (2001). Distinct roles of nerve and muscle in postsynaptic differentia-
tion of the neuromuscular synapse. Nature 410, 1057–1064. doi: 10.1038/350
74025

Lin, W., Dominguez, B., Yang, J., Aryal, P., Brandon, E. P., Gage, F. H., et al. (2005).
Neurotransmitter acetylcholine negatively regulates neuromuscular synapse for-
mation by a Cdk5-dependent mechanism. Neuron 46, 569–579. doi: 10.1016/j.
neuron.2005.04.002

Ling, Y., Appelt, D., Kelly, A. M., and Franzini-Armstrong, C. (1992). Differences in
the histogenesis of EDL and diaphragm in rat. Dev. Dyn. 193, 359–369. doi: 10.
1002/aja.1001930409

Lomo, T., and Rosenthal, J. (1972). Control of ACh sensitivity by muscle activity in
the rat. J. Physiol. 221, 493–513.

Lomo, T., and Westgaard, R. H. (1975). Further studies on the control of ACh
sensitivity by muscle activity in the rat. J. Physiol. 252, 603–626.

Lu, Z., and Smith, D. O. (1991). Adenosine 5′-triphosphate increases acetyl-
choline channel opening frequency in rat skeletal muscle. J. Physiol. 436,
45–56.

Luco, J. V., and Eyzaguirre, C. (1955). Fibrillation and hypersensitivity to ACh in
denervated muscle: effect of length of degenerating nerve fibers. J. Neurophysiol.
18, 65–73.

Luqmani, Y. A. (1981). Nucleotide uptake by isolated cholinergic synaptic vesicles:
evidence for a carrier of adenosine 5′-triphosphate. Neuroscience 6, 1011–1021.
doi: 10.1016/0306-4522(81)90067-1

Ma, J., Shen, J., Garrett, J. P., Lee, C. A., Li, Z., Elsaidi, G. A., et al. (2007).
Gene expression of myogenic regulatory factors, nicotinic acetylcholine receptor
subunits and GAP-43 in skeletal muscle following denervation in a rat model. J.
Orthop. Res. 25, 1498–1505. doi: 10.1002/jor.20414

Maeda, K., Ueda, M., Ohtaka, H., Koyama, Y., Ohgami, M., and Miyazaki, H.
(1987). A massive dose of vincristine. Jpn. J. Clin. Oncol. 17, 247–253.

Martin, D., Merkel, E., Tucker, K. K., McManaman, J. L., Albert, D., Relton, J., et al.
(1996). Cachectic effect of ciliary neurotrophic factor on innervated skeletal
muscle. Am. J. Physiol. 271, R1422–R1428.

Matthews, V. B., Aström, M. B., Chan, M. H., Bruce, C. R., Krabbe, K. S.,
Prelovsek, O., et al. (2009). Brain-derived neurotrophic factor is produced by
skeletal muscle cells in response to contraction and enhances fat oxidation via
activation of AMP-activated protein kinase. Diabetologia 52, 1409–1418. doi: 10.
1007/s00125-009-1364-1

Maynard, F. M., Karunas, R. S., Waring, W. P. 3rd (1990). Epidemiology of
spasticity following traumatic spinal cord injury. Arch. Phys. Med. Rehabil. 71,
566–569.

McMahan, U. J. (1990). The agrin hypothesis. Cold Spring Harb. Symp. Quant. Biol.
55, 407–418. doi: 10.1101/sqb.1990.055.01.041

Michailov, G. V., Sereda, M. W., Brinkmann, B. G., Fischer, T. M., Haug, B.,
Birchmeier, C., et al. (2004). Axonal neuregulin-1 regulates myelin sheath
thickness. Science 304, 700–703. doi: 10.1126/science.1095862

Miledi, R., and Slater, C. R. (1970). On the degeneration of rat neuromuscular
junctions after nerve section. J. Physiol. 207, 507–528.

Misgeld, T., Kummer, T. T., Lichtman, J. W., and Sanes, J. R. (2005). Agrin
promotes synaptic differentiation by counteracting an inhibitory effect of neu-
rotransmitter. Proc. Natl. Acad. Sci. U S A 102, 11088–11093. doi: 10.1073/pnas.
0504806102

Morley, J. E. (2012). Undernutrition in older adults. Fam. Pract. 29(Suppl. 1), i89–
i93. doi: 10.1093/fampra/cmr054

Mousavi, K., Parry, D. J., and Jasmin, B. J. (2004). BDNF rescues myosin heavy
chain IIB muscle fibers after neonatal nerve injury. Am. J. Physiol. Cell Physiol.
287, C22–C29. doi: 10.1152/ajpcell.00583.2003

Nikolic, M., Bajek, S., Bobinac, D., Soic Vranic, T., Starcevoc Klasan, G., Arbanas,
J., et al. (2010). Expression of myogenic regulatory factors in rat skeletal muscles
after denervation. Periodicum Biologorum 112, 83–88.

Nitkin, R. M., Smith, M. A., Magill, C., Fallon, J. R., Yao, Y. M., Wallace,
B. G., et al. (1987). Identification of agrin, a synaptic organizing protein from
Torpedo electric organ. J. Cell Biol. 105, 2471–2478. doi: 10.1083/jcb.105.6.
2471

Okada, K., Inoue, A., Okada, M., Murata, Y., Kakuta, S., Jigami, T., et al. (2006).
The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science
312, 1802–1805. doi: 10.1126/science.1127142

Ollivier-Lanvin, K., Lemay, M. A., Tessler, A., and Burns, A. S. (2009). Neuro-
muscular transmission failure and muscle fatigue in ankle muscles of the adult
rat after spinal cord injury. J. Appl. Physiol. (1985) 107, 1190–1194. doi: 10.
1152/japplphysiol.00282.2009

Oyamada, M., Oyamada, Y., and Takamatsu, T. (2005). Regulation of connexin
expression. Biochim. Biophys. Acta 1719, 6–23. doi: 10.1016/j.bbamem.2005.11.
002

Pellegrino, C., and Franzini, C. (1963). An electron microscope study of denerva-
tion atrophy in red and white skeletal muscle fibers. J. Cell Biol. 17, 327–349.
doi: 10.1083/jcb.17.2.327

Péréon, Y., Sorrentino, V., Dettbarn, C., Noireaud, J., and Palade, P. (1997).
Dihydropyridine receptor and ryanodine receptor gene expression in long-term
denervated rat muscles. Biochem. Biophys. Res. Commun. 240, 612–617. doi: 10.
1006/bbrc.1997.7712

Pevzner, A., Schoser, B., Peters, K., Cosma, N. C., Karakatsani, A., Schalke,
B., et al. (2012). Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-
negative myasthenia gravis. J. Neurol. 259, 427–435. doi: 10.1007/s00415-011-
6194-7

Picken, J. R., and Kirby, A. C. (1976). Denervated frog skeletal muscle: calcium
content and kinetics of exchange. Exp. Neurol. 53, 64–70. doi: 10.1016/0014-
4886(76)90281-8

Proulx, A., Merrifield, P. A., and Naus, C. C. (1997). Blocking gap junctional inter-
cellular communication in myoblasts inhibits myogenin and MRF4 expression.
Dev. Genet. 20, 133–144. doi: 10.1002/(sici)1520-6408(1997)20:2<133::aid-
dvg6>3.0.co;2-8

Purves, D., and Sakmann, B. (1974a). The effect of contractile activity on fibrillation
and extrajunctional acetylcholine-sensitivity in rat muscle maintained in organ
culture. J. Physiol. 237, 157–182.

Purves, D., and Sakmann, B. (1974b). Membrane properties underlying sponta-
neous activity of denervated muscle fibre. J. Physiol. 239, 125–153.

Qin, W., Bauman, W. A., and Cardozo, C. (2010). Bone and muscle loss after spinal
cord injury: organ interactions. Ann. N Y Acad. Sci. 1211, 66–84. doi: 10.1111/j.
1749-6632.2010.05806.x

Rahimov, F., and Kunkel, L. M. (2013). The cell biology of disease: cellular and
molecular mechanisms underlying muscular dystrophy. J. Cell Biol. 201, 499–
510. doi: 10.1083/jcb.201212142

Rana, S., and Dringen, R. (2007). Gap junction hemichannel-mediated release of
glutathione from cultured rat astrocytes. Neurosci. Lett. 415, 45–48. doi: 10.
1016/j.neulet.2006.12.043

Rao, P. K., Kumar, R. M., Farkhondeh, M., Baskerville, S., and Lodish, H. F. (2006).
Myogenic factors that regulate expression of muscle-specific microRNAs. Proc.
Natl. Acad. Sci. U S A 103, 8721–8726. doi: 10.1073/pnas.0602831103

Redman, R. S., and Silinsky, E. M. (1994). ATP released together with acetylcholine
as the mediator of neuromuscular depression at frog motor nerve endings. J.
Physiol. 477, 117–127.

Retamal, M. A., Froger, N., Palacios-Prado, N., Ezan, P., Sáez, P. J., Sáez, J. C.,
et al. (2007). Cx43 hemichannels and gap junction channels in astrocytes
are regulated oppositely by proinflammatory cytokines released from acti-
vated microglia. J. Neurosci. 27, 13781–13792. doi: 10.1523/jneurosci.2042-07.
2007

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 9

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cisterna et al. Muscle atrophy due denervation

Ribeiro, J. A. (1977). Potentiation of postjunctional cholinergic sensitivity of rat
diaphragm muscle by high-energy-phosphate adenine nucleotides. J. Membr.
Biol. 33, 401–402. doi: 10.1007/bf01869526

Ringel, S. P., Bender, A. N., Engel, W. K., Daniels, M. P., and Vogel, Z. (1975). A
sequential study of denervation - ultrastructural immunoperoxidase localiza-
tion of alpha-bungarotoxin. Trans. Am. Neurol. Assoc. 100, 52–56.

Riquelme, M. A., Cea, L. A., Vega, J. L., Boric, M. P., Monyer, H., Bennett, M. V.,
et al. (2013). The ATP required for potentiation of skeletal muscle contraction is
released via pannexin hemichannels. Neuropharmacology 75, 594–603. doi: 10.
1016/j.neuropharm.2013.03.022

Rochester, L., Barron, M. J., Chandler, C. S., Sutton, R. A., Miller, S., and Johnson,
M. A. (1995). Influence of electrical stimulation of the tibialis anterior muscle in
paraplegic subjects. 2. Morphological and histochemical properties. Paraplegia
33, 514–522. doi: 10.1038/sc.1995.112

Rosenblueth, A., and Luco, J. V. (1937). A study of denervated mammalian skeletal
muscle. Am. J. Physiol. 120, 781–797.

Rüegg, M. A., and Glass, D. J. (2011). Molecular mechanisms and treatment options
for muscle wasting diseases. Annu. Rev. Pharmacol. Toxicol. 51, 373–395. doi: 10.
1146/annurev-pharmtox-010510-100537

Ruegg, M. A., Tsim, K. W., Horton, S. E., Kröger, S., Escher, G., Gensch, E. M.,
et al. (1992). The agrin gene codes for a family of basal lamina proteins that
differ in function and distribution. Neuron 8, 691–699. doi: 10.1016/0896-
6273(92)90090-z

Sáez, J. C., Retamal, M. A., Basilio, D., Bukauskas, F. F., and Bennett, M. V. (2005).
Connexin-based gap junction hemichannels: gating mechanisms. Biochim. Bio-
phys. Acta 1711, 215–224. doi: 10.1016/j.bbamem.2005.01.014

Salmons, S., Ashley, Z., Sutherland, H., Russold, M. F., Li, F., and Jarvis, J. C.
(2005). Functional electrical stimulation of denervated muscles: basic issues.
Artif. Organs 29, 199–202. doi: 10.1111/j.1525-1594.2005.29034.x

Salzer, J. L., and Bunge, R. P. (1980). Studies of Schwann cell proliferation. I.
An analysis in tissue culture of proliferation during development, Wallerian
degeneration and direct injury. J. Cell Biol. 84, 739–752. doi: 10.1083/jcb.84.3.
739

Sánchez, H. A., Orellana, J. A., Verselis, V. K., and Sáez, J. C. (2009). Metabolic
inhibition increases activity of connexin-32 hemichannels permeable to Ca2+
in transfected HeLa cells. Am. J. Physiol. Cell Physiol. 297, C665–C678. doi: 10.
1152/ajpcell.00200.2009

Sandonà, D., Danieli-Betto, D., Germinario, E., Biral, D., Martinello, T., Lioy, A.,
et al. (2005). The T-tubule membrane ATP-operated P2X4 receptor influences
contractility of skeletal muscle. FASEB J. 19, 1184–1186. doi: 10.1096/fj.04-
3333fje

Santos, D. A., Salgado, A. I., and Cunha, R. A. (2003). ATP is released from
nerve terminals and from activated muscle fibres on stimulation of the
rat phrenic nerve. Neurosci. Lett. 338, 225–228. doi: 10.1016/s0304-3940(02)
01419-2

Schalper, K. A., Sánchez, H. A., Lee, S. C., Altenberg, G. A., Nathanson, M. H., and
Sáez, J. C. (2010). Connexin 43 hemichannels mediate the Ca2+ influx induced
by extracellular alkalinization. Am. J. Physiol. Cell Physiol. 299, C1504–C1515.
doi: 10.1152/ajpcell.00015.2010

Schmidt, N., Akaaboune, M., Gajendran, N., Martinez-Pena y Valenzuela, I.,
Wakefield, S., Thurnheer, R., et al. (2011). Neuregulin/ErbB regulate neuromus-
cular junction development by phosphorylation of alpha-dystrobrevin. J. Cell
Biol. 195, 1171–1184. doi: 10.1083/jcb.201107083

Schulz, A., Kyselyova, A., Baader, S. L., Jung, M. J., Zoch, A., Mautner, V. F., et al.
(2014). Neuronal merlin influences ERBB2 receptor expression on Schwann
cells through neuregulin 1 type III signalling. Brain 137, 420–432. doi: 10.
1093/brain/awt327

Scremin, A. M., Kurta, L., Gentili, A., Wiseman, B., Perell, K., Kunkel, C., et al.
(1999). Increasing muscle mass in spinal cord injured persons with a functional
electrical stimulation exercise program. Arch. Phys. Med. Rehabil. 80, 1531–1536.
doi: 10.1016/s0003-9993(99)90326-x

Sekiguchi, K., Kanda, F., Mitsui, S., Kohara, N., and Chihara, K. (2012). Fibrillation
potentials of denervated rat skeletal muscle are associated with expression of
cardiac-type voltage-gated sodium channel isoform Nav1.5. Clin. Neurophysiol.
123, 1650–1655. doi: 10.1016/j.clinph.2012.01.002

Shen, J., Ma, J., Lee, C., Smith, B. P., Smith, T. L., Tan, K. H., et al. (2006).
How muscles recover from paresis and atrophy after intramuscular injection of
botulinum toxin A: study in juvenile rats. J. Orthop. Res. 24, 1128–1135. doi: 10.
1002/jor.20131

Shields, R. K., and Dudley-Javoroski, S. (2007). Musculoskeletal adapta-
tions in chronic spinal cord injury: effects of long-term soleus electri-
cal stimulation training. Neurorehabil. Neural Repair 21, 169–179. doi: 10.
1177/1545968306293447

Silinsky, E. M. (1975). On the association between transmitter secretion and the
release of adenine nucleotides from mammalian motor nerve terminals. J.
Physiol. 247, 145–162.

Silinsky, E. M., and Redman, R. S. (1996). Synchronous release of ATP and
neurotransmitter within milliseconds of a motor nerve impulse in the frog. J.
Physiol. 492, 815–822.

Siu, P. M., and Alway, S. E. (2005). Mitochondria-associated apoptotic signalling
in denervated rat skeletal muscle. J. Physiol. 565, 309–323. doi: 10.1113/jphysiol.
2004.081083

Skaper, S. D. (2012). The neurotrophin family of neurotrophic factors: an overview.
Methods Mol. Biol. 846, 1–12. doi: 10.1007/978-1-61779-536-7_1

Sköld, C., Levi, R., and Seiger, A. (1999). Spasticity after traumatic spinal cord
injury: nature, severity and location. Arch. Phys. Med. Rehabil. 80, 1548–1557.
doi: 10.1016/s0003-9993(99)90329-5

Smith, J. W., and Thesleff, S. (1976). Spontaneous activity in denervated mouse
diaphragm muscle. J. Physiol. 257, 171–186.

Song, E. K., Rah, S. Y., Lee, Y. R., Yoo, C. H., Kim, Y. R., Yeom, J. H., et al. (2011).
Connexin-43 hemichannels mediate cyclic ADP-ribose generation and its Ca2+-
mobilizing activity by NAD+/cyclic ADP-ribose transport. J. Biol. Chem. 286,
44480–44490. doi: 10.1074/jbc.m111.307645

Squecco, R., Carraro, U., Kern, H., Pond, A., Adami, N., Biral, D., et al. (2009).
A subpopulation of rat muscle fibers maintains an assessable excitation-
contraction coupling mechanism after long-standing denervation despite lost
contractility. J. Neuropathol. Exp. Neurol. 68, 1256–1268. doi: 10.1097/nen.
0b013e3181c18416

Stadler, H., and Fenwick, E. M. (1983). Cholinergic synaptic vesicles from Torpedo
marmorata contain an atractyloside-binding protein related to the mitochon-
drial ADP/ATP carrier. Eur. J. Biochem. 136, 377–382. doi: 10.1111/j.1432-1033.
1983.tb07752.x

Stout, C. E., Costantin, J. L., Naus, C. C., and Charles, A. C. (2002). Inter-
cellular calcium signaling in astrocytes via ATP release through connexin
hemichannels. J. Biol. Chem. 277, 10482–10488. doi: 10.1074/jbc.m1099
02200

Tews, D. S. (2002). Apoptosis and muscle fibre loss in neuromuscular disorders.
Neuromuscul. Disord. 12, 613–622. doi: 10.1016/s0960-8966(02)00030-5

Thesleff, S. (1963). “Spontaneous electrical activity in denervated rat skeletal
muscle,” in In The Effect of Use and Disse on Neuromuwcular Functions, eds E.
Gutmann and P. Hnik (Prague: Czechoslovak Academy of Sciences), 41–62.

Thomas, S. A., and Hume, R. I. (1993). Single potassium channel currents activated
by extracellular ATP in developing chick skeletal muscle: a role for second
messengers. J. Neurophysiol. 69, 1556–1566.

Thomas, C. K., Zaidner, E. Y., Calancie, B., Broton, J. G., and Bigland-Ritchie,
B. R. (1997). Muscle weakness, paralysis and atrophy after human cervi-
cal spinal cord injury. Exp. Neurol. 148, 414–423. doi: 10.1006/exnr.1997.
6690

Tisdale, M. J. (2002). Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871.
doi: 10.1038/nrc927

Tomanek, R. J., and Lund, D. D. (1973). Degeneration of different types of skeletal
muscle fibres. I. Denervation. J. Anat. 116, 395–407.

Tomanek, R. J., and Lund, D. D. (1974). Degeneration of different types of skeletal
muscle fibres. II. Immobilization. J. Anat. 118, 531–541.

Tsuneki, H., Salas, R., and Dani, J. A. (2003). Mouse muscle denervation increases
expression of an alpha7 nicotinic receptor with unusual pharmacology. J.
Physiol. 547, 169–179. doi: 10.1111/j..2002.00169.x

Ung, R. V., Rouleau, P., and Guertin, P. A. (2010). Effects of co-administration of
clenbuterol and testosterone propionate on skeletal muscle in paraplegic mice.
J. Neurotrauma 27, 1129–1142. doi: 10.1089/neu.2009.1211

Vizi, E. S., Nitahara, K., Sato, K., and Sperlágh, B. (2000). Stimulation-dependent
release, breakdown and action of endogenous ATP in mouse hemidiaphragm
preparation: the possible role of ATP in neuromuscular transmission. J. Auton.
Nerv. Syst. 81, 278–284. doi: 10.1016/s0165-1838(00)00129-6

Volknandt, W., and Zimmermann, H. (1986). Acetylcholine, ATP and proteoglycan
are common to synaptic vesicles isolated from the electric organs of electric eel
and electric catfish as well as from rat diaphragm. J. Neurochem. 47, 1449–1462.
doi: 10.1111/j.1471-4159.1986.tb00778.x

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 10

http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive


Cisterna et al. Muscle atrophy due denervation

von Maltzahn, J., Euwens, C., Willecke, K., and Söhl, G. (2004). The novel mouse
connexin39 gene is expressed in developing striated muscle fibers. J. Cell Sci.
117, 5381–5392. doi: 10.1242/jcs.01413

Voss, A. A. (2009). Extracellular ATP inhibits chloride channels in mature mam-
malian skeletal muscle by activating P2Y1 receptors. J. Physiol. 587, 5739–5752.
doi: 10.1113/jphysiol.2009.179275

Wallraff, A., Köhling, R., Heinemann, U., Theis, M., Willecke, K., and Steinhäuser,
C. (2006). The impact of astrocytic gap junctional coupling on potas-
sium buffering in the hippocampus. J. Neurosci. 26, 5438–5447. doi: 10.
1523/jneurosci.0037-06.2006

Ware, F. Jr., Bennett, A. L., and Mc, I. A. R. (1954). Membrane resting potential of
denervated mammalian skeletal muscle measured in vivo. Am. J. Physiol. 177,
115–118.

Weatherbee, S. D., Anderson, K. V., and Niswander, L. A. (2006). LDL-receptor-
related protein 4 is crucial for formation of the neuromuscular junction.
Development 133, 4993–5000. doi: 10.1242/dev.02696

Williams, A. H., Valdez, G., Moresi, V., Qi, X., McAnally, J., Elliott, J. L., et al.
(2009). MicroRNA-206 delays ALS progression and promotes regeneration of
neuromuscular synapses in mice. Science 326, 1549–1554. doi: 10.1126/science.
1181046

Wu, X., Baer, L. A., Wolf, S. E., Wade, C. E., and Walters, T. J. (2010). The impact
of muscle disuse on muscle atrophy in severely burned rats. J. Surg. Res. 164,
e243–e251. doi: 10.1016/j.jss.2010.08.032

Wu, Y., Collier, L., Qin, W., Creasey, G., Bauman, W. A., Jarvis, J., et al. (2013). Elec-
trical stimulation modulates Wnt signaling and regulates genes for the motor
endplate and calcium binding in muscle of rats with spinal cord transection.
BMC Neurosci. 14:81. doi: 10.1186/1471-2202-14-81

Wu, Y., Zhao, J., Zhao, W., Pan, J., Bauman, W. A., and Cardozo, C. P. (2012).
Nandrolone normalizes determinants of muscle mass and fiber type after
spinal cord injury. J. Neurotrauma 29, 1663–1675. doi: 10.1089/neu.2011.
2203

Yang, X., Arber, S., William, C., Li, L., Tanabe, Y., Jessell, T. M., et al. (2001).
Patterning of muscle acetylcholine receptor gene expression in the absence of
motor innervation. Neuron 30, 399–410. doi: 10.1016/s0896-6273(01)00287-2

Yang, J., Dominguez, B., de Winter, F., Gould, T. W., Eriksson, J. E., and Lee,
K. F. (2011). Nestin negatively regulates postsynaptic differentiation of the
neuromuscular synapse. Nat. Neurosci. 14, 324–330. doi: 10.1038/nn.2747

Yang, X., Li, W., Prescott, E. D., Burden, S. J., and Wang, J. C. (2000). DNA
topoisomerase IIbeta and neural development. Science 287, 131–134. doi: 10.
1126/science.287.5450.131

Ye, Z. C., Wyeth, M. S., Baltan-Tekkok, S., and Ransom, B. R. (2003). Functional
hemichannels in astrocytes: a novel mechanism of glutamate release. J. Neurosci.
23, 3588–3596.

Zeman, R. J., Zhao, J., Zhang, Y., Zhao, W., Wen, X., Wu, Y., et al. (2009).
Differential skeletal muscle gene expression after upper or lower motor neuron
transection. Pflugers Arch. 458, 525–535. doi: 10.1007/s00424-009-0643-5

Zhang, W., Li, H., Xing, Z., Yuan, H., Kindy, M. S., and Li, Z. (2012).
Expression of mRNAs for PPT, CGRP, NF-200 and MAP-2 in cocultures
of dissociated DRG neurons and skeletal muscle cells in administration of
NGF or NT-3. Folia Histochem. Cytobiol. 50, 312–318. doi: 10.5603/fhc.2012.
0041

Zhao, C., Veltri, K., Li, S., Bain, J. R., and Fahnestock, M. (2004). NGF, BDNF, NT-3
and GDNF mRNA expression in rat skeletal muscle following denervation and
sensory protection. J. Neurotrauma 21, 1468–1478. doi: 10.1089/neu.2004.21.
1468

Zimmermann, H., and Denston, C. R. (1976). Adenosine triphosphate in cholin-
ergic vesicles isolated from the electric organ of Electrophorus electricus. Brain
Res. 111, 365–376. doi: 10.1016/0006-8993(76)90780-0

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 07 May 2014; accepted: 10 November 2014; published online: 10 December
2014.
Citation: Cisterna BA, Cardozo C and Sáez JC (2014) Neuronal involvement in
muscular atrophy. Front. Cell. Neurosci. 8:405. doi: 10.3389/fncel.2014.00405
This article was submitted to the journal Frontiers in Cellular Neuroscience.
Copyright © 2014 Cisterna, Cardozo and Sáez. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution and reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution
or reproduction is permitted which does not comply with these terms.

Frontiers in Cellular Neuroscience www.frontiersin.org December 2014 | Volume 8 | Article 405 | 11

http://dx.doi.org/10.3389/fncel.2014.00405
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Cellular_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Cellular_Neuroscience/archive

	Neuronal involvement in muscular atrophy
	Introduction
	Muscular atrophy induced by denervation
	Muscular atrophy induced by spinal cord injury
	Electrical stimulation reverses muscle atrophy
	Connexins and skeletal muscle
	Mechanisms that could maintain the low expression of Cxs in adult skeletal myofibers
	Acetylcholine (ACh)
	Agrin
	ATP
	Neurotrophic factors

	Concluding remarks
	Acknowledgments
	References


