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Abstract: Monovarietal wines produced in different wine-growing areas may have completely
different sensory profiles. As a result, they may be suitable for sale in different regions, depending
on local preferences. Better insight into the sensory and chemical profiles of these wines can be
helpful in further optimizing commercial strategies and matching supply and demand, which is
the main challenge for global wine traders. The training of dedicated sensory panels, together
with the correlation of the evaluated attributes with chemical parameters, followed by validation
of the obtained models, may yield an improved picture of the overall features associated with
products from a specific region. Eighteen samples of international Chardonnay and eighteen samples
of international Sauvignon Blanc wines were collected from nine world origins (Northern Italy,
Southern Italy, Chile, Argentina, New Zealand, Australia, and South Africa). The overall quality
judgement (OQJ) and the sensory attributes were evaluated by a panel trained with a MRATA
(Modified Rate-All-That-Apply) method. Moreover, volatile compounds were analysed by HS-SPME-
GC × GC-ToF/MS and the phenolic composition, including proanthocyanidins, was determined
using HPLC-QqQ/MS. The processing of the data using different multivariate analysis methods,
such as multiple factor analysis (MFA), was essential to gain insight into the quality of the samples.
The profile of cyclic and non-cyclic oligomeric proanthocyanidins was found to be substantially
dependent on the grape variety used in the wines (varietal markers), despite the country of origin of
the wine influencing it to a limited extent. The results from the same samples analysed by a sensory
panel from Germany and ours were qualitatively compared, highlighting the presence of potential
factors inherent to the panels themselves that could influence the different judgments and quality
classification of the wines. Consequently, the combination of sensory and chemical analysis, by
means of the application of multivariate statistical methods presented in this study proves to be a
powerful tool for a deeper and more comprehensive understanding of the quality of the wines under
investigation. Overall quality was described as a combination of the sensory attributes, according to
the perception process. The attributes were in turn described based on the chemical profiles, which
were determined independently by analytical techniques. Eventually, this approach can be very
useful not only for basic research on wine quality but also as a tool to aid business-related decision-
making activities of wineries and wine traders and to create models that can aid the refinement of
marketing strategies.

Keywords: MRATA (Modified Rate-All-That-Apply) sensory analysis; HS-SPME-GC × GC-TOF/MS;
HPLC-MS; chardonnay; Sauvignon Blanc; cyclic proanthocyanidins; international wines

1. Introduction

Wine quality is an issue that has been debated for a long time. As for other food
products, there may be different angles from which “quality” can be defined and assessed.
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Charters and Pettigrew defined quality as a multidimensional concept that includes a wide
range of intrinsic and extrinsic factors [1]. Moskowitz (1995) defined quality as a situation-
specific concept that is fluid and dynamic over time [2]. In the sensory analysis applied
in the wine industry, sensory stimuli are usually divided into colour sensation, aroma,
mouthfeel (trigeminal nerve), and flavour. This classification, based on physical perception
patterns, has also been used to train sensory panels and provide a track for consumer tests
in recent decades [3]. However, when consumers or panellists evaluate wine, there are
multiple interactions between sensory properties, nerve system physiological structures,
and consciousness, and it is difficult to fully identify the role of all these variables [4,5]. As a
result, the interactions between different factors define the quality of the product perceived
by the consumers and accordingly influence their preferences. Multiple interacting factors
make a complete standardization of the approaches to define sensory quality quite difficult.
Recent attempts have included the integration of sensory and chemical profiles, with
the aim of explaining trends in sensory evaluation based on wine composition, applying
chemometric approaches [6]. Of course, a limitation in the samples available for such a
study could pose an issue in terms of the representativeness of the overall significance of
the results. Factors that might influence the general discussion about the quality of wines
from the same grape variety could be applied in winemaking practices, such as terroir,
vintage, etc.

From the point of view of wine quality classification, this work aims to profile the main
sensory characteristics of monovarietal Sauvignon Blanc and Chardonnay wines from nine
world origins (Northern Italy, Southern Italy, Chile, Argentina, New Zealand, Australia,
and South Africa), quantitatively to describe the sensory attributes most influencing the
assigned overall quality, and to determine the relationships between the sensory descriptors
and chemical profiles, by applying multivariate statistics. This research objective is not
only of basic scientific importance but could be a useful tool to aid the business choices of a
winery or wine trader, in addition to offering a parallel tool to support wine evaluations by
panels of experts, which are commonly used in the wine market, as well as consumer tests.

Chardonnay is a grape variety that is documented to have originated in France,
specifically in the Burgundy region around 500 years ago [7]. It is cultivated in 41 countries
around the world with a reported addition of 210,000 hectares in 2017, and an estimated
world average production of 882,000 hL of wine in 2017 [8]. The main producers are France,
Italy, Spain, the United States, Australia, and Chile. For these reasons, Chardonnay can be
considered one of the most important grape varieties for wine production. Chardonnay is
characterised by buttery, tropical fruit, and citrus attributes due to the presence of odorants
such as diacetyl, thiols, and esters above their aromatic thresholds, allowing for their
perception [7]. Chardonnay, along with Pinot Blanc and Pinot Noir, is one of the most
important varieties used to produce sparkling wines made by refermentation in the bottle
(champenoise method). Notable examples can be found in France (Champagne area) and
Italy (Trentino Alto-Adige and Franciacorta) [9].

Like Chardonnay, Sauvignon Blanc is an indigenous grape variety of the Loire Valley
region (central France) [9]. It is considered one of the most aromatic varieties; its main
descriptors are grapefruit, guava, cat urine, and passion fruit due to the content of thiol
compounds, while methoxypyrazines give hints of herbaceous plants, green pepper, and
tomato stems [10]. Nowadays, Sauvignon Blanc is considered one of the main international
white grape varieties and it is grown in more than 15 countries, with an estimated world
average production of 861,000 hl of wine in 2017 [8]. The most important production areas
for this variety are France, New Zealand, California, Chile, South Africa, and Italy.

In this study, standard oenological parameters were determined in combination with
volatile compounds analysed by two-dimensional gas chromatography (GC × GC-MS),
phenolic compounds and proanthocyanidins by HPLC-MS, and sensory attribute profiles
with a modified-rate-all-that-apply (MRATA) sensory test in monovarietal Sauvignon Blanc
and Chardonnay wines coming from nine different origins. Based on the different analytical
protocols, the quality was defined using different multivariate explorative and regression
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approaches. Analysis of variance (ANOVA), agglomerative hierarchical clustering (AHC),
and multiple factor analysis (MFA) were used as explorative methods, while partial least
squares regression (PLS-R), principal component regression (PCR), or multiple linear re-
gression (MLR) were applied as regression approaches to understand which variables
had a major impact on the sensory perceptions. In addition, the LC-MS profile of proan-
thocyanidins was studied to be applied as a varietal chemical marker, i.e., to investigate
common profile fingerprints due to the variety and influences of non-varietal factors such
as origin [11].

2. Material and Methods
2.1. Chardonnay and Sauvignon Blanc Wines

The wine samples were provided by FruitService GmbH (Bolzano, Italy) in 0.75 L
bottles, in triplicate. All the samples were labelled as monovarietal wines from Chardonnay
and Sauvignon grapes produced in 2020 in different countries. The unique code generated
for each sample and commercial name of the wine are reported in Table 1 for Chardonnay
and Table 2 for Sauvignon Blanc. The oenological parameters reported in the two following
tables were analysed by the winery.

Table 1. Code, origin, and basic oenological parameters of Chardonnay samples (RS, residual sugars;
TA, titratable acidity). The alcohol degree (%vol), RS (g/L), and TA (g/L tartaric acid) were analysed
by official methods according to OIV [12].

Code Indication of Origin Country of Origin Alcohol
(% Vol)

RS
(g/L)

TA
(g/L Tartaric Acid) pH

Time and
Temperature of
Fermentation

CH_NZL_MA Marlborough
(South Island) New Zealand 14.0 3.2 5 3.5 21 days, 16 ◦C

CH_NZL_HA Hawkes Bay
(Nord Island) New Zealand 12.5 3.6 6.7 3.4 14 days, 12–14 ◦C

CH_ARG_ME Mendoza Argentina 14.4 2.3 5.9 3.4 12 days, 13 ◦C

CH_AUS_SE South-Eastern
Australia Australia 13.3 4.5 6.1 3.3 25–32 days, 12–18 ◦C

CH_RSA_CO Coastal (dry land) South Africa 13.5 2.1 5.1 3.6 13 ◦C

CH_RSA_WC Western Cape
(irrigated area) South Africa 13.2 1.9 5.7 3.8

CH_CLE_CV Central Valley Chile 12.9 1.6 5.6 3.3 10–12 ◦C
CH_ITA_SP Sicilia/Puglia Italy 11.9 3.7 5.2 3.2 8 days, 14–16 ◦C
CH_ITA_VF Veneto/Friuli Italy 12.3 2.8 6.4 3.3 18–20 ◦C

Table 2. Code, origin, and basic oenological parameters of Sauvignon Blanc samples (RS, residual
sugars; TA, titratable acidity). The alcohol degree (%vol), RS (g/L), and TA (g/L tartaric acid) were
analysed by official methods according to OIV [12].

Code Indication of Origin Country of Origin Alcohol
(% Vol) RS (g/L) TA

(g/L Tartaric Acid) pH
Time and

Temperature of
Fermentation

SA_NZL_MA Marlborough
(South Island) New Zealand 13.0 3.8 7.4 3.1 14–21 days, 12 ◦C

SA_NZL_MR Martinborough
(Nord Island) New Zealand 12.5 2.5 7.7 2.9 14 days, 12–14 ◦C

SA_ARG_ME Mendoza Argentina 13.0 2.3 6.5 3.3 12 days, 15 ◦C
SA_AUS_SE South-Eastern Australia Australia 11.7 4.41 6.4 3.2 17–21 days, 12–18 ◦C

SA_RSA_CO Coastal
(dry land) South Africa 13.5 2.1 5.6 3.4 13 ◦C

SA_RSA_WC Western Cape (irrigated area) South Africa 13.3 1.95 5.43 3.5
SA_CLE_CV Central Valley Chile 13.0 1.7 6.9 3.1 8–10 ◦C
SA_ITA_SP Sicilia/Puglia Italy 12.1 1.1 5.4 3.3 8 days, 14–16 ◦C
SA_ITA_VF Veneto/Friuli Italy 12.9 4.2 6.3 3.3 18–20 ◦C

2.2. Climate of the Geographical Area

In Table 3, climate details for the different origins of the samples are given. There are
only two samples from the northern hemisphere (Italian wines), while the other samples
are from the southern hemisphere. As shown in Table 3, all areas have different climatic
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conditions and can be divided into three main climate types: oceanic climates, continental
climates, and Mediterranean climates.

Table 3. Climate details for the different origins of the samples.

Origins Zone Climate

New Zealand

Marlborough
(South Island) Warm and temperate. Heavy rainfall even in driest months. Oceanic climate [13].

Hawkes Bay
(North Island)

Mild, generally warm, and temperate with a significant amount of rainfall during
the year [14].

Martinborough
(North Island)

Mild, generally warm, and temperate. Significant amount of rainfall during the
year [15].

Argentina Mendoza Hot and clear summer, cold and cloudy winter, and dry all year round [16].

Australia South-Eastern
Australia

Cool, humid eastern uplands, temperate southeast mallee, inland subtropical
northern areas, and hot, dry, arid, and semi-arid country in the far west [17].

South Africa
Coastal

(dry land) Dry, summer-rainfall, relatively warm in winter [18].

Western Cape
(irrigated area)

Mediterranean with warm and dry summers. Mild and moist winters. Low
summer rainfall [18].

Chile Central Valley Mediterranean climate with cool, dry summers. Mild rainy winters [19].

Italy Sicilia/Puglia Mediterranean with hot summers and short mild winters [20].
Mediterranean climate with hot sunny summers and mild winters, dry [21].

Veneto/Friuli

Moderately continental hill and plain areas; alpine region characterised by cool
summers and cold winters with frequent snowfalls [22].

The climate in Friuli Venezia Giulia ranges from the sub-Mediterranean climate of
the coastal areas to the more humid temperate climate of the plains, to the Alpine

climate in the mountains [23].

2.3. Sensory Analysis

For the sensory analysis of Chardonnay and Sauvignon Blanc wines, three phases
(defining the sensory attributes, rapid training, and RATA test) each consisting of one
round table, two training sessions (1 h each), and two MRATA sessions (modified rate all
that apply [24]) were performed. Cysensy–an SQL binding sensory analysis web software
developed in collaboration with the Computer Science faculty of the Free University of
Bozen/Bolzano was used during the training and MRATA sessions.

The panellists were recruited voluntarily and included students and staff of the Free
University of Bozen/Bolzano (Italy). Training and sensory testing were conducted in
the same room and at the same time for one month. To limit the impact of location and
time on the reproducibility of the sensory analysis, these parameters were maintained for
all sessions.

The panellists for both Chardonnay (9 panellists, 90% males and 10% females, aged
26 ± 2 years old) and Sauvignon Blanc (10 panellists, 40% females and 60% males, aged
26 ± 5 years old) had a background in oenology. For both Chardonnay and Sauvignon
Blanc, the total number of samples evaluated were 27: nine bottles were used to create
the common vocabulary, while 18 bottles were used in the RATA quantitative assessment
(9 origins × 2 replicates).

In the round table session, the panellists were asked to test each wine individually
and share descriptors of visual, olfactory, and gustatory (taste and flavour) attributes on an
interactive web whiteboard (Jamboard, Google, Netherlands). After each sample, the panel
leader and panellists discussed and selected the most appropriate shared attribute for each
wine type.

Then, the panellists were trained for those specific attributes (shown in Table 4). For
both varieties, the first training session was specific to the odour attributes. Panellists
were trained with reference standards [25] or natural standards if references were not
available. The odour attributes of Chardonnay were “citrus” (lemon, grapefruit), “floral”
(rosewater, green tea), “green vegetables” (green pepper), “stone fruit” (peach), and “tree
fruit” (green apple).
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Table 4. List of attributes relevant to the sensory profile of Chardonnay and Sauvignon Blanc wines.

Wine Attributes Descriptors Description

CHARDONNAY

VISUAL

GREENISH From pale grass to an intense green
YELLOWISH From a pale straw to a rich yellow

OLFACTORY

CITRUS FRUIT-a Grapefruit, lemon Aromas from citrus fruit (zest of lemon), particularly grapefruit
POME TREE FRUIT-a Green apple, pear Aromas from pome tree fruit (green apple, pear)

STONE FRUIT-a Apricot, peach Aromas from yellow tree fruit (apricot, peach)
VEGETATIVE-a Green bell pepper Aromas from green bell pepper when cut

FLORAL-a Green tea, rose The fresh scent of wildflowers, jasmine, green tea (infused), and
rose water

CITRUS FRUIT-a Grapefruit, lemon Aromas from citrus fruit (zest of lemon), particularly grapefruit
POME TREE FRUIT-a Green apple, Pear Aromas from pome tree fruit (green apple, pear)

STONE FRUIT-a Apricot, peach Aromas from yellow tree fruit (apricot, peach)

GUSTATORY

WARMNESS Alcohol Warm/burning sensation in the mouth

ACIDITY-SOURNESS Acid (citric, tartaric, malic,
lactic) Acid taste resembling that of vinegar, lemon juice etc.

BITTERNESS Caffeine The bitter taste of caffeine (coffee)

FLAVOUR

CITRUS FRUIT-f Grapefruit, lemon The flavour of citrus fruit: grapefruit, orange, lemon zests
TROPICAL FRUIT-f Ananas The flavour of tropical fruit: ananas

WOODY-f Wood, oak The flavour of fresh and toasted wood (oak, resinous aromas)
CITRUS FRUIT-f Grapefruit, lemon The flavour of citrus fruit: grapefruit, orange, lemon zests

SAUVIGNON BLANC

VISUAL

GREENISH From pale grass to an intense green
YELLOWISH From a pale straw to a rich yellow

OLFACTORY

GRAPEFRUIT CITRUS-a Grapefruit, citrus zest Aromas from citrus fruit (zest of lemon), particularly grapefruit
TROPICAL FRUIT-a Passion fruit, tropical fruit Tropical fruit aromas, passion fruit (mango, maracuja)

STONE FRUIT-a Apricot, peach Aromas from three yellow fruit (apricot, peach)
DRIED FRUIT-a Nutty, almond Aromas from dried fruit (nutty, almond, hazelnut, walnut)

WOODY-a Wood, oak The aroma of fresh and toasted wood (oak, resinous aromas)
VANILLA-a Vanilla, vanilla sugar The aroma of vanilla (vanilla sugar, aromas like cake)

GREEN GRASS Fresh cut grass Cut grass aromas or hay
TOMATO STEM-a Tomato stem The aroma of tomato stem

GREEN BELL PEPPER-a Green bell pepper The aroma of green bell pepper when cut
FLOWERS-a Wildflowers, jasmine The fresh scent of wildflowers and jasmine

HONEY-a Honey Aromas of wildflower-honey
GUSTATORY

WARMNESS Alcohol Warm/burning sensation in the mouth
SOURNESS Acid (citric, tartaric, malic) The acid taste resembles that of vinegar, lemon juice, etc.

SWEETNESS Sucrose. glucose, fructose Sensation typical of sweet food/beverages
FLAVOUR

CITRUS-f Orange, grapefruit, lemon
and their zest The flavour of citrus fruit: grapefruit, orange, lemon, and zest.

WOODY-f Wood, oak The flavour of fresh and toasted wood (oak, resinous aromas)

OVERALL QUALITY JUDGEMENT (OQJ) An objective answer by the panel on the quality of the product

On the contrary, for Sauvignon Blanc, the odour attributes were “tropical fruit” (pas-
sion fruit, mango), “stone fruit” (apricot, peach), “citrus” (grapefruit, lemon), “dried fruit”
(nutty, almond), “woody”, “vanilla”, “green grass”, “tomato stem”, “green bell pepper”,
“flowers” (wildflower, jasmine), and “honey”. The second training session was assigned
to those odour attributes that the panellists did not recognise at a percentage higher than
75% during the descriptor test of the first training session, along with the taste and flavour
attributes. For Chardonnay, “warmness”, “sourness” (citric, lactic, malic, and tartaric
acid), and “bitterness” (caffeine) were selected for the taste attribute during the round
table, and “citrus”, “pome tree fruit”, “herbaceous”, and “floral” for the flavour attributes.
For Sauvignon Blanc, “warmness”, “sourness” (citric and tartaric acid), and “sweetness”
were selected for the taste attributes and “citrus” and “woody” were selected for the
flavour attributes.

Then, the panellists performed a MRATA in which they were asked to rate the in-
tensity of each attribute from 0 to 5, where 0 was “does not apply”, 1 was “weak”, and 5
was “strong”.
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One of the attributes was Overall Quality Judgment (OQJ), a descriptor that combines
all three aspects of the sensory analysis (visual, olfactory, and gustatory), and should
be considered as an objective evaluation of the overall quality of the product. The wine
samples were analysed in duplicate in two different sessions. The bottles were opened
30 min before the session. An aliquot (30 mL) of wine was poured into ISO glasses labelled
with a random 3-digit number. The tasting order of the wine samples was randomised
using a complete Latin square randomization among the panellists to reduce carry-over
effects [26]. In addition, a sensory test was also performed in an accredited laboratory for
wine testing (DIN EN ISO/IEC 17025:2018) by a local German panel.

2.4. Method Optimization for HS-SPME

To increase the instrumental response towards the compounds that mainly define the
typicity of Chardonnay and Sauvignon Blanc wine odours, solid-phase micro-extraction
(SPME) temperature, incubation time, extraction time, and fibre composition were opti-
mised by applying a central composite experimental design [27,28]. The optimisation was
designed on three quantitative factors (extraction temperature, incubation time, and extrac-
tion time) and one qualitative factor (fiber type). Minitab (version 19. 2020.1, Minitab LLC,
State College, PA, USA) was used to create the experimental design and calculate the mod-
els. In Table 5, the factor list used in the experimental design was reported. The optimiser
tool of Minitab was used to combine the different models obtained for the different classes
with the aim of improving the detection of the most-difficult-to-analyse compounds (i.e.,
especially the relatively polar volatile compounds, such as thiols and methoxypyrazines).

Table 5. List of factors considered in the experimental design applied in the HS-SPME method
optimisation.

Extraction Temperature (◦C) Incubation Time (min) Extraction Time (min) Fiber Composition
Type Quantitative Quantitative Quantitative Qualitative

Min level 30 5 10 PDMS
Polyacrylate
CAR-PDMS

DVB-CAR-PDMSMax level 60 40 60

To study the effect of different factors, a model wine was prepared by adding several
standard volatile compounds stocked in ethanol to a commercial wine (white Tavernello,
Caviro winery, Faenza) from the same batch (main technological parameters, determined by
MIURA analysis: acetic acid = below quantitation threshold, glucose + fructose = 8.1 g·L−1,
L-tartaric acid = 0.7 g·L−1, L-lactic acid = 0.4 g·L−1, L-malic acid = 1.1 g·L−1, total polyphe-
nols index (TPI–Folin) = 180 mg·L−1, total-SO2 = 94 mg·L−1, free-SO2 = 11 mg·L−1).

2.5. HS-SPME-GC × GC-ToF/MS Analysis of the Volatile Profiles

For sample preparation, 0.5 g of NaCl was placed into a 10-mL SPME glass vial. Then,
a 4 mL wine sample was added to the vial. Next, 10 µL of 2-methyl-3-pentanol was added
as an internal standard (from a stock of 1/50 of I.S. in ethanol). Then, the vial was closed
with a perforable silicon screw-cap. For SPME extraction, a Stableflex SPME fiber 50/30 µm
DVB/CAR/PDMS, 23 Ga, for the autosampler (SUPELCO, 595 North Harrison Road,
Bellefonte, PA, 16823-0048, USA) was used. The solid-phase microextraction incubation
time was 5 min and extraction time was 60 min. Both the extraction and incubation were
under continuous heating (50 ◦C) and stirring (300 rpm). The SPME was performed with
an LPAL3 GC autosampler equipped with a Peltier Stack, where the samples were kept at
4 ◦C before the analysis.

The fiber was preconditioned at 240 ◦C for 6 min before the analysis. The gas chro-
matographic method was adapted from previously published reports [6,29]. The separation
was performed by comprehensive GC × GC on an instrument coupled with a Pegasus BT
4D time-of-flight mass spectrometer and equipped with a FluxTM flow modulator (Leco
Italy, Milano). The separation was performed at 1 mL/min (He carrier gas) in splitless
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mode, with 2 mL/min septum purge flow and 6 mL/min inlet purge flow. The inlet
temperature was 240 ◦C. Each sample was analysed in GC × GC on a polar cross-bond
PEG-phase MEGA-Wax Spirit 0.30 µm × 0.18 mm × 40 m (Mega S.r.l., Legnano, Italy) as
the first dimension and a Rxi-17 Sil 0.10 µm × 0.10 mm × 1.2 mm (Restek S.r.l., Cernusco
sul Naviglio, Italy) as the second dimension. The two columns were connected by a FluxTM

modulator (LECO), with a 15.92 psi auxiliary diverting helium flow. The second column
was stored in a secondary oven inside (but thermally isolated from) the larger primary oven.
The primary oven temperature program was 40 ◦C for 6 min, 40 to 180 ◦C at 3 ◦C/min,
180 to 240 ◦C at 10 ◦C/min, and 240 ◦C for 1 min. The secondary oven had a temperature
5 ◦C higher than the first oven, and accordingly, its temperature program was shifted to
that of the same temperature difference. The GC × GC instrument was connected with the
mass spectrometer by a transfer line kept at 250 ◦C. The mass spectrometer was operated
with the following parameters: 0 s acquisition delay, 70 eV filament electron energy, 250 ◦C
ion source temperature, 150 spectra/s acquisition rate, 32 kHz extraction frequency, and
acquisition mass range = m/z 35–530. The mass spectrometer was tuned before starting
a new sequence of analyses. After each analysis, each GC × GC chromatogram was re-
constructed in 2D colour maps by ChromaTOF® software by deconvolution. Automatic
compound assignment was done by NIST 2017 (NIST MS Search 2.3) database comparison.
Linear retention indexes were calculated from the first-dimension retention times against
the injected series of linear fatty ethyl esters C4-C24 (even carbon saturated, Merck Life
S.r.l., Milan, Italy).

The processing software ChromaTOF® (LECO Corporation, Berlin, Germany) ver.2021
was used to process the chromatograms obtained from the bidimensional gas-chromatography.
Target analyte finding (TAF) for specific compounds in both Chardonnay and Sauvignon
Blanc was also used. The parameters used in the TAF methods are reported in Table S1.

2.6. UHPLC-MS Analysis of the Phenolic Profiles

The LC-MS analysis of polyphenols was conducted on a UHPLC-QqQ/MS instru-
ment (Agilent LC/TQ 6465 system) equipped with a 1260 Infinity II UHPLC with a
quaternary pumps system, a 1260 Infinity II WR PDA detector, in series to an AJS ESI
QqQ mass analyser. The chromatographic separations were conducted on a Poroshell
120, SB-C18 2.1 mm × 100 mm × 2.7 µm (Agilent Technologies Italia, Milan, Italy) kept
at 30 ◦C at a 0.35 mL/min flow rate. The mobile phase consisted of A) 0.1% formic
acid in degassed ultrapure water and B) 0.1% formic acid in acetonitrile. All used sol-
vents and mobile phase additives were at MS grade. The operational conditions to
analyse the Chardonnay wine samples were as follows: The gradient separation pro-
gram was 1%B from 0 to 1.5 min, 1 to 30% B from 1.5 to 19 min, 30 to 99% B from 19
to 20 min, 99% B from 20 to 24 min, 99 to 1% B from 24 to 25 min, and 1% B from
25 to 30 min. The injection volume was 5 µL. The PDA detector was set to record the
absorbance in the 200–700 nm wavelength range using a 4 s response time (1.25 Hz)
and 4 nm slit width, with 1 nm spectrum steps. The MS detection was performed in
ESI- ionization mode, with the following parameters: mass range = m/z 200–750, scan
time = 500 ms, step size = 0.1 amu, fragmentor potential = 135 V, cell acceleration = 5 V,
N2 gas temperature = 340 ◦C, N2 gas flow = 13 L/min, nebuliser pressure = 50 psi, sheath
gas heater = 350 ◦C, sheath gas flow = 12 L/min, capillary voltage = −3500 V, nozzle volt-
age = −500 V.

The operational conditions to analyse the Sauvignon Blanc wine samples were as
follows: The gradient separation program was 1%B from 0 to 2.5 min, 1 to 25% B from
2.5 to 50 min, 25 to 99% B from 50 to 51 min, 99% B from 51 to 55 min, 99 to 1% B
from 55 to 56 min, and 1% B from 56 to 62 min. The injection volume was 5 µL. The
PDA detector was set to record the absorbance in the 200–700 nm wavelength range
using a 4 s response time (1.25 Hz) and 4 nm slit width, with 1 nm spectrum steps. The
MS detection was performed in ESI- ionization mode, with the following parameters:
mass range = m/z 100–1000, scan time = 500, step size = 0.1 amu, fragmentor potential =
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130 V, cell acceleration = 5 V, N2 gas temperature = 260 ◦C, N2 gas flow = 4 L/min, nebuliser
pressure = 35 psi, sheath gas heater = 300 ◦C, sheath gas flow = 12 L/min, capillary voltage =
−2500 V, nozzle voltage = −2000 V. MS raw data were converted into mzData format with
MassHunter (Agilent) and exported. The MzMine3 (http://mzmine.github.io/) application
was employed for automatic alignment and pre-processing before statistical analysis. PDA
retention times were corrected to match the MS retention times. Figure S1 reports the
workflow applied to obtain the dataset of phenols.

Tentative compound identification was conducted by full-scan mass spectrometry
determination and the relative PDA λmax assignment, to classify the compounds at least in a
phenolic class, where a complete identification could not be achieved. Solutions of standard
compounds (gallic acid, trans-caffeic acid, p-coumaric acid, trans-caftaric acid, (+)-catechin,
(-)-epicatechin, protocatechuic acid, astilbin, kaempferol-3O-glucoside, and procyanidin
B2) were analysed by standard injection, and their PDA spectra, MS/MS spectra, and
retention times (min) were used as references. The tentative identification of phenolic com-
pounds was reported in Table S2. Targeted MS/MS fragmentation experiments (product
ions monitoring-PRM) on selected ions were conducted with the following setup: source
parameters as in MS1 analysis, acquisition mass range from m/z 25 to + 10 m/z from the
selected precursor ion, scan time = 125 ms, fragmentor potential = 135 V, collision energy =
25 V, and cell accelerator 5 V. The results of the fragmentation experiments were reported
in Table S2 and Supporting Information File S2—Tables S17 and S18.

Proanthocyanidins (PAC) were separately analysed on the same UHPLC-QqQ/MS
instrument as for non-volatile phenols. The chromatographic separation was conducted in a
Vertex Plus Eurosphere II (KNAUER, Berlin, Germany) column 4.6 mm × 250 mm × 5 µm
with a precolumn, and kept at 30 ◦C. The separation was conducted at a 0.7 mL/min flow
rate. The mobile phases consisted of A) 0.1% formic acid in degassed ultrapure water and B)
0.1% formic acid in acetonitrile. All solvents and mobile phase additives were at MS grade.
The gradient separation program was as follows: 1% B from 0 to 2.5 min, 1 to 25% B from
2.5 to 50 min, 25 to 99% B from 50 to 51 min, 99% B from 51 to 55 min, 99 to 1% B from 55 to
56 min, and 1% B from 56 to 62 min. The injection volume was 5 µL. The mass spectrometer
operated in ESI+ mode. The detection of the proanthocyanidins was performed in single-
ion-monitoring (SIM) mode. In Table S3, the SIM parameters for both Chardonnay and
Sauvignon Blanc are listed. The parameters for mass spectrometric detection were the fol-
lowing: fragmentor potential = 135 V, cell acceleration = 5 V, N2 gas temperature = 230 ◦C,
N2 gas flow = 8 L/min, nebuliser pressure = 20 psi, sheath gas heater = 300 ◦C, sheath gas
flow = 10 L/min, capillary voltage = 3000 V, nozzle voltage = 2000 V. Integrated peaks were
directly downloaded from Mass Hunter and aligned manually.

2.7. Statistical Analysis

The statistical analysis was performed using the XLSTAT add-on for Excel (Addinsoft,
Paris, France). The datasets for the two different varieties were basic oenological parameters,
sensory analysis (visual, olfactory, gustatory, overall quality judgment), volatile compounds,
non-volatile phenolic compounds, and proanthocyanidins.

One-way ANOVA (analysis of variance) and the Tukey HSD (honestly significant dif-
ference) post-hoc test were used to identify the most significant variables differentiating the
samples. The sensory analysis dataset was also investigated by Agglomerative Hierarchical
Clustering (AHC) method. Sensory datasets were computed using the dissimilarity and
Euclidian distance coefficient (XLSTAT help, 2022, https://www.xlstat.com/en, accessed
on 31 May 2022).

To explore the relationship between experimental variables and factors, Multiple
Factor Analysis (MFA) was applied. This statistical method allows the analysis of a dataset
containing different groups of variables (both quantitative and qualitative) [30]. The MFA
methodology is divided into two phases: performing Principal Component Analysis [31]
(for quantitative data) and Multiple Correspondence Analysis (for qualitative tables) or
Correspondence Analysis (for frequency tables). Then, the MFA weighs the sets of variables

http://mzmine.github.io/
https://www.xlstat.com/en


Foods 2022, 11, 3458 9 of 31

normalizing the highest axial inertia of each set. The axial inertia is a measure of the
weighted spread of the point in a multidimensional space (XLSTAT help, 2022). The MFA
has been performed with 7 sets of continuous variables: wine basic parameters, sensory
analysis divided by the different modes of perception (colour, aroma, gustatory-flavour,
overall quality judgment), volatile compounds, and phenolic compounds.

Partial Least Square Regression (PLS-R) has been used to correlate the descriptor
variables with the overall quality judgment to understand which descriptors most affected
the quality of the product [6]. The Q2 cumulative index represents the goodness of fit in the
prediction quality of the model and was calculated using the following (Formula (1))

Q2cum (h) = 1 −
h

∏
j=1

PRESSkj

SSEk(j−1)
(1)

where “h” is the number of components used in the regression model, “j” is the observation
and involves the predicted residual error sum of square (PRESS) statistics and the Sum
of Squares Errors (SSE). Other important indexes are R2Y, R2X (which correspond to the
correlation with the components between the dependent (Y) and the explanatory (X)
variables), and the VIP (variables importance in projection). The VIP index explains the
importance that each variable has in the model on the latent factors (Formula (2))

VIPhj =

√√√√ p

∑h
i=1 Rd(Y, ti)

·
h

∑
i=1

w2
ijRd(Y, ti) (2)

The PLS2 regression method was used to identify which volatile compounds affected
the olfactory and flavour sensory attributes. Also, PLS2 regression was used to under-
stand which non-volatile phenolic compounds affected the visual and gustatory sensory
attributes.

The Multiple Linear Regression (MLR) method was used to calculate the regression
for the gustatory variables on the dataset of Chardonnay wines. Multiple linear regression
is a statistical feature that models the values of a quantitative dependent variable Y through
a linear combination of quantitative explanatory variables X. The determinist model is
reported below (Formula (3))

yi = β0 +
p

∑
i=1

β jxij + εi (3)

where “yi” is the value observed for the dependent variables (observation i),“xij” is the
value taken by variable j for observation I, and “εi” is the error of the model.

3. Results
3.1. Analysis of Variance
3.1.1. Chardonnay Sensory Data

Figure 1 shows the significant variables determined by one-way ANOVA for the
Chardonnay sensory data. The significant visual descriptors found were “Green colour”
and “Yellow colour”, as shown in Figure 1A. “Citrus fruit” aroma, “Warmness” taste,
“Tropical fruit” and “Woody” flavours are shown in Figure 1B. The computed LS means
and the groups (indicated by the alphabetical letters) obtained by one-way ANOVA and
Tukey HSD test (α = 0.05) are reported in Table S4. The significant variables for the
volatile compounds and phenolic compounds are reported in Tables S6 and S8, respectively.
Figures S2 and S4 report the PCA observations and bi-plots, for volatile compounds and
non-volatile phenolic compounds of Chardonnay wines, respectively. Figure 1A for the
significant colour attributes (“Yellow colour” and Green colour”) showed that ARG_ME
had the highest intensity in the “Yellow colour” and lowest in the “Green colour”. This
wine was followed by RSA_WC and CLE_CV for the “Yellow colour” intensity, although
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Tukey’s test did not show a significant difference between the samples for the “Yellow
colour”. Instead, for the “Green colour”, as mentioned above, the CLE-CV wine showed
the lowest intensity. Moreover, Tukey’s test grouped these samples with the letter “b”,
while the other samples were grouped as “ab”, thus there were no significant differences
between these samples, but just a trend. Regarding the “Citrus fruit-a” aroma attribute
(Figure 1B), RSA_CO and RSA_WC showed the highest level for this descriptor, whereas
ARG_ME and ITA_SP were characterised by the lowest one. These samples were divided
into two groups by Tukey’s test: the first two samples were divided into one group and
the other two into another group, which confirmed the significant difference between the
samples. For “Warmness”, the highest samples were NZL_MA, RSA_WC, and CLE_CV,
which were grouped by Tukey’s test. The lowest sample was ITA_SP, which was included
in another group showing a significant difference. The “Tropical fruit-f” descriptor did
not show significant differences in Tukey’s test; only one group is shown. However, the
samples with the highest level were AUS_SE and CLE_CV. For “Woody-f”, the results
differentiated many significant groups using the Tukey test; the samples with the highest
level were NZL_MA and ARG_ME, whereas the samples with the lowest level were ITA_SP
and ITA_VF, which were divided into two different groups. This result showed how the
Italian wines were poor in the “Woody-f” descriptor: the use of wood for the Chardonnay
wines was not applied to these Italian Chardonnay wines.

Figure 1
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Figure 1. Significant sensory variables according to one-way ANOVA, with the Tukey HSD results.
The coloured bars indicate the average between the two duplicates for the different sensory attributes
also reporting the standard deviations. (A) Significantly different colour attributes, (B) Significantly
different aroma, taste, and flavour attributes. Letters a–e indicate the groupings found with Tukey’s
post-hoc analysis.

3.1.2. Sauvignon Blanc Sensory Data
Analysis of Variance

One-way ANOVA reported in Figure 2 shows the significant variables in the sen-
sory data of Sauvignon Blanc wines. The significant variables were “Green colour” and
“Yellow colour” (Figure 2A), “Tomato stem” and “Green bell pepper” aromas (Figure 2B),
and the “overall quality judgment (OQJ)” (Figure 2C). In Table S5, the LS mean and
Tukey’s HSD post-hoc test results are shown. One-way ANOVA and Tukey’s HSD test for
the volatile compounds and non-volatile phenolic compounds, respectively, are shown
in Tables S7 and S9. Also, PCA observations and the bi-plot for volatile compounds
and non-volatile compounds, respectively, on Sauvignon Blanc wines were reported in
Figures S3 and S5.
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Figure 2
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Figure 2. Significant sensory variables according to one-way ANOVA for Sauvignon Blanc data. The
bars indicate the average between the two duplicates for the different sensory attributes (also for
the standard deviation); different letters show significant differences among groups obtained by
the ANOVA. (A) Significantly different colour attributes, (B) Significantly different aroma attributes.
(C) Significantly different Overall Quality Judgement (OQJ). Letters a–c indicate groupings found by
Tukey’s post-hoc analysis.

The colours “Green colour” and “Yellow colour” (shown in Figure 2A) showed a
similar trend. “Green colour” did not show significant differences in Tukey’s test. However,
the samples with the highest value of this descriptor were RSA_WC, while the lowest ones
were ITA_SP and NZL_MR. The “Yellow colour” showed 4 different groups by Tukey’s
test, where ARG_ME was the sample with the highest level (group “a”), and the lowest
sample was NZL_MR (group “c”). Regarding the significant aroma descriptors (shown
in Figure 2B), “Tomato stem” and “Green bell pepper” were similar in the samples. Only
NZL_MA showed differences as “Tomato stem” was higher than “Green bell pepper”. The
highest samples were RSA_CO and the lowest was ITA_SP for both descriptors. “OQJ”
(shown in Figure 2C) was divided by Tukey’s test into three groups. The lowest sample
was ARG_ME, which was significantly different from all the other samples.

Agglomerative Hierarchical Cluster Analysis (AHC)

AHC results are only briefly discussed as qualitative analysis will be comprehen-
sively discussed with the MFA. However, AHC was able to cluster almost all the origins.
Figure S6A showed two principal clusters: The first cluster grouped ARG and RSA origins,
while the second grouped the other origins in two main sub-groups, NZL_MR and AUS_SE
+ ITA_VF. Figure S6B shows three main clusters of Chardonnay wines. The first one with
the ITA SP + ITA VF origin, the second one with ARG_ME, different from the other wines,
and the last one clustered the other origins. Notably, the inclusion of overall quality in the
parameters’ dataset greatly improved the separation of the samples by country of origin.
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3.2. Multiple Factor Analysis
3.2.1. Chardonnay Wines

Figure 3 shows the MFA for the Chardonnay wines computed with the dataset of
basic oenological parameters, sensory analysis, volatile compounds, and phenolic com-
pounds. MFA was used to fuse the different datasets into a single statistical computation,
to give a generalised overview of the correlations between the variables and of the trends
among the observations. The partial axes built on the first two components shown in
Figure 3A accounted for 38% of the total variance. From Figure 3A,B, clear separation
among wines from Italy can be seen due to the contribution of the phenolic compounds-F2,
basic oenological parameters-F1, taste and flavour-F1, and visual-F2. Similarly, volatile
compounds-F2 mostly contributed to the separation of wines from Argentina. Phenolic
compounds-F1 and olfactory attributes-F2 correlated with the wines from South Africa, and
basic oenological parameters-F2, olfactory-F1, and visual-F2 contributed to the separation
of wines from Australia. The wines from New Zealand were also well separated due to the
contribution of taste and flavour-F2, volatile compounds-F1, and OQJ. Figure 3C shows
that pH and the residual sugar were anti-correlated. The distribution of the observations
shows that wines from New Zealand (Marlborough) and South Africa correlated with
the pH, which was higher in both wines, and anti-correlated with the residual sugars;
while wines from Australia and New Zealand (Hawkes Bay) correlated with the titratable
acidity, which was highest among the wines. The loadings plot in Figure 3B–E shows that
the OQJ correlated with “flowers”, “citrus fruit” (aromas), and “tropical fruit” (flavour).
These are also the attributes that characterised wines from Australia. Additionally, volatile
compounds XVI, acetic acid-2-phenylethyl acetate (XXVI), naphthalene, decahydro-4a-
methyl-1-methylene-7-(1-methylethylidene) (XXXIII), and butanedioic acid, diethyl ester
(XXIII) showed a correlation with OQJ. Notably, the ester 2-phenylethyl acetate is responsi-
ble for fresh and floral aromas in wine [32]; butanedioic acid, diethyl ester is shown to give
a fruity odour perception [33]. Finally, naphthalene, decahydro-4a-methyl-1-methylene-7-
(1-methylethylidene) is shown in association with woody perceptions [34].

The Italian wines were separated from other origins due to the volatile compounds
(XXVIII), (XXVII), (IX), (XXII), and (V). Wines from New Zealand (Hawkes Bay) were
characterised by “green colour”, and wines from Chile by the olfactory “stone fruit”. From
Figure 3C, the correlations of the distributions of specific phenolic compounds with specific
sample groups are highlighted; wines from Argentina showed higher contributions of
x.11 (m/z 333.1 at 1.3 min) and x.96 (m/z 311.1 at 6.9 min); wines from South Africa
showed higher contributions of the ion x.169 (m/z 429.1 at 11.5 min); wines from New
Zealand showed higher contributions of x.68 (m/z 153.0 at 5.5 min) and x.115 (m/z 284 at
8.1 min). The species that particularly characterised the wines from Italy were x.5 (m/z
205.1 at 1.0 min), x.75 (m/z 368.1 at 5.8 min), x.69 (m/z 315.1 at 5.6 min) and x.13 (m/z
405.1 at 1.5 min). A tentative identification of the most relevant phenolic compounds was
conducted by comparing our full MS and fragmentations (MS2) results with the current
pieces of literature.

The ion x.11 was characterised by m/z 333.1. Although the precursor ion was m/z 347.1,
it was possible to observe its in-source fragmentation at m/z 333.1. It was hypothesised that
it could be a dimer of quinic acid (with its visible in-source fragment m/z 191), generated
by ester condensation reactions. A reason for the in-source fragmentation for this species
could be an applied too high ionization potential; the mass spectrum of m/z 331 showed
the fragment m/z 191, backing up our hypothesis. Moreover, the fragmentation spectrum
of m/z 333.1 also showed m/z 217, m/z 173 and m/z 111 as fragments [35]. Then, it was
speculated that ion x.11 at m/z 333.1 and MS2 product ions at m/z 173, m/z 111, m/z 155,
and m/z 67 could be a derivative of citric acid [36]. Ion x.96 (m/z 311.1 at 6.9 min) was
characterised in MS2 by m/z 149 (tartaric acid) and m/z 135 (decarboxylated caffeic acid)
and accordingly was assigned to caffeoyltartaric acid (caftaric acid) [37]. Ion x.169 showed
as precursor ion m/z 429.1 that was hardly identified. However, the mass spectra contained
fragments at m/z 366 and m/z 204, which were possibly obtained by a neutral loss of
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glucose residues [38]. It was hypothesised that the fragment at m/z 204 was a derivative of
the dimer of N-acetyl-glucosamine bound to a glucose moiety. Moreover, considering the
found m/z 62 fragment, and the related neutral losses (Da), it was hypothesised that this
was due to an adduct with ammonium formate (although no ammonium salt was added to
the mobile phases), or a complex with copper. Ion x.68 showed a negative parent ion at m/z
153.0 (at 5.5 min) and a fragmentation pattern characterised by m/z 109 and m/z 108, which
could be characteristic of protocatechuic acid [39]. The full MS spectrum of the ion x.115
showed as fragment ions m/z 163 (coumaric acid) and m/z 149 (tartaric acid). As reported
by Šuković et al. [40], x.115 was tentatively identified as coumaryltartaric (coutaric acid);
its precursor ion at m/z 295 was also identified as in co-elution, supporting this hypothesis.
The product ion at m/z 119 results therefore from the loss of a CO2 unit (44 Da) from m/z
163 [40].
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Figure 3. MFA for the Chardonnay dataset. (A) shows the partial axes for the first 2 compo-
nents and the different datasets used in the computation, (B) shows the observation plot, and
(C–F) shows basic oenological variables, sensory analysis variables, aroma compounds, and phe-
nolic compounds, respectively. Identified volatile compounds: I = ethyl acetate, IV = 4-amino-1-
butanol, VIII = ethylamine, IX = 2-pentanol-3-methyl-, X = butyl lactate, XI = 1-propanol, 3-amino-,
XII = 2,3-butanediol, XIII = propanoic acid, 2-hydroxy, ethyl ester or methyl ester, XIV = octanoic,
ethyl ester, XV = acetic acid, XVII = 2,4-hexadienoic acid, ethyl ester, XXII = decanoic acid, ethyl
ester, XXIII = butanedioic acid, diethyl ester, XXV = naphthalene, 1,2-dihydro-1,1,6-trimethyl-,
XXVI = acetic acid, 2-phenylethyl ester, XXVII = hexanoic acid, 2-phenylethyl ester, XXIX = benzene
butanal, XXX = phenylethyl alcohol, XXXI = sorbic acid, XXXIII = naphthalene, decahydro-4a-methyl-
1-methylene-7-(1-methylethylidene), XXXIV = n-decanoic acid, XXXV = 2,4,-di-tert-butylphenol.

Furthermore, the ion m/z 284 has been reported as the deprotonated radical ion of
kaempferol; nevertheless, the most common fragments of kaempferol were not found in
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the MS2 spectrum [41]. The ion m/z 119 has been found as a fragment in the databases for
kaempferol (massbank.eu) [42]. x.69 showed a negative parent ion at m/z 315.1 (at 5.6 min)
with fragments m/z 153 and m/z 109, characteristics of protocatechuic acid, thus resulting
by a likely hexose group moiety loss; so, it was supposed to be an hexoside derivative of
protocatechuic acid [39].

3.2.2. Sauvignon Blanc Wines

Figure 4 shows the MFA for the Sauvignon Blanc wines that were also computed using
the dataset of basic oenological parameters, sensory analysis, volatile compounds, and
phenolic compounds. MFA was used to fuse the different datasets in a single statistical
computation to give an overview of the correlations between the variables and trends
among the observations, as already shown for Chardonnay. As seen in Figures 4A and 3B,
the partial axes built on the first two components showed a total variance of 33%. It is
observed that the wines from New Zealand are separated due to the contribution of volatile
compound-F1 and visual-F2. Similarly, wines from Argentina are separated due to the
contribution of the taste-F2 and flavour-F2 components, and olfactory-F1. Wines from
Chile are separated due to the contribution of phenolic compounds-F2 component and
basic oenological parameters-F2. Furthermore, the wines from Italy are anti-correlated
with respect to the taste-F2 and flavour-F2 components, and olfactory-F1. In the case of
Sauvignon Blanc, the pH and total acidity (TA) were perfectly anti-correlated. From the
loadings plot in Figure 4D, it is possible to see that the olfactory attributes of “passion
fruit” and “stone fruit” were highly correlated with OQJ. Wines that were positively
characterised by these attributes correlating with OQJ were from Chile and Australia. On
the contrary, the olfactory attribute “green bell pepper”, “citrus” flavour, and “warmness”
were anti-correlated with OQJ; the wines characterised by these attributes were from
South Africa and Argentina. Furthermore, the volatile compound α-terpineol (XII) is
known for enhancing the perception of “floral” and “sweet” aromas, and it was shown
to contribute to the complexity, and to be one of the key odorants in Sauvignon Blanc
wines [10]; 3-mercapto-hexanol (III) was shown to be the main volatile thiol present in
Sauvignon Blanc; it is known for being responsible for the “tropical fruit” aroma [43]; ethyl
cinnamate (IX) compounds, which were reported to be present by [44], are known for the
perception of “sweet”, “balsamic”, “fruity”, “spicy” aromas and were also herein correlated
with OQJ. The phenolic compounds x.86 (m/z 229.1 at 6.6 min) and x.59 (m/z 311.1 at
5.2 min) showed a correlation with the “sourness” attribute that characterises the wines
from New Zealand, while compound x.92 (m/z 157.1 at 7.0 min) showed a correlation with
the olfactory attribute “dried fruit” characterising wines from Northern Italy. Compounds
x.54 (m/z 487.1 at 5.1 min), x.41 (m/z 230.0 at 4.0 min), x.29 (m/z 287.1 at 2.9 min), and
x.84 (m/z 315.1 at 6.5 min) showed correlation with wines from Argentina, while wines
from South Africa (Western Cape) were more correlated to compounds x.75 (m/z 373.1
at 5.9 min), x.127 (m/z 303.1 at 10.7 min), and x.71 (m/z 175.1 at 5.7 min). The wines
from Southern Italy were well explained by dimension 2, which was characterised by
compounds x.126 (m/z 478.2 at 9.6 min) and x.101 (m/z 325.1 at 7.5 min).

The mass spectrum of the x.59 (m/z 311.1) showed fragment ions m/z 179 and m/z 149
corresponding to the caffeoyl and tartaric acid moieties, respectively, that are characteristic
ions of the structure of this compound. Tentatively, this fragmentation pattern was assigned
to a derivative of caftaric acid [45]. Additionally, the molecular ion m/z 487 of the x.54
species was characterised by fragment ions m/z 311 and m/z 149, and was therefore
speculated to be a derivative of caftaric acid as well [40].

x.92 showed a product ion m/z 157 co-eluting with m/z 173 in full MS mode. Addi-
tionally, a fragment ion m/z 113 was found. This compound was tentatively attributed to a
derivative of dehydroascorbic acid [46].

The x.54 specie at 5.1 min had a suspected in-source precursor ion m/z 487, and the
fragmentation pattern was characterised by fragment ions at m/z 355, m/z 311, and m/z
149. The fragment ion m/z 355 was formed by the loss of the pentose unit (132 Da) from
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m/z 478. Alternatively, m/z 487 was hypothesised to be a glucuronyl unit-containing
compound (loss of 176 Da), showing the fragment ion m/z 311 in MS2 [47]. Additionally,
m/z 487 appeared to be composed of caffeic and tartaric acid moiety, as it showed two
characteristic product ions m/z 311 (caffeoyltartaric acid) and m/z 149 (tartaric acid), and a
loss of a caffeic acid moiety (162 Da) [48].
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Figure 4. MFA for Sauvignon Blanc dataset. (A) shows the partial axes for the first 2 compo-
nents and different datasets used in the computation. (B) shows the observation plot and (C–F)
shows basic oenological variables, sensory analysis variables, aroma compounds, and phenolic
compounds, respectively. Volatile compounds: I = 1-octen-3-ol, II = 2-sec-butyl-3-methoxypyrazine,
III = 3-mercapto-hexanol, IV = 3-mercapto-hexyl acetate, V = 4-mercapto-4-methyl-2-pentanone,
VI = acetic acid, hexyl ester, VII = benzaldehyde, VIII = butanoic acid, ethyl ester, IX = ethyl cinna-
mate, X = furfuryl mercaptan, XI = trans-2-nonenal, XII = a-terpineol, XIII = b-damascenone.

The full MS and MS2 spectra for the species x.41 showed a peculiar pattern (frag-
ment ions m/z 186 and m/z 142, and a precursor ion m/z 230, in which two sequential
losses of CO2 (44 Da) are observed. Thus, compound x.41 possibly included two car-
boxylic/carboxylate groups, and an odd number of nitrogen molecules; this observation
could back up the N-acetyl-hexose-hexose precursor compound tentative assignment [49].
Whereas the species x.41 was tentatively identified as an amino acid derivative; notably, the
fragment ions m/z 186 and 142 could be assigned to a tryptophan derivative, as reported
by [36].

The species x.29 had a parent ion m/z 287, and it was tentatively identified as a
flavanone [50]. Notably, its MS2 fragmentation pattern reported a fragment ion m/z 269,
produced through a neutral loss of 18 Da from the parent ion corresponding to the loss of
water, thus supporting this hypothesis.

The species m/z 315.1 showed two peaks, one eluted at 4.2 min (x.84) and the other at
6.5 min. It was speculated that the ion m/z 315.1 at 4.2 min was a derivative of isorhamnetin
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after the neutral losses 162 Da, corresponding to a hexoxide moiety [51]. Additionally, for
m/z 315.1 at 6.6 min, fragment ions m/z 271 and m/z 188 were detected, again indicating
a potential isorhamnetin derivative. The fragment ion m/z 271 was characteristic of
isorhamnetin derivative, whereas the fragment ion m/z 188 was unknown.

The species x.75 (m/z 373.1) showed a fragment ion m/z 175 in MS2; moreover, in full
MS mode further fragment ions m/z 157, m/z 131 and m/z 115 were observed. It is worth
noting that the x.75 shared its fragmentation pattern with ascorbic acid (m/z 175, m/z 157,
m/z 115) [52]. However, it was not possible to identify the structure of the parent ion m/z
373.1. Looking at the retention times, besides x.75 specie, an analogue/isomer m/z 373.1
was eluted at 6.0 min. The first peak (5.7 min) showed a fragment ion m/z 327, m/z 193,
m/z 175, and the second peak at 6.0 min released fragment ion m/z 175.

The ion m/z 175 was observed also in full MS scan at 5.7 min, as an in-source fragment
of m/z 373.1. Notably, the MS2 of m/z 175 at 5.7 min (an attempt to conduct an indirect MS3

experiment on this product ion, by selecting it as an in-source fragment) showed product
ions at m/z 129 (loss of formic acid from the precursor ion) and m/z 85 (possible loss of
CO2 from the m/z 129 product ion itself). The peak at 6.0 min showed fragment ions m/z
157 (loss of water), 115 (loss of acetic acid) from the precursor ion, and m/z 85. In full MS
mode, the species x.75 also showed m/z 571, m/z 373, and m/z 359 at 5.7 min, whereas
m/z 571 and m/z 373.1 were observed at 6.0 min, thus confirming that x.71 and x.75 shared
similar features (in full MS and MS2 spectra) with compounds such ascorbic acid and quinic
acid [53]; however, ascorbic acid and quinic acid are too highly polar species to be suitable
candidates for these observed features: for example, the injected ascorbic acid standard
eluted before 3 min with this chromatographic method; therefore, a definitive assignment
for x.75 and its analogue at 6.0 min could not be provided herein.

The x.127 specie at 10.7 min was characterised by fragment ions m/z 285, m/z 177,
and m/z 125; the loss of a water molecule (18 Da) produced the fragment ion m/z 285,
whereas m/z 177, and m/z 125 were reported to be the fragment ions generated from the
cleavage of the C ring of a dihydroflavonol (i.e., a flavanonol). As reported by Shen et al.
and in previous papers by our reserch group [6,29,54], this compound is probably identified
with taxifolin.

The ion m/z 325 was found to elute at 7.5 min (x.101) and 7.6 min, thus indicating the
presence of two isomers or two derivatives. These assignments were based on its parent
ion (m/z 325), that released, as fragment ions, m/z 193, m/z 163 (loss of OCH3/coumaroyl
fragment), and m/z 149 at 7.5 min, whereas fragment ions m/z 193, 113, 103, 87 were at
7.6 min. Ion m/z 193 is assignable to ferulic acid; in full MS mode, m/z 193, m/z 179
(released of caffeate unit), and m/z 135 were found [55]. Thus, the two species with m/z
325 at 7.5 min and 7.6 min were tentatively assigned to cis- and trans-feruloyltartaric acids,
respectively.

3.3. Regression Models
3.3.1. Partial Least Squares Regression (PLS-R) for the OQJ Score of Chardonnay Wines

The PLS1 regression method was used to study the combination of sensory attributes
that have the greatest impact on the overall quality judgement (OQJ) of Chardonnay wines.
The sensory attributes were treated as an X-matrix, while the Y-vector was OQJ. The PLS for
OQJ had an R2 of 0.85 and an RSME of 0.174. Figure 5A shows the VIP (variables important
in the projection). The full regression model is reported in the Supporting Information
File S3—CH OQJ PLS. The variables with a positive contribution in the regression model
(Figure 5B) were the “colour green”, olfactory “citrus fruit”, olfactory “pome tree” fruit,
olfactory “stone fruit”, olfactory “flowers”, “warmness”, “tropical fruit” flavour, and
“woody” flavour. Whereas the variables with a negative effect on the regression were
“colour yellow”, olfactory “vegetables”, “sourness”, and “citrus” flavour. The last Figure 5C
shows the experimental observations of the overall quality judgment against the model
predictions, which show no observation outside the confidence intervals (built at a 95%
confidence level).
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Figure 5. PLS data for the Overall Quality Judgment for the Chardonnay wines. (A) shows the VIP
for the sensory variables, (B) shows the effect of the variables on the PLS equation and (C) shows the
regression for the OQJ vs. predicted OQJ.

3.3.2. Multiple Linear Regression to Identify the Volatile Compounds Responsible for the
Flavour Sensory Attributes of Chardonnay Wines

Multiple linear regression (MLR) was used to understand which volatile compounds
affected the flavour sensory attributes. In Table 6, the indices for the regression of the flavour
sensory attributes were reported. It is possible to see that the “tropical fruit” regression
had an R2 of 0.86 and “woody” an R2 of 0.96, while the adjusted R2 were 0.81 and 0.95,
respectively. Figure 6B shows the predicted vs. experimental data for the “tropical fruit”
flavour; only one validation point was outside the confidence interval, while Figure 6D
shows the same graph for the “woody” flavour. In this case, none of the data was outside
the confidence interval. Figure 6A,C showed the effect of the standardised coefficient
on the regression for “tropical fruit” and “woody” flavour, respectively. In the case of
“tropical fruit”, the positive effects were given by XXXII, IX (2-pentanol, 3-methyl) and X
(butyl lactate), instead, the negative effect was given by XXXV (2,4-di-tert-butylphenol).
For the woody flavour, the coefficients that showed a positive effect were X (butyl lactate)
and XXXV (2,4 -di-tert-butylphenol), while the negative effect was given by XXXII and X
(butyl lactate).

Table 6. Quality indexes of the multiple linear regression models on flavour Chardonnay data.

Statistic Tropical Fruit Woody

R2 0.866 0.968
Adjusted R2 0.817 0.956

MSE 0.016 0.021
RMSE 0.125 0.143
Press 0.593 0.662

Q2 0.539 0.905

The full regression model is reported in Supporting Information File S3—MLR CH
Flavour.

3.3.3. PLS-R for Visual and Gustatory Data for Chardonnay Wines

For the visual and gustatory data, the PLS regression was used to understand which
phenolic compounds had an impact on the sensory attributes. The attributes were “green
colour”, “yellow colour”, “warmness” and “sourness” used as the Y-matrix, and phenolic
compounds obtained by LC-MS as the X-matrix. The colour green showed an R2 of
0.79 and an RMSE of 0.12, the colour “yellow” an R2 of 0.65 and RMSE of 0.31; whereas
“warmness” showed an R2 of 0.73 and RMSE of 0.17; a 0.71 R2 and 0.22 RMSE were
registered for “sourness” (all the indexes are shown in Table 7). Figure 7 shows the
predicted vs. experimental data for the different visual and gustatory attributes. All the
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data related to the colour “green” and “warmness” were inside the confidence interval; both
the colour “yellow” and “sourness” had one data point that was outside of the confidence
interval. Additionally, Figure S7A (in Supporting Information File S1) shows the VIPs,
which were in order of importance: x.11, x.68, x.115, x.96, x.169. Figure S7B–M shows the
standardised coefficient effect in the regression.
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Figure 6. (A,C) show the standardised coefficients in the multiple linear regression for “tropical fruit”
and “woody” flavours on Chardonnay wines. (B,D) show the predicted vs. experimental data graph
for the multiple linear regression on the tropical fruit and woody flavours of Chardonnay wines.

Table 7. Quality indexes of PLS regression model on Chardonnay visual and gustatory data.

Colour Green Colour Yellow Warmness Sourness

R2 0.795 0.657 0.730 0.719
Std. deviation 0.149 0.378 0.205 0.265

MSE 0.015 0.098 0.029 0.048
RMSE 0.124 0.314 0.170 0.220
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Figure 7. Model-predicted vs. observed visual and gustatory observations for Chardonnay wines.
(A) predicted vs. experimental data graph for “colour green”, (B) predicted vs. experimental data
graph for “colour yellow”, (C) predicted vs. experimental data graph for “warmness”, and (D)
predicted vs. experimental data graph for “acidity-sourness”.

The full regression model is reported in Supporting Information File S3—PLS-R CH V
and G.

3.3.4. PLS-R for the Overall Quality Score of Sauvignon Blanc Wines

To understand the highest impacting sensory attribute on the overall quality judgment
(OQJ) of Sauvignon Blanc wines, a PLS regression method was applied. As for Chardonnay,
the X-matrix (explanatory variables) contained the sensory attributes, while the OQJ was
treated as the Y-vector (dependent variable). The quality of the PLSR was defined by
an R2 of 0.83 and an RMSE of 0.19. Figure 8A shows the VIP for the OQJ. The most
important variables with a positive effect on the regression were passion fruit, stone fruit,
and sweetness, while the variables that had a negative effect were woody, warmness,
and yellow colour (Figure 8B). Finally, Figure 8C shows the overall quality judgment
observations vs. the predictions plot. No data were found outside the confidence intervals
(α = 95%).

The full regression model is reported in Supporting Information File S3—SA OQJ PLS.
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Figure 8
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Figure 8. PLS data for the Overall Quality Judgment of Sauvignon Blanc wines. (A) shows the VIP
for the sensory variables, (B) shows the effect of the variables on the PLS equation and (C) shows the
regression for the OQJ vs. predicted OQJ.

3.3.5. PLS-R for the Olfactory Profile of Sauvignon Blanc Wines

As for Chardonnay wines, the Sauvignon olfactory data were computed in the PLS-R
against the volatile compounds to understand which of them had the greatest effect on the
olfactory sensory attributes. A PLS2 regression model (Y-matrix with included multiple
descriptors) was computed for all the olfactory variables but only those that showed an R2

higher than 0.6 were reported.
Figure 9A shows the PLS2 model VIP graph. The most important volatile variables

were III (3-mercapto-hexanol), VI (acetic acid, hexyl ester), X (furfuryl mercaptan), and
XI (trans-2-nonenal). Figure 9B–I show the regression graph of predicted OQJ values vs.
the experimentally measured OQJ values. The olfactory variables “grapefruit” (R2 of 0.77
and RMSE of 0.20), “passion fruit” (R2 of 0.79 and RMSE of 0.22), “woody” (R2 of 0.66 and
RMSE of 0.31), “vanilla” (R2 of 0.64 and RMSE of 0.28), and “green bell pepper” (R2 of 0.66
and RMSE of 0.344) showed 6% of the data outside the confidence intervals. Notably, the
olfactory variables “tomato stem” (R2 of 0.63 and RMSE of 0.32), “flowers” (R2 of 0.63 and
RMSE of 0.26), and “honey” (R2 of 0.72 and RMSE of 0.17) showed no data outside the
confidence interval. In Table 8, R2, standard deviation, MSE, and RMSE are reported for
each of the olfactory variables used in the regression.

It is important to recall that PLS2 takes the whole of the sensory profile as the Y-matrix,
thus mediating the effects of volatile profiles on specific descriptors. Consequently, the
contributions of each compound to each descriptor still depends on the global sensory
profile as a whole. “Grapefruit citrus-a” appears negatively influenced by 3-mercapto-hexyl
acetate, acetic acid hexyl ester, butanoic acid ethyl ester, and furfuryl mercaptan, while a
remarkable positive effect was given by benzaldehyde. “Passion fruit-a” appears negatively
influenced by trans-2-nonenal, 1-octen-3-ol and 2-sec-buthyl-3-methoxypyrazine, while the
positive effect was given by acetic acid, hexyl ester, benzaldehyde and α-terpineol. The
“Woody-a” descriptor appears hindered by benzaldehyde, whereas the highest positive
effect was given by 4-mercapto-4-methyl-2-pentanone. “Vanilla-a” was hindered by 2-
sec-butyl-3-methoxypyrazine, trans-2-nonenal, and β-damascenone, whereas the highest
positive effect was due to acetic acid, hexyl ester followed by butanoic acid, ethyl ester,
and 3-mercapto-hexyl acetate. “Tomato stem-a” and “Green bell pepper-a” showed similar
effects, as shown by the one-way ANOVA. The highest negative effect was given by 3-
mercapto-hexyl acetate followed by furfuryl mercaptan, acetic acid, hexyl ester, butanoic
acid, ethyl ester and 2-sec-buthyl-3-methoxypyrazine, while the positive effect was given
by 4-mercapto-4-methyl-2-pentanone, α-terpineol and β-damascenone. “Flower-a” was
negatively influenced by 1-octen-3-ol and 4-mercapto-4-methyl-2-pentanone, while many
compounds had positive effects, such as 3-mercapto-hexyl acetate followed by acetic
acid, hexyl acetate, furfuryl mercaptan, benzaldehyde, butanoic acid, ethyl ester, and
ethyl cinnamate. The last aroma descriptor, “Honey-a” was negatively affected by β-
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damascenone, α-terpineol and trans-2-nonenal, whereas the main positive contributions
were given by furfuryl mercaptan, ethyl cinnamate, butanoic acid, ethyl ester, and acetic
acid, hexyl ester.
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Figure 9. (A) shows the variable importance in projection (VIP) in the PLS regression olfactory
attributes vs. volatile compounds. Figure from (B–I) show the regression graphs predicted vs.
experiment data for olfactory attributes in the Sauvignon Blanc wines.
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Table 8. Quality index for PLS regression on aroma descriptors for Sauvignon Blanc.

Grapefruit
Citrus

Passion
Fruit Woody Vanilla Tomato

Stem
Green
Pepper Flowers Honey

R2 0.771 0.790 0.663 0.640 0.638 0.664 0.639 0.727
Std.

deviation 0.264 0.283 0.392 0.363 0.457 0.435 0.329 0.216

MSE 0.044 0.050 0.096 0.083 0.131 0.118 0.067 0.029
RMSE 0.209 0.224 0.310 0.287 0.362 0.344 0.260 0.171

The full regression model is reported in Supporting Information File S3—PLS-R
SA Aroma.

3.3.6. Multiple Linear Regression for the Flavours of Sauvignon Blanc Wines

As for the flavour sensory attributes of Chardonnay wines, the MLR was used to
find which volatile compound most affected and predicted the flavour sensory attributes
(citrus fruit and woody) in Sauvignon Blanc. In Table 9, the quality index for MLR, on the
descriptor citrus fruit flavour, which has an R2 of 0.89, is reported. Figure 10A shows the
standardised coefficient effect on the regression for citrus fruit flavour. While Figure 10B
shows the predicted vs. experimental data in the regression for the flavour analysed. As it
is possible to see in Figure 10B, citrus fruit showed one validation data point outside the
confidence interval.

Table 9. Quality index for MLR on Sauvignon Blanc data.

Citrus Fruit F

R2 0.897
Adjusted R2 0.743

MSE 0.038
RMSE 0.195
Press 1.697

Q2 0.234

Figure 10
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Figure 10. (A) Standardised coefficient effect in the multiple linear regression for citrus flavour on
Sauvignon Blanc wines. (B) Predicted vs. experimental data graph for the multiple linear regression
on Sauvignon Blanc wine’s citrus fruit flavour.

The full regression model is reported in Supporting Information File S3—MLR SA Flavour.
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3.4. Proanthocyanidins

The list of observed proanthocyanidins (PAC) is reported in Table S12 for both
Chardonnay and Sauvignon Blanc [11,56]. The list of observed PAC is reported with
their respective used abbreviation.

For both Chardonnay and Sauvignon Blanc, percentage ratios (%) of the cyclic tetrameric
procyanidin (%C-4), cyclic tetrameric prodelphinidin having one (epi)gallocatechin and
three (epi)catechins (%C-4-OH), and cyclic pentameric procyanidin (%C-5) were calcu-
lated [11]. Briefly, %C-4 expresses the ratio of the relative abundance of the measured
cyclic tetrameric procyanidin at m/z 1153.3) [11] over the sum of all cyclic and non-cyclic
tetrameric procyanidins (m/z 1155.3 and m/z 1153.3); thus, %C-4 represents the percentage
of cyclic procyanidin tetramer over the totality of tetrameric procyanidins. Similarly, %C-4-
OH is the ratio of cyclic tetrameric prodelphinidin over the sum of cyclic and non-cyclic
tetrameric prodelphinidins, and %C-5 is the ratio of cyclic pentameric procyanidins over
the sum of cyclic and non–cyclic pentameric procyanidins. The % ratios can provide a
normalised parameter for assessing wine authenticity, according to the previous litera-
ture [11,56], but in this case, they were applied to test for the different geographical origins,
and if these have a significant effect on the profile of PAC. Firstly, an ANOVA test was
performed on the Chardonnay and Sauvignon Blanc PAC datasets, separately. Only the
significant variables for the origin, shown in Tables S13 and S14 (p-val. < 0.05), were used
in a PCA model built to observe the correlations between the variables and samples.

ANOVA was used to identify which of these variables were the most significant,
and then apply them in the PCA. Additionally, the use of the %-ratios as supplementary
variables was tested, so that their effect would not affect the other variables, being that they
are derived from a % calculation of the same variables. Figure 11A reports the PCA for
the Chardonnay proanthocyanidins dataset, where only the ratio %C-5 was significant in
the ANOVA to differentiate the origin and reported in PCA, as supplementary variables.
Instead, in Figure 11B, the PCA for the Sauvignon Blanc proanthocyanidins dataset was
reported. In this case, all the %ratios were used because they were found significant by
ANOVA for the origin. The PCA for Chardonnay had an explained variance of 71.4%,
while Sauvignon Blanc had an explained variance of 69.7%. The PCA for the Chardonnay
wines showed one group where almost all the samples are clustered, and only two samples
were outside of this cluster: RSA_WC and ARG_ME. As for the Chardonnay, PCA for the
Sauvignon Blanc showed one group of samples clustered together; only three samples were
outside the cluster: AUS_SE, ITA_SP, and NZL_MR.

Then, ANOVA was run with the combined dataset of Chardonnay and Sauvignon
to find out whether the variables were able to distinguish the grape variety, disregarding
the origin. The cyclic compounds and ratios that distinguished the grape variety were
prodelphinidin (PD) dimers 2-OH (x.7), c-OH tetramer (x.14), procyanidin (PC) pentamers
(x.19), and %C4, as these showed a statistical significance in the ANOVA (Table 10).

These variables (dimers 2-OH–PD (x.7), c-OH tetramers–PD (x.14), pentamers-PC
(x.19), and the %ratio C-4) were used to build the PCA reported in Figure 12 with Chardon-
nay and Sauvignon Blanc data. As it is shown in the PCA plots of Figure 12A,B, there was
a clear separation between the different varieties. The PCA model showed 94% of the total
variance explained in the first three components.

In terms of cyclic proanthocyanidins, the variability in Chardonnay is much lower
than that in Sauvignon Blanc. The separation takes place mostly along PC2. Also, another
interesting point to note is that the variable that significantly influenced the separation of
the two grape varieties was the percentage of the cyclic compound, independently of the
geographical origin.



Foods 2022, 11, 3458 24 of 31

Figure 12
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Figure 11. Biplot on PAC data for Chardonnay (A) and Sauvignon Blanc (B) wines. Supplementary
variables (projected in blue) were obtained from the most significant ones in the ANOVA.

Table 10. ANOVA results for significant proanthocyanidins (PAC) differentiating Chardonnay and
Sauvignon Blanc with the PAC. a and b letters represent groupings computed by Tukey’s post-hoc test.

Dimers 2-OH
(PD) x.7

Tetramers c-OH
x.14 Pentamers x.20 %c-4

SA 18,298.216 b 4153.848 b 84.447 b 73.348 a
CH 11,328.794 a 3158.361 a 12.081 a 94.812 b

Pr > F(Model) 0.025 0.013 <0.0001 0.009

A multivariate discriminant model was also built, to see if the obtained four significant
variables could allow a classification of the varieties and the wines in different groups
regardless of origin. According to the discriminant analysis built on the significant variables,
a 91% accuracy in cross-validation, and a 100% in validation (part of the dataset was applied
in validation and not in model training), for discrimination of Chardonnay and Sauvignon
(shown in Tables S15 and S16) was found, based on the selected significant variables. Thus,
cyclic, and non-cyclic proanthocyanidins could be employed to a satisfying extent as varietal
markers, independently of the origin; still, the origin of the wines (country~producers)
did in fact influence most of the PAC profile (in Table S12), so the different factors (variety
and origin) did leave different signatures on the PAC fingerprint. Notably, a second model
was built upon significant variables only, which showed a relatively good classification
of the origin, regardless of the grape variety. Figure S8A (Supporting Information File S1)
shows the canonical space for the classification of varieties, instead, Figure S8B shows the
canonical space for the classification of origin. This latter effect, however, cannot be easily
explained and will require more investigation.
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Figure 12. Biplot of PCA for the significant PAC for Chardonnay and Sauvignon Blanc wines.
(A) Biplot PC1 vs. PC2, (B) Biplot PC2 vs. PC3.

4. Discussion

The first part of this article is based on the Analysis of the Variance (ANOVA) and
explorative methods such as AHC and MFA. For Chardonnay wines, MFA showed a
correlation of “green colour” with OQJ, also a significant variable in ANOVA; the same
was true for “citrus fruit” (aroma) and “tropical fruit” (flavour). Like the sensory variables,
some phenolic and volatile compounds also showed correlations with OQJ and were
significant in the ANOVA model. Volatile variables that correlated with the OQJ were
XIX, XXIX (benzene-butanal), XXVI (acetic acid, 2-phenylethyl ester), and XXXV (2,4-di-
tert-butylphenol); x.29, x.123, and x.143 for the phenolic compounds showed correlation
with the OQJ. x.29 showed a parent ion m/z 181.1 that was assigned to dihydrocaffeic
acid (fragments m/z 121 and m/z 109 also were found). In detail, the fragment m/z 121
was attributed to the quinone derivative, and the fragment was shown to be probably a
deprotonated catechol (m/z 109). Additionally, the formation of fragment ions m/z 79, m/z
80, and m/z 81 were tentatively identified as derived radical ions [57].

The mass spectrum of x.123 produced a distinctive parent ion m/z 179.1, and it was
tentatively identified based on its fragmentation pattern (fragments m/z 135, m/z 134, m/z
117, m/z 107, m/z 89), characteristic of caffeic acid.

Furthermore, for Sauvignon Blanc, the sensory data that showed correlation with OQJ
were “passion fruit” and “stone fruit” aromas, while “tomato stem”, “green bell pepper”
(aromas), and “green colour” showed anti-correlation with OQJ and significance in the
ANOVA. The volatile and phenolic compounds that showed significance according to
ANOVA and correlated in the MFA with OQJ were III (3-mercapto-hexanol), IX (ethyl-
cinnamate), and XII (α-terpineol) for the volatile compound, and x.19, x.39 and x.97 for the
phenolic compounds.

The x.19 specie at 1.8 min had m/z 391 as a precursor ion in negative mode and a
fragment ion m/z 241 in product ion mode. According to its fragments, this compound
was tentatively assigned to an analogue or a related species of aucubin [58]. Aucubin is
an iridoid whose loss of 150 Da was tentatively attributed to a xylose. Additionally, the
full MS spectrum showed the characteristic product ions of gallic acid (m/z 169 and m/z
125). Notably, in the cited reference, the iridoid was present either in free form or esterified
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with a phenolic acid [58], potentially indicating the presence of an actual precursor at even
higher values than m/z 391.

The x.39 specie at 3.8 min was characterized by an observed precursor ion m/z 153 and
a fragment ion m/z 109 in product ion mode. This mass spectrum would be characteristic of
protocatechuic acid, but the presence of in-source fragments of an hexoside might indicate
that x.39 is a protocatechuic acid hexoside derivative, instead. Nevertheless, it was not
possible to identify the precursors ion in the full MS mode.

The x.97 specie showed a fragment ion m/z 176.7 in product ion mode, although only a
small fragmentation was achieved with the applied collision energy. The mass spectrum in
full MS mode was characterised by the fragment ions m/z 179 and m/z 135, which should
be derived by the loss of 44 Da (CO2), and they were characteristic of a caffeoyl moiety [59].
Based on the results reported by Šuković et al. [40], x.97 was tentatively identified as a
caffeoyltartaric acid derivative; nevertheless, it was not possible to identify the precursor
ion in the full MS mode.

A qualitative comparison between the results from the assessment given by our panel,
which reported quality as OQJ scores, and the German panel, which reported quality as
OWS (overall wine sensory score), allowed interesting observations. The spider plots in
Figure S14 show a potential discrepancy between the evaluation of the two panels towards
the wines. For Sauvignon Blanc, the German panel gave higher scores to the sensory
profiles expressed by Argentinian and South African (coastal) products (Sauvignon or
Chardonnay), while the Italian panel gave higher scores to the Australian (south-east)
and Chilean (central valley) wines. In other words, the Italian panel gave the highest
OQJ scores to Sauvignon Blanc with higher “fruity”, and “tropical” notes, and the lowest
score to the wines described as “woody”, “grassy” (“vegetative”) and “citric”; the German
panel instead assigned the highest OWS (overall wine sensory scores) to wines with the
latter characteristics. However, an examination of the effects of the origin and regional
composition of the panel on sensory evaluation should be systematically conducted in
subsequent studies, including extension to other geographical areas, to reach more solid
and scientifically thorough conclusions.

The trend for Chardonnay, on the other hand, was similar, as all wines with the highest
OQJ scores given by the German panel were compared with those of the Italian panel
(Figure S15, bottom graph); in any case, this seems to be related to the high vegetative and
woody flavour of the Argentinian and South African (coastal) products, as was also the
case for Sauvignon Blanc wines. This was confirmed by the fact that the German panel also
gave the highest scores to the Italian Chardonnay products, which were characterised by a
more citric flavour.

These preliminary observations might provide crucial information that could help
wineries and wine traders to optimise their commercial strategies on the different accep-
tance behaviour of their customers worldwide. Of course, as stated, such an application is
by no means presented in this work. It requires well-devised ring tests and a much more
thorough investigation involving systematic comparisons between the panels’ outputs
and validations and ensuring harmonization and standardization of the analysis methods
employed. Additionally, a wider evaluation including more samples, more geographical
origins for the wines, and other nationalities represented in the panels, will be important to
define whether an actual dependence of preference on nationality or geographical origin
can be systematically evaluated. However, by applying the proposed chemosensory ap-
proach, not only could be possible to extrapolate differences due to the panel composition or
origin but also might be possible to express these differences/trends in terms of analytical
data, thereby providing an additional tool to the investigators.

The second part of this work presented the regression models. PLS, PCR and MLR
methods were tested, and only the best regression models were eventually reported in the
article. As mentioned, (see Section 2), the datasets were used applying a rational separation:
sensory analysis attributes vs. OQJ, aroma compounds vs. olfactory and retro-olfactory
sensory attributes, and non-volatile phenolic compounds vs. visual and gustatory attributes.
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These logical separations were described in previous work [6], where different regressions
were tested to understand which variables majorly affected the different sensory variables.

The PLS1 regression on the OQJ vs. the sensory variables shows interesting results. In
Chardonnay samples, the highest VIPs (over 1) with a positive effect on the regression were
“colour green”, “citrus fruit-a (“a” indicates olfactory), “pome tree fruit-a”, “stone fruit-a”,
“warmness”, “tropical fruit-f”, and “woody-f” flavour. In the case of Sauvignon Blanc
samples, the highest VIPs (over 1) with positive effect were “passion fruit” and “stone fruit
aroma”, and “sweetness”, instead “yellow colour”, “woody-a” aroma and “warmness” had
a VIP over 1 but with a negative effect coefficient in the regression.

Regarding the proanthocyanidins, the results showed clusters in the two varieties
with some differences among the origins. For the Chardonnay, the non-clustered samples
were RSA_WC (South Africa, Western Cape) and ARG_ME (Argentina, Mendoza), and for
Sauvignon Blanc AUS_SE, ITA_SP and NZL_MR. The PCA obtained with the variables
that more characterised the origins showed a clear separation between Chardonnay and
Sauvignon Blanc over the geographical origins. Those results confirm that proanthocyani-
dins, and their derived chemical indexes (ratios between non-cyclic condensed tannins and
their macrocyclic analogues) [11,56,60], could be used as chemical markers to differentiate
the varieties despite the different origins [11].

In conclusion, different methods were investigated to study the quality of these wines.
The chemical and sensory analysis along with multivariate statistics were performed first,
to understand which variables most impacted the different sensory descriptors. Thereafter,
the sensory descriptors, with significant effects on the overall quality judgment (OQJ), were
evaluated as the objective answer concerning the quality provided by the trained panel. This
multivariate combination of different methods, sensory analysis, and chemical profiling
can create a cutting-edge tool to investigate the quality dependence of geographical origins
and define an exhaustive overview of the quality of the wines.

Then, defining the overall quality (OQJ) as an objective parameter and statistically
defining the attributes most influencing it using regression models, when run in combi-
nation with consumers’ surveys, might also give a different perspective on the outcomes
of these latter tests. The presence of preferences and prejudices in wine evaluations is a
well-known argument, also among experts [61]. Applying regression methods against
chemical profiles might provide a sounder background against which evaluations are
presented and provide insight into the chemical factors related to viti-enological variables
that underpin the given preference scores.

Therefore, this tool may be used by both sellers and traders in the market as an addi-
tional objective way to define the quality of their product. To summarise, this approach
envisages several future potential applications: (1) to allow validated comparisons be-
tween outcomes between different assessors/panels when employing harmonised and
standardised methods; (2) to reveal factors inherent to the panel (e.g., the geographical
composition) that could skew the assessment results due to higher sensitiveness for one
or other compositional traits, as observed here in the comparison between our panels’
outcomes and those of the German panel; (3) thus, to account for such hidden factors and
quantitatively describe them as variance trends; (4) in further combination with consumer
tests, to also relate results on consumer preferences with descriptive attributes; (5) to build
up validated statistical models between the chemical profiles and trends in chemical com-
positions across viti-enological variables, with the trends observed in the sensory responses
of panels or consumers. We must point out that all these applications are envisaged here as
potential follow-ups of the present work, and they are not the primary focus of this work;
accordingly, they should be addressed systematically in further studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods11213458/s1. Supplementary File S1: Table S1. Target
analyte finding parameters; Table S2. Tentative compound identification obtained using Agilent Mass
Hunter; Table S3. SIM parameters of PAC for Chardonnay and Sauvignon Blanc wines; Table S4.
LS mean and group (indicated by the letter) obtained by the ANOVA one-way and Tukey HSD;
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Table S5. LS mean and group (indicated by the letter) obtained by the ANOVA one-way and Tukey
HSD post hoc test for the significant sensory analysis data for the Sauvignon Blanc wines (α < 0.05);
Table S6. LS mean and group (indicated by the letter) obtained by the ANOVA one-way and Tukey
HSD post hoc test for the significant volatile compounds for Chardonnay wines (α < 0.05); Table S7.
LS mean and group (indicated by the letter) obtained by the ANOVA one-way and Tukey HSD post
hoc test for the significant volatile compounds for Sauvignon Blanc wines (α <0.05); Table S8. LS
mean and group (indicated by the letter) obtained by the ANOVA one-way and Tukey HSD post hoc
test for significant phenolic compounds for Chardonnay wines (α < 0.05); Table S9. LS mean and
group (indicated by the letter) obtained by the ANOVA one-way and Tukey HSD post hoc test for the
significant phenolic compounds for Sauvignon Blanc wines (α < 0.05); Table S12. PAC compounds
observed in the LC-MS analysis; Table S13. ANOVA significant variables for the PAC dataset on
Chardonnay wines; Table S14. ANOVA significant variables for the PAC datasets on Sauvignon
Blanc; Table S15. Confusion matrix for the cross-validation dataset; Table S16. Confusion matrix
for the validation samples; Figure S1. Scheme for pre-processing data obtained by LC-MS analysis;
Figure S2. Principal component analysis on volatile compounds for Chardonnay data. Graphs A
(observation) and C (biplot) show PC1 vs. PC2. Graphs B (observation) and C (biplot) show PC2
vs. PC3; Figure S3. Principal component analysis on volatile compounds for Sauvignon Blanc data.
Graphs A (observation) and C (biplot) show PC1 vs. PC2. Graphs B (observation) and C (biplot)
show PC2 vs. PC3; Figure S4. Principal component analysis on phenolic compounds for Chardonnay
data. Graphs A (observation) and C (biplot) show PC1 vs. PC2. Graphs B (observation) and C (biplot)
show PC2 vs. PC; Figure S5. Principal component analysis on phenolic compounds for Sauvignon
data. Graphs A (observation) and C (biplot) show PC1 vs. PC2. Graphs B (observation) and C (biplot)
show PC2 vs. PC3; Figure S6. Agglomerative hierarchical clustering on sensory analysis data for
(A) Sauvignon Blanc wines and (B) Chardonnay wines; Table S10. Tentative compound assignment
for Chardonnay wines; Table S11. Tentative compound assignment for Sauvignon Blanc wines;
Figure S7. PLS-R for the non-volatile phenolic compound with the visual and gustatory data; Figure S8.
(A) Canonical space plots for classification of the varieties and (B) for the classification of the origin;
Figure S9. Spider plots for the overall quality judgment comparison between the German panel
and Italian panel; (A) Sauvignon Blanc OQJ data and (B) Chardonnay OQJ data. Supplementary
Files S2—Table S17 and Table S18. LC-MS-MS spectra. Supplementary Files S3—Regression models.
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Abbreviations

ANOVA: analysis of variance; AHC: agglomerative hierarchical cluster analysis; MFA: multi-
factor analysis; PCA: principal component analysis; PCR: principal component regression; PLS or
PLS-R: partial least squares regression; CCD: central composite design; GC × GC: comprehensive
bidimensional gas chromatography; HPLC: high-performance liquid chromatography; MS: mass
spectrometry; OQJ: overall quality judgment; HSD: honestly significant difference; LS: least squares;
UHPLC, HPLC or LC: ultrahigh/high-performance liquid chromatography; DAD: diode array detec-
tor; FLD: fluorescence detector; QqQ: triple quadrupole mass detector; ESI: electrospray ionization;
HS: headspace; HS-SPME: headspace solid-phase microextraction; DVB: divinylbenzene; CAR: car-
boxen; PDMS: polydimethylsiloxane; IS: internal standard; MRATA: modified rate-all-that-apply.
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wine of grapevine variety vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [CrossRef]

41. Gonzales, G.B. Mass Spectrometric Characterization of Flavonoids and In vitro Intestinal Transport and Bioactivity. Ph.D.
Dissertation, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 2016.

42. MassBank Record: MSBNK-RIKEN-PR100641. Available online: https://massbank.eu/MassBank/RecordDisplay?id=PR100641
(accessed on 9 September 2022).

43. Visan, V.L.; Tamba-Berehoiu, R.M.; Popa, C.N.; Danaila-Guidea, S.M. Identification of the main volatile compound responsible for
the aroma of Sauvignon Blanc wines. Sci. Pap. Manag. Econ. Eng. Agric. Rural. Dev. 2017, 17, 357–365.

44. Parish, K.J.; Herbst-Johnstone, M.; Bouda, F.; Klaere, S.; Fedrizzi, B. Industrial scale fining influences the aroma and sensory
profile of Sauvignon blanc. LWT 2017, 80, 423–429. [CrossRef]

45. Fuchs, C.; Bakuradze, T.; Steinke, R.; Grewal, R.; Eckert, G.P.; Richling, E. Polyphenolic composition of extracts from winery
by-products and effects on cellular cytotoxicity and mitochondrial functions in HepG2 cells. J. Funct. Foods 2020, 70, 103988.
[CrossRef]

46. Baenas, N.; Salar, F.J.; Domínguez-Perles, R.; García-Viguera, C. New UHPLC-QqQ-MS/MS method for the rapid and sensitive
analysis of ascorbic and dehydroascorbic acids in plant foods. Molecules 2019, 24, 1632. [CrossRef]

47. Li, Z.H.; Guo, H.; Xu, W.B.; Ge, J.; Li, X.; Alimu, M.; He, D.J. Rapid identification of flavonoid constituents directly from
PTP1B inhibitive extract of raspberry (Rubus idaeus L.) leaves by HPLC–ESI–QTOF–MS-MS. J. Chromatogr. Sci. 2016, 54, 805–810.
[CrossRef]

48. Schütz, K.; Kammerer, D.; Carle, R.; Schieber, A. Characterization of phenolic acids and flavonoids in dandelion (Taraxacum
officinale WEB. ex WIGG.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry.
Rapid Commun. Mass Spectrom. 2005, 19, 179–186. [CrossRef]

49. Razgonova, M.; Zakharenko, A.; Pikula, K.; Manakov, Y.; Ercisli, S.; Derbush, I.; Kislin, E.; Seryodkin, I.; Sabitov, A.; Kalenik, T.;
et al. LC-MS/MS Screening of Phenolic Compounds in Wild and Cultivated Grapes Vitis amurensis Rupr. Molecules 2021, 26 3650.
[CrossRef] [PubMed]

50. Ye, M.; Yang, W.Z.; Liu, K.D.; Qiao, X.; Li, B.J.; Cheng, J.; Feng, J.; Guo, D.-A.; Zhao, Y.Y. Characterization of flavonoids in Millettia
nitida var. hirsutissima by HPLC/DAD/ESI-MSn. J. Pharm. Anal. 2012, 2, 35–42. [CrossRef] [PubMed]

51. Oliva, E.; Fanti, F.; Palmieri, S.; Viteritti, E.; Eugelio, F.; Pepe, A.; Compagnone, D.; Sergi, M. Predictive Multi Experiment
Approach for the Determination of Conjugated Phenolic Compounds in Vegetal Matrices by Means of LC-MS/MS. Molecules
2022, 27, 3089. [CrossRef]

52. Farid, M.M.; Emam, M.; Mohammed, R.S.; Hussein, S.R.; Marzouk, M.M. Green silver nanoparticles based on the chemical
constituents of Glinus lotoides L.: In vitro anticancer and antiviral evaluation. Trop. J. Nat. Prod. Res. 2020, 4, 714–721. [CrossRef]

http://doi.org/10.1016/j.foodres.2011.09.017
http://doi.org/10.3390/foods9040499
http://www.ncbi.nlm.nih.gov/pubmed/32326529
https://pca4ds.github.io/
https://pca4ds.github.io/
http://doi.org/10.1016/j.foodres.2010.01.007
http://doi.org/10.1021/jf020297f
http://doi.org/10.1021/jf00008a025
http://doi.org/10.3390/ph15060663
http://doi.org/10.1016/j.foodchem.2013.08.089
http://doi.org/10.3390/ijms13010260
http://www.ncbi.nlm.nih.gov/pubmed/22312251
http://doi.org/10.1074/mcp.T500040-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/16452088
http://doi.org/10.1016/j.sajb.2019.11.001
http://doi.org/10.3390/foods9020138
https://massbank.eu/MassBank/RecordDisplay?id=PR100641
http://doi.org/10.1016/j.lwt.2017.03.003
http://doi.org/10.1016/j.jff.2020.103988
http://doi.org/10.3390/molecules24081632
http://doi.org/10.1093/chromsci/bmw016
http://doi.org/10.1002/rcm.1767
http://doi.org/10.3390/molecules26123650
http://www.ncbi.nlm.nih.gov/pubmed/34203808
http://doi.org/10.1016/j.jpha.2011.09.009
http://www.ncbi.nlm.nih.gov/pubmed/29403718
http://doi.org/10.3390/molecules27103089
http://doi.org/10.26538/tjnpr/v4i10.10


Foods 2022, 11, 3458 31 of 31

53. Ricciutelli, M.; Moretti, S.; Galarini, R.; Sagratini, G.; Mari, M.; Lucarini, S.; Vittori, S.; Caprioli, G. Identification and quantification
of new isomers of isopropyl-malic acid in wine by LC-IT and LC-Q-Orbitrap. Food Chem. 2019, 294, 390–396. [CrossRef] [PubMed]

54. Sheng, F.; Hu, B.; Jin, Q.; Wang, J.; Wu, C.; Luo, Z. The analysis of phenolic compounds in walnut husk and pellicle by
uplc-q-orbitrap hrms and hplc. Molecules 2021, 26, 3013. [CrossRef]

55. Hameed, A.; Liu, Z.; Wu, H.; Zhong, B.; Ciborowski, M.; Suleria, H.A.R. A Comparative and Comprehensive Characterization of
Polyphenols of Selected Fruits from the Rosaceae Family. Metabolites 2022, 12, 271. [CrossRef]

56. Longo, E.; Rossetti, F.; Merkyte, V.; Boselli, E. Disambiguation of Isomeric Procyanidins with Cyclic B-Type and Non-cyclic
A-Type Structures from Wine and Peanut Skin with HPLC-HDX-HRMS/MS. J. Am. Soc. Mass Spectrom. 2018, 29, 2268–2277.
[CrossRef]

57. Huang, R.T.; Lu, J.F.; Inbaraj, B.S.; Chen, B.H. Determination of phenolic acids and flavonoids in Rhinacanthus nasutus (L.) kurz by
high-performance-liquid-chromatography with photodiode-array detection and tandem mass spectrometry. J. Funct. Foods 2015,
12, 498–508. [CrossRef]
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