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Abstract: Machine vision is playing an increasingly important role in industrial applications, and the
automated design of image recognition systems has been a subject of intense research. This study has
proposed a system for automatically designing the field-of-view (FOV) of a camera, the illumination
strength and the parameters in a recognition algorithm. We formulated the design problem as
an optimisation problem and used an experiment based on a hierarchical algorithm to solve it.
The evaluation experiments using translucent plastics objects showed that the use of the proposed
system resulted in an effective solution with a wide FOV, recognition of all objects and 0.32 mm and
0.4◦ maximal positional and angular errors when all the RGB (red, green and blue) for illumination
and R channel image for recognition were used. Though all the RGB illumination and grey scale
images also provided recognition of all the objects, only a narrow FOV was selected. Moreover, full
recognition was not achieved by using only G illumination and a grey-scale image. The results showed
that the proposed method can automatically design the FOV, illumination and parameters in the
recognition algorithm and that tuning all the RGB illumination is desirable even when single-channel
or grey-scale images are used for recognition.

Keywords: automated design; vision system; FOV; illumination; recognition algorithm

1. Introduction

Machine vision technologies have been widely applied in the industrial field for automated
visual inspection, process control, parts identification, and robotic guidance [1,2]. Designers have
been attempting to tune the parameters for a variety of vision systems. A vision system is usually
composed of a camera and an illumination and recognition algorithm [3], which are also known as
the main design factors of a vision system. In the object recognition system of a pick-and-place robot,
for example, the camera position needs to be set to obtain a suitable Field-of-View (hereinafter referred
to as FOV), the illumination requires to be changed to strengthen features in targets, and the image
recognition process needs to be optimised through parameter tuning. As this creates a number of
conflicting variables, the design process must be reiterated until acceptable results are obtained. This is
a time-consuming task even when carried out by experts, and even a simple pick-and-place vision
system usually takes several days to design.
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Previous studies have addressed the automated design of sensor locations [4–12], illumination
levels [13–18], and recognition algorithms [19–25]. Some studies proposed a method to automatically
determine the place to set a vision sensor for specific features of recognition targets to satisfy the
specific constraints of recognition requirements [4–6]. Some other studies focused on the sensing
strategies for recognition and localisation of targets with the help of 3D models [7–9]. Moreover,
several sensor planning methods were designed respectively based on the vision tasks in [10–12].

Researches on automated planning of illumination parameters have also been carried out.
Experiment-based approaches have been proposed to optimise illumination with a set of images
of an object captured under different illumination conditions [13,14]. Besides, illumination planning
methods based on mathematical models of illumination were proposed [15,16]. More recently, with the
help of rendering techniques, illumination planning approaches based on computer simulation were
reported [17,18].

Some studies have attempted to automate the image processing procedures. Automated image
pre-processing techniques were proposed in [19–21]. Some other studies investigated the automated
design for feature extraction [22,23]. Automated generation of discriminators were discussed in [24,25].
Especially, an approach was proposed for automatically designing an image recognition procedure
from the aspect of pre-processing, feature extraction, and discriminator [25].

It is clear from the former studies that an overall design approach to vision systems could hardly
be found. One reason is probably the interactions among the different design factors. Therefore,
in the case of an overall design, the situation becomes more and more complex because design factors
influence each other in unpredictable ways. To the best of our knowledge, a design approach to
deal with various design factors has been presented only in [26,27]. Experiment-based methods
were applied to achieve an automated design of a vision system on the basis of illumination and a
recognition algorithm in [26]. By adding FOV, Chen Y., et al. [27] provided a more comprehensive
vision system design method. The problem is that in both the studies, the recognition tasks were far
from a being practical task because only one or two objects were considered.

Another obstacle in taking out an overall design approach consists of the uncertainties of the
real world. Colour is known as one of the uncertainties in image recognition. Because objects’
colours change with illumination, colour- and illumination-invariant recognition methods have been
postulated [28–31]. The greyscale process transforms colourful multi-channel images into grey and
single-channel ones, which could be more easily understood by vision systems. Such multi-channel
image encoding approaches were presented in [32–34], while it was also pointed out that greyscale
approaches could influence the recognition performance to a great extent [35]. In this study, we have
mainly focused on the uncertainties caused by colour information contained in both illumination and
grabbed images.

This study transferred a vision system design problem into an optimisation problem and proposed
an experiment-based approach to realise an automated vision system design. It was proved in the
study that the proposed design could provide vision systems that were effective in pick-and-place tasks
with suitable parameters of the FOV, illumination and recognition algorithm. Moreover, we studied
one kind of uncertainties from the real world, that is, colour information illuminate from the light
source that is absorbed by the camera sensor. Thus, we conducted an experiment of automated
designs using our proposed method by changing the colour channels that were utilised for both
illumination and recognition. By this experiment, we investigated: (1) whether or not providing
colourful illumination improves recognition accuracy when even the vision system reads only the
greyscale images and (2) whether or not single-channel images like R-channel images provide better
performance in recognition than the greyscale ones.
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2. Problem Formulation

2.1. Preconditions

The vision systems applied to a pick-and-place robot are set to the design target in this study.
In order to pick objects and place them in the right positions, the vision systems are required to provide
the following information:

• Types

Before picking up an object, the system must know which kind of object to select. For instance,
in some sorting tasks, type refers to information that describes targets’ appearance, such as the shape,
colour, and which side is facing upwards. By using the type information, the robot is able to distinguish
the target objects into several categories. Therefore, a dictionary which contains type information must
be available to vision systems for pick-and-place.

• Position

For a pick-and-place robot, definitely ‘pick’ is one of the most important quests. To pick objects
up, position information, in other words, the centre of gravity of each target object should be identified.
A vision system captures positional information in pixels. In this study, the coordinate origin is set to
the left-top of the image, the x-axis forward direction to the right, and the y-axial forward direction
is downward.

• Orientations

For both ‘pick’ and ‘place’ quests, the orientation information is important. That is to say,
the vision system must also provide angular information about each object. In this study, we assumed
the measurement range to be [0, 360).

To clarify the problem, the working environment for the proposed system is set up based on the
following three requirements: choice of camera, assumed scenes of recognition, and image processing
software. The details for each of these requirements are given as follows:

• Camera

Compared to binocular cameras, monocular cameras are more widely used in pick-and-place tasks.
As a result, we used a monocular CMOS (Complementary Metal Oxide Semiconductor) camera in our
system. Since the camera is mounted on the end effector of an industrial manipulator, its viewpoint
is held perpendicular to the workspace on which the recognition targets are arranged; the FOV is
therefore of a 2D type.

• Scenes

Based on where to pick objects, pick-and-place tasks could be categorised into two types: tasks in
dynamic systems, for example, a moving conveyor and tasks in static systems such as a tray. In this
study, we chose the latter one as the option for the proposed system. In this case, all the recognition
targets are placed in a limited space. This means that the camera distance at which all objects can be
captured in a single image can be specified in advance. Moreover, just like most situations in industrial
applications, the recognition targets are placed on the same plane surface, without overlaps. This is
also true for industrial applications such as picking objects from a conveyor.

• Software

In this study, the proposed system was tested with a commercially available image processing
library: MVTec HALCON (MVTec, Seeshaupt, Germany).
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2.2. Design Variables

By describing the settings and the working environment, the basic information on the target
vision system to be designed was provided. In order to arrive at a proper design of the described
vision system, several parameters, or we can call them design variables, are required to be optimised.
To further clarify the problem, such design variables are determined in this section.

In general, a vision system could be established by considering three design factors, which are:
illumination condition; camera FOV; and the recognition algorithm. The illumination is usually
designed for its strength and colour, illuminating the workpieces and repressing the reflections at the
same time. Camera FOV determines the resolution with which the targets are recognised and the size
of the recognition area. By tuning FOV, accuracy and efficiency of the vision system could be balanced.
Besides, in order to maximise the performance of the chosen recognition algorithm, some parameters
inside the algorithm also require optimisation.

The design variables of the vision system could also be taken as parameters of the optimisation
problem that were defined in the previous section. Categorised by the three design factors, the design
variables of this study are addressed as follows (details are given in Table 1):

Table 1. List of design variables.

Design Factor Name Description Range

FOV

Shoot time Number of images required in one
recognition for the entire area 1, 4, . . . , n2

Camera distance Represents FOV size Determined by
shoot time

Illumination

Light strength
(Red)

Strength of red
component in illumination [0, 255]

Light strength
(Green)

Strength of green
component in illumination [0, 255]

Light strength
(Blue)

Strength of blue
component in illumination [0, 255]

Recognition
algorithm

Discriminator Thresholds for classifying
different kinds of recognition objects (0, 1)

Contrast Contrast value to extract
contour model from template [0, 255]

• FOV

FOV is the extent of the observable world that is seen at any given moment. In the case of a
camera set up for pick-and-place tasks, the FOV directly determines the number of objects that can be
captured in a single image. To maximise the efficiency of recognition, the FOV must be maximised
while meeting the required accuracy tolerances. In this study, FOV was balanced from the viewpoint
of shoot time and camera distance.

Shoot time means the time taken by the camera to capture figures within the current camera
distance. Obviously, with a limited FOV size, the vision system could not comprehend the intricate
details of the workspace. Thus, it requires a system based on a moving camera which captures images
several times.

On the other hand, camera distance refers to the distance from the camera lens to the plane on
which the recognition targets are placed. As mentioned in the preconditions, the camera’s viewpoint is
held perpendicular to the workspace; the distance therefore reflects the actual FOV size.
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• Illumination

The illumination variables include the strength of the red, green, and blue components.
Increasing the strength may produce reflections, whereas at low strength, some details of the target
objects may not be captured. Both will reduce the recognition accuracy. Additionally, some details
may be enhanced by selecting the specific colour of illumination. We therefore allowed the strength of
each RGB component to be controlled individually. The illumination strength ranges from 0 to 255,
and is searched by an increment.

• Recognition Algorithm

Not only the recognition algorithm but also the parameters inside the chosen algorithm influence
the performance of a vision system. We just focus on the latter to optimise the inner parameters of a
given recognition algorithm.

The inner parameters, for example, image pre-processing parameters or parameters for
making proper templates, could more or less influence the performance of a recognition algorithm.
Since different parameters may have their own properties, the optimisation method should be
designed individually.

Moreover, no matter what recognition algorithm is used, a discriminator to classify correct
and incorrect detections by the recognition process is required. The discriminators should also be
considered as one of the design variables.

2.3. Inputs and Outputs

2.3.1. Inputs

Aiming to turn the vision system design process into a fully-automated one, manual operations
during the process of design must be minimised. Hence, the inputs to the automated design system
should be considered from many aspects which are preparation data for both scenes and templates,
ground truth data, and camera calibration data.

• Preparation Data for Scenes:
S = (S1, . . . , Si, . . . , Sn),

here, Si denotes the i-th coordinate on the work plane of the position where the corresponding
scene was set, and n the total number of scenes. The number of images required to capture one
scene depends on the camera distance.

Si = (xi, . . . , yi, . . . , zi),

Each Si contains the locations of x, y, and z directions such that the manipulator can hold the
camera and capture images of the existing scene. zi describes the distance from the camera to the
plane where the recognition targets are arranged.

• Preparation Data for Templates:
T = (T1, . . . , Tl , . . . , TnT),

where nT represents the total number of recognition target kinds.

Tl = (x, y, z, xl , yl , wl , hl),

the l-th template is prepared by automatically cutting the object image from the original image
which was obtained by holding the camera at the position (x, y, z). By using the position of the
objects in the acquired image, namely xl and yl, as well as the predetermined width and height,
wl and hl, the template could be obtained.
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• Ground Truth Data:
G =

(
GS1 , . . . , GSi , . . . , GSn

)
,

where GSi denotes the ground truth data for the i-th scene.

GSi =
(
GSi , 1, . . . , GSi , k, . . . , GSi , mi

)
;

however, the scene contains many recognition targets; the ground truth data always include
information on each recognition target, from the 1st to the mi-th.

GSi , k = (Typei,k, xi,k, yi,k, θi,k),

the ground truth data for each object includes the object type, the x and y position in captured
images and the orientation angle.

• Camera Calibration Data:
C = (C1, . . . , Ci, . . . , Cn),

where Ci denotes the i-th image for calibration and n the total number of images required for
a calibration.

2.3.2. Outputs

The system output is the optimal solution to the set of design variables.

• Optimal solution:
Solution =

(
R, G, B, Precognition

)
,

where R, G, and B denote the light strength of red, green and blue, and Precognition the set of
parameters related to the chosen recognition algorithm. Especially, Precognition consists of:

Precognition = (P1, P2, . . . , Pn)

the entire number of parameters n is determined by the chosen recognition algorithm.

2.4. Evaluation Function and Constraints

2.4.1. Evaluation Function

The evaluation uses four values which are the FOV size, Fmeasure, positional error,
and angular error.

The shoot time describes the FOV and largely determines the computing speed, as the time cost
increases in line with the number of images and camera movements.

The Fmeasure is used to describe the accuracy of recognition. It considers both the Precision and Recall,
and the definition is given by Equation (1):

Fmeasure =
2× Precision × Recall

Precision + Recall
. (1)

In this study, the Precision and Recall values were given by the following equations:

Precision =
∑Ii∈I mci

∑Ii∈I mi
(2)

Recall =
∑Ii∈I mci

∑Ii∈I mdi
. (3)
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Here, mi, mci, and mdi refer to the total number of targets, correctly recognised targets, and targets
detected by the recognition process for the i-th learning image set, respectively. The Fmeasure value
ranges from [0, 1]. A value closer to 1 indicates greater accuracy.

Positional errors (PosErr) were defined as follows:

PosErr = max
{

PosErr1 , . . . , PosErri , . . . , PosErrn

}
(4)

PosErri =
√(

xi − xgti
)2

+
(
yi − ygti

)2. (5)

The maximum positional error among n targets was used in the evaluation, and each positional
error was calculated from the difference between the points detected by the recognition system (xi, yi)
and the ground truth (xgti, ygti). As the proposed system used a moveable camera, we first transformed
the positional results from the camera coordinates to world coordinates and then measured the error
in millimetres.

The angular errors (AgErr) were defined as follows:

AgErr = max
{

AgErr1 , . . . , AgErri , . . . , AgErrn

}
(6)

AgErri =
∣∣(θi − θgti

)
(mod 360)

∣∣. (7)

The maximum angular error among n targets was used in the evaluation. As the detection range
was from [0, 360), the angular error was given by the difference between the angles detected by the
recognition system θi and the ground truth θgti. This was given by Equation (7).

We set the following order for evaluation: first, the camera distance; second, the Fmeasure; third,
the positional error; and finally, the angular error. Accuracy was determined from the minimum
Fmeasure values and maximum positional error and angular error values. The system would therefore
choose the solution based on the FOV size, Fmeasure, positional error, and angular error, successively.

For a vision system in pick-and-place tasks, it is important to do recognition as efficient as possible
with the guarantee of accuracy. The positional and angular errors can be often tolerated to some extent
by the selection of the manipulator though we did not discuss the type of the manipulator in this paper.
If the recognition accuracy is high enough, the higher the image capturing efficiency is, the better.
Therefore, FOV size and Fmeasure take the first two priorities for evaluation. If the positional error is too
large, the manipulator cannot pick the objects. Therefore, we decided to prioritize positional error over
angular error.

2.4.2. Constraints

For the designed vision system to be applied to a pick-and-place task, it is necessary to ensure the
minimal performance. In other words, at least the designed vision system could pick up and place the
objects without any failure. The constraints are therefore set to guarantee the minimal performance of
designed system.

3. Methodology

3.1. Algorithm Overview

Figure 1 shows the algorithm we proposed to solve the problem formulated in Section 2.
In general, we prepared respective optimisations for parameters of the three design factors and
arranged them hierarchically.

The system first set the FOV size to its maximum, so that all the target objects could be captured
into one image. Based on the multi-start nearest neighbour search, which is discussed in more detail in
Section 3.3, the illumination search centre was set randomly to (Redi, Greeni, Bluei), and the parameters
in recognition algorithm were then designed. After the recognition algorithm design, the system
obtained the local solution (Redi, Greeni, Bluei, Heighti, ParametersBest) and its accuracy evaluation
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(Fmeasurei, PosErri, AgErri) for the corresponding illumination condition. Evaluation was performed
repeatedly under neighbour illumination conditions around the selected search centre. After all
neighbours were searched, the search centre was moved to its best neighbour until it became the
best design. Illumination optimisation was repeated N times, yielding N local optimal solutions.
If solutions meeting the design criteria were found, the system chose the optimal solution among N
candidates. Otherwise, the system returned to its initial state and narrowed the FOV size by decreasing
the camera distance and increasing the shoot time. The methods to apply narrow FOV and estimate
FOV size by camera distance are presented in Section 3.2.Sensors 2018, 18, x 8 of 17 
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Figure 1. Proposed algorithm to design FOV, illumination and image pre-processing parameters
for recognition system. *: The procedures will be skipped if the current selected point has been
searched before.

3.2. FOV Design

The FOV is applied to the vision system in the following two ways: first, carry out recognition
once with an FOV size and just fit the size of the recognition area and second, carry out recognition by
scanning the entire area n2 times with a FOV of a specific size. Figure 2 shows an example of taking an
image of an object placed in the area for recognition. Since the angle between the viewpoint of the
camera and the work plane is fixed, which is stated in the preconditions, the FOV size could be easily
estimated from the distance between the camera and work plane.

The steps to estimate the FOV size by camera distance are:

(1) Obtain the mathematical relation between the width of a taken image and camera distance.

Several images are captured under different camera distances. By adding camera calibrations,
the FOVwidth, or in other words, the distance of y direction in the taken images, can be measured in
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millimetres. Repeating this operation several times, the relations between FOVwidth and camera distance
could be fitted to a linear one:

FOVwidth(Cdistance) = awidth × Cdistance + bwidth. (8)

The Cdistance denotes the camera distance, a and b are coefficients calculated by experimental data.

(2) Obtain mathematical relation between the length of a taken image and camera distance.

Similar to FOV width, relations between FOVlength and camera distance are found using the
following expression:

FOVlength(Cdistance) = alength × Cdistance + blength. (9)

(3) Choose either length or width to represent the FOVsize based on length-width ratios of the recognition area
and captured image.

FOVlength(Cdistance)

FOVwidth(Cdistance)
>

Rlength

Rwidth
. (10)

Rlength and Rwidth denote length and width of the recognition area, respectively. Equation (10)
is the criterion to judge whether to use length or width to represent the size of FOV. Based on the
condition of inequality applied in this study, if the length-width ratio of FOV is larger than the ratio
of the recognition area, then the width should be selected for calculations in later steps. Otherwise,
the length should be chosen.

(4) Calculate desired FOV size.

Using either length or width to stand for the size, the desired FOVsize could be calculated in
addition to the size margin and the scan time.

FOVsize =
Rsize +

(√
Stime − 1

)
×Margin√

Stime
. (11)

Rsize denotes the length or width of the recognition area, Margin the margin of the FOV size decided
by the maximum size of chosen recognition targets and Stime the total scan time. Here the square root
of Stime is used to present the scan time in either the x or y direction.

(5) Estimate corresponding camera distance.

By substitution of the calculated desired FOV size into either Equation (8) or Equation (9),
the corresponding camera distance for the desired FOV size could be obtained:

Cdistance =
FOVsize − bsize

asize
. (12)

Here, asize and bsize denotes awidth and bwidth in Equation (8) or alength and blength in Equation (9)
depend on the truth or false of Equation (10).
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area, which suggests FOV width to represent FOV size.

3.3. Illumination Design

We selected a random multi-start nearest neighbour search, which is one of metaheuristic method,
for optimisation of the illumination strength of red, green, and blue. Due to find constraint satisfaction
solutions in limited time, we allowed the system choose search centres randomly, even that may result
in different optimums in a fixed condition.

The neighbours were generated by changing the value (adding or subtracting the increments
shown in Table 1) of one variable, while holding the others constant. The system then created six
neighbours for RGB strength in illumination:

Neighbors = {(R + Increment, G, B), (R− Increment, G, B), (R, G + Increment, B), (R, G −Increment, B) , (R, G, B + Increment), (R, G, B− Increment)}.

3.4. Recognition Algorithm Design

The proposed system is capable of automatically selecting threshold values as discriminators for
all kinds of recognition objects.

Suppose that a recognition method has a value E to evaluate its detections, the higher E value
indicates the detection is more likely to be a correct one. For a given recognition object, a series of
E values are used for n detections after one recognition.

D = {ED1, ED2, . . . , EDn}. (13)

Set D was then categorised into two sets with the help of ground truth data; T for correctly
detected results, F for incorrectly detected results:

T = {ET1, ET2, . . . , ETm}, (14)

F = {EF1, EF2, . . . , EFl}, (15)

l + m = n. (16)

The threshold Th was then generated as follows:

Th = max
{

ETi
∣∣ETi ∈ T∩ ETi < min

{
EFj
∣∣EFj ∈ F

}}
. (17)

The threshold represents the maximal evaluation in the correctly recognised results, and is smaller
than the minimal evaluation of the incorrectly recognised results.

As stated before, the optimisation target and corresponding approach rely on the chosen algorithm
for recognition. A contour matching method in HALCON library called shape-based matching was
utilised as the recognition algorithm in this study.
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The target parameter of the shape-based matching algorithm to be designed is the contrast value
to extract contour models from the templates. Figure 3 illustrates two contour models extracted from
different contrast values. A too large contrast value decreases the number of contours in the obtained
model to a great extent. Matching with less contours therefore yields more possible candidates,
and finally results in longer matching time. If the contour model is decreased to just a short line,
the matching time can be infinity.

Based on this principle, the design method for the contrast value in shape-based matching is set
to traverse all the possible values from the minimum to the maximum and end if the detection number
reaches a threshold (Figure 4).
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4. Evaluation Experiment

4.1. Experimental Setup

The experimental environment was an industrial manipulator with six DoFs, a ring-shaped
illumination device and an industrial monocular camera (Figure 5). The camera and illumination were
mounted on the tips of the manipulator using a 3D-printed joint. The processor was an Intel Core
i5-5300U@2.30 GHz.

To reflect potential applications, we chose the two sides of a semi-transparent plastic part (Figure 5)
as the recognition target. Different from its side at the rear, the face side had a convex structure in the
middle. The following constraints were applied: an Fmeasure score no less than 1; a positional error no
more than 3 mm; and an angular error no more than 5◦.

Three scenes with different functions were arranged on a piece of black cloth below the
manipulator (Figure 5). In order to prevent overfitting, two scenes were prepared for recognition.
Every time the FOV or illumination changed, the templates were updated; a scene for updating the
templates was therefore required. Scene 1 and Scene 2, with two face and two rear side objects in
each, were set up for recognition. Scene 3, with a face side and a rear side object, was set up to
create templates.

Two different plans for FOV were given to our system: one was to shoot once with a wide FOV at
a camera distance of 158 mm, and the other was to shoot four times with narrow FOVs at a camera
distance of 105 mm.

We controlled the colour channels utilised in both recognition and illumination, and created three
experimental conditions. Recognitions were conducted with greyscale images in Condition I and II,
while R-channel images were used in Condition III. The details are listed below. On the other hand,
illuminations were changed from only G channel in Condition I, and changed from RGB three channels
in Condition II and III. Details of the conditions based on which each experiment was conducted are
listed in Table 2.

Table 2. Experimental conditions.

Condition Illumination Channel(s) Increment of Illumination Parameter(s) Recognition Image(s)

I G only 1 Greyscale
II RGB 15 Greyscale
III RGB 15 R-channel

The reason why G illumination was chosen in Condition I is that it is considered to influence the
brightness in the obtained images to the greatest extent. Therefore, the dimension of illumination was
reduced to a great extent, and the increment of illumination strength was set to 1 in Condition I.

For all aforementioned conditions, we manually measured the ground truth data. For the
illumination variables, 16 local optimisation searches were performed. The maximum detection
to end contrast value search was set to 4.
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Figure 5. Experimental devices, scenes and recognition targets. Monocular camera and ring-shaped
illumination were attached to the end effector of a six-DoF manipulator. Three scenes were prepared
on a piece of black cloth; Scene 1 and Scene 2 were for recognition; Scene 3 was for making templates.
Two sides of a semi-transparent plastic part (20 mm in length, 20 mm in width, and 8 mm in height)
were chosen as the recognition targets.

4.2. Results

The best-three solutions and their evaluations of the three conditions are presented in Tables 3–5
and the images taken under the optimal parameter sets are shown in Figure 6.

Proper design could not be achieved with either with one shot or four shots when tuning
illumination from only G component in Condition I. The optimal design was realised with a 79
in green illumination, four shots and a contrast value of 3, which provided a 0.93 Fmeasure, about 0.6 mm
maximum positional error, and 2.1◦ maximum angular error.

The optimal design of Condition II corresponded to a (195, 120, 75) illumination RGB strength,
four shoots and contour models generated by a contrast value of 4. This set up resulted in an Fmeasure

value of 1, a maximum positional error of about 0.6 mm, and a 3.1◦ maximum angular error.
Replacing the greyscale images with R-channel images, suitable designs were found only with one

shoot. The optimal design was (195, 120, and 75) in illumination RGB, 11 in contrast value, and with
one shoot. Its evaluation showed an Fmeasure of 1, about 0.3 mm in maximum positional error, and 0.4◦

in maximum angular error.
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Figure 6. Optimal illumination and FOV conditions designed for the three conditions. Condition I:
1 shoot under strong green illumination. Condition II: four shoots under illumination with red
component relatively higher. Condition III: 1 shoot under strong green and blue illumination.

Table 3. Best-three designs of Condition I.

Rank R G B FOV Contrast Fmeasure Positional Error (mm) Angular Error (◦)

1 0 232 0 wide 1 0.93 0.64 2.1
2 0 79 0 narrow 3 0.93 0.58 3.4
3 0 84 0 narrow 3 0.86 0.35 3.6

The results were ranked by their evaluations; higher rank represents better evaluation. A wide FOV denotes one
shot at a camera distance of 158 mm, and a narrow FOV denotes four shots at a camera distance of 105 mm.

Table 4. Best-three designs of Condition II.

Rank R G B FOV Contrast Fmeasure Positional Error (mm) Angular Error (◦)

1 195 120 75 narrow 4 1.00 0.60 3.1
2 240 45 75 narrow 3 1.00 0.92 3.0
3 105 30 150 narrow 4 1.00 1.15 2.9

The results were ranked by their evaluations; higher rank represents better evaluation. A wide FOV denotes one
shot at a camera distance of 158 mm, and a narrow FOV denotes four shots at a camera distance of 105 mm.

Table 5. Best-three designs of Condition III.

Rank R G B FOV Contrast Fmeasure Positional Error (mm) Angular Error (◦)

1 15 225 240 wide 11 1.00 0.32 0.4
2 0 225 150 wide 11 1.00 0.50 0.4
3 45 225 210 wide 9 1.00 0.62 0.4

The results were ranked by their evaluations; higher rank represents better evaluation. A wide FOV denotes one
shot at a camera distance of 158 mm, and a narrow FOV denotes four shots at a camera distance of 105 mm.

5. Discussion

Generally speaking, designs under the accuracy constraints, that is, an Fmeasure of 1 and no more
than 3 mm and 5◦ in positional and angular errors were found in both conditions of illumination tuned
from RGB channels. This finding proved that our system is capable of tuning parameters for a vision
system used in pick-and-place tasks.

Comparing the results of the first two conditions, designs under accuracy constraints were found
when illumination was tuned from RGB, while no proper design was found with an Fmeasure of 1
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with illumination tuned only from G. In both conditions, the input images were of the greyscale
type, which indicated that although a vision system finally converts colour images into grey, it is still
essential to tune the illumination based on the three RGB channels.

On the other hand, from the results of Condition II and Condition III, it was found that using
R-channel images could provide better performance in recognition than greyscale ones. Designs with
one shot and a wide FOV were found in Condition III, while a narrow FOV was designed with four
shoots in Condition II.

In order to further discuss the effects of R-channel images, the R-channel images for the two
scenes under the optimal design of Condition III (illumination RGB equals to 15, 225, and 240, 1 shoot)
were extracted. We processed the two figures with greyscale; both R-channel and greyscale figures
are shown in Figure 7. Moreover, to confirm that the R-channel images perform better than greyscale
images under the same situation, an additional design was implemented with greyscale images,
as shown in Figure 7. Results showed that the optimal design with the greyscale images could only
provide an Fmeasure of 0.93.

To our human eye, it is obvious that the greyscale images are easier to recognise. However, in a
vision system, R-channel images are recognised with a higher recognition accuracy. The probable
reason might be that in a sufficiently bright image, the noise is also enlarged to a great extent.
Vision systems do not detect a picture as humans do; these systems read the limited features in
the form of mathematical values in matrixes instead. When the noise is so large that it obscures the
useful information indicated in these matrixes, judgements made by the system could be flawed.
From this point of view, the key to a ‘clear’ image for vision systems is that these images must contain
little but important information. As an example, though the R-channel images in Figure 7 were really
dark, the contours of each object could still be seen clearly. The great contrast between contours and
background therefore make the images ‘clear’. In some ways, image pre-processing is just a method to
serve the vision systems with ‘clearer’ images.

Moreover, illumination in the designs with high evaluations showed no relations to each other
with greyscale images input, while a clear pattern was discovered in the circumstance of R-channel
images. Based on Table 4, illuminations of the best-three designs were found with low red illumination
(under 50), high green illumination (near 225), and relatively high blue illumination (from 150 to 240).
Generally speaking, tuning green and blue illuminations is not effective when the image can only be
seen using a red channel. However, Figure 8 shows that even with no red illumination, the objects are
visible in the R-channel image. The probable reason may be that the RGB tuned from the illumination
side is not the same as the RGB information contained in an image. Because of the wavelength of the
illumination device or some reflections, the G and B components could still influence the R-channel
image to some extent. Actually, such an influence eventually resulted in ‘clearer’ R-channel images
compared with the greyscale ones. The illumination pattern found in Condition III also confirmed
the importance of green and blue illumination. In addition, patterns of illumination indicated that
relations might exist between the recognition performance and its illumination conditions, which give
rise to possibilities for the application of other optimisation methods.
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Figure 8. An image taken with no red component in illumination (illumination RGB were set to 0, 225,
and 255, respectively), and its R-channel image.

Nevertheless, the experiment was limited under the environment we prepared. We could only
state that R-channel image could provide better recognition accuracy under the experimental settings.
We cannot affirm that whether this phenomenon could be discovered with other recognition targets,
or by recognition with other algorithms. To better explain it, further experiments will be required.
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6. Conclusions

In this study, we proposed an automated design approach for vision systems in pick-and-place
tasks. The vision system design was first formulated as a parameter optimisation problem and then
solved in an experiment-based approach with a hierarchical algorithm. Rather than seeking a suitable
parameter set randomly in the solution space, the proposed algorithm separates and sets hierarchies
for each optimisation based on the design factors. As one of the uncertainties from the real world,
the influence of colour on the recognition performance of the designed vision systems was also
investigated through experiments in this research.

It could be seen through the experiments that the proposed system was able to design a vision
system with a 100% recognition rate, and a positional and angular error of 0.32 mm and 0.4◦,
respectively. When using greyscale images for recognition, G illumination resulted in an Fmeasure of only
0.93, which proved the necessity for colourful illumination. Consequently, when RGB illumination
was used, designs with R-channel images used only one shot, which indicates that R-channel images
provide better recognition accuracy than the greyscale ones.

In future work, from the viewpoint of robustness, it is necessary to improve the prevention
against overfitting by increasing the number of scenes for recognition and include the measurement
of overfitting in the evaluation of the designed vision system. Aiming to take out better solutions,
the selection of recognition algorithm should also be included into the design process. Additionally,
further research could be conducted on searching more appropriate optimisation methods, for example,
neural networks or genetic algorithms, to provide better solutions that are less time-consuming for the
vision system design problem.
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