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A recent control system update for Elekta linear accelerators includes the ability 
to deliver volumetric-modulated arc therapy (VMAT) with continuously variable 
dose rate (CVDR), rather than a number of fixed binned dose rates (BDR). The 
capacity to select from a larger range of dose rates allows the linac to maintain 
higher gantry speeds, resulting in faster, smoother deliveries. The purpose of 
this study is to investigate two components of CVDR delivery — the increase in 
average dose rate and gantry speed, and a determination of their effects on beam 
stability, MLC positioning, and overall plan dosimetry. Initially, ten VMAT plans 
(5 prostate, 5 head and neck) were delivered to a Delta4 dosimetric phantom using 
both the BDR and CVDR systems. The plans were found to be dosimetrically 
robust using both delivery methods, although CVDR was observed to give higher 
gamma pass rates at the 2%/2 mm gamma level for prostates (p < 0.01). For the 
dual arc head-and-neck plans, CVDR delivery resulted in improved pass rates at all 
gamma levels (2%/2 mm to 4%/4 mm) for individual arc verifications (p < 0.01), 
but gave similar results to BDR when both arcs were combined. To investigate the 
impact of increased gantry speed on MLC positioning, a dynamic leaf-tracking tool 
was developed using the electronic portal imaging device (EPID). Comparing the 
detected MLC positions to those expected from the plan, CVDR was observed to 
result in a larger mean error compared to BDR (0.13 cm and 0.06 cm, respectively, 
p < 0.01). The EPID images were also used to monitor beam stability during deliv-
ery. It was found that the CVDR deliveries had a lower standard deviation of the 
gun-target (GT) and transverse (AB) profiles (p < 0.01). This study has determined 
that CVDR may offer a dosimetric advantage for VMAT plans. While the higher 
gantry speed of CVDR appears to increase deviations in MLC positioning, the 
relative effect on dosimetry is lower than the positive impact of a flatter and more 
stable beam profile.

PACS numbers: 87.56.bd; 87.55.km; 87.55.Qr
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I.	 Introduction

Dynamic arc radiotherapy has undergone several significant advancements since it was first 
proposed in 1995.(1) Many of the developments have related to formalizing and improving the 
efficiency of inverse planning,(2,3) such that highly modulated and conformal dose distributions 
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can now be achieved for a range of sites.(4-6) Just as significant are the advances in linear accel-
erator design — particularly in the ability of linac control systems to now reliably vary gantry 
speed, dose rate, and aperture shape simultaneously over the treatment arc.(7) With the ability 
to deliver complex dose distributions efficiently and with a significant reduction in treatment 
time, arc radiotherapy is allowing many departments to improve their provision of intensity-
modulated radiotherapy.(8)

One of the commercial solutions for arc radiotherapy is Elekta VMAT. Previously, the Elekta 
VMAT solution only allowed the linac to select from fixed dose rate bins during delivery.(9) 
The selection of dose rate bin and gantry speed for each control point is determined by the re-
quired change in multileaf collimator (MLC) shape and the number of monitor units to deliver. 
The binned dose rate (BDR) system, which is a feature of the Elekta Desktop 7.01 software, 
allows the dose rate to be reduced by factors of 2, such that for a maximum linac dose rate of  
600 MU.min-1, the available bins are 600 MU.min-1, 300 MU.min-1, 150 MU.min-1, 75 MU.min-1, 
and 37 MU.min-1. A number of studies have shown good dosimetric results with BDR VMAT, 
using a variety of measurement techniques.(10-12) 

A more recent version of VMAT, packaged with the Integrity linac control software, allows 
for a much larger range of dose rates to be selected. Rather than five fixed dose rate bins, In-
tegrity allows 255 bins to be selected from a nominal range of 37 MU.min-1 to 600 MU.min-1. 
The initial, and most prominent, impact of continuously variable dose rates (CVDR) is the 
much reduced treatment times. This is due to the linac being able to switch between smaller 
dose rate intervals, and thus maintain a higher gantry speed during treatment. A recent report by 
Bertelsen et al.(13) has shown that CVDR VMAT provides good dosimetry and faster, smoother 
deliveries when applied to a number of clinical plans.

There is evidence to suggest that a higher average dose rate, which CVDR provides, can 
provide better beam stability during VMAT delivery. In particular, Bedford and Warrington(14) 
reported that beam symmetry was poorer in the low dose rate bins for the BDR system. Gener-
ally, VMAT delivery preferentially selects higher dose rates, as this is closer to the conditions at 
linac calibration (i.e., 600 MU.min-1). Significant deviations from these calibration conditions, 
as Bedford and Warrington show, may lead to increased beam asymmetry and, hence, poorer 
dosimetry. It has been suggested that the increase in average dose rate offered by CVDR may 
therefore provide a dosimetric advantage.(13)

Conversely, an increase in average dose rate leads to an increase in gantry speed, and 
concern has been expressed that this may adversely affect the dynamic positioning of MLCs 
over treatment.(13,15,16) A recent study by Pasler et al.(15) saw an improvement in dosimetry for 
VMAT prostate plans as delivery time was reduced (i.e., average dose rate and gantry speed 
was increased), but complex head-and-neck plans did not benefit from faster delivery. For these 
patients, dosimetry was poorer when delivered with a higher dose rate. This was attributed to 
some MLCs not reaching their intended position at each control point. An increase in MLC 
positioning errors with the move to higher gantry speeds was also reported by Bertelsen et 
al.(13) for the Elekta Integrity system, and has also been observed with faster deliveries on the 
Varian RapidArc system.(16) With the trend towards faster VMAT treatments, the dosimetric 
impact of these MLC errors warrants further investigation.   

The purpose of this study is to investigate the impact of CVDR on beam stability and MLC 
positioning accuracy, when compared to the BDR system. Initially, dosimetric verification was 
carried out on ten VMAT plans. In order to more fully understand the effects of increased dose 
rate and increased gantry speed, further tests were carried out utilizing the linac’s electronic 
portal imaging device (EPID). Dynamic leaf positioning accuracy was investigated by tracking 
the MLCs over the course of delivery. Using the same EPID acquisitions, the effect of increased 
dose rate on beam stability was also characterized over the ten patient plans. The relative impact 
of each of these parameters on dosimetric performance could then be assessed.
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II.	 Materials and Methods

Ten patient plans were randomly selected, which consisted of five previously treated prostate 
VMAT patients, and five head-and-neck patients who had previously been treated with IMRT 
but were replanned with VMAT as part of a planning study. The plans were generated using 
Pinnacle version 9.0, utilizing the SmartArc optimization module (Philips Medical Systems, 
Madison, USA). The prostate patients were planned using a single arc technique, gantry ro-
tating from 182° to 178°, with 4° between each control point, and a collimator angle of 45°. 
The beam energy was 10 MV and the final dose calculation was made using the adaptive 
collapsed cone convolution algorithm. A prescription of 57 Gy in 19 fractions to the prostate 
was set, with further dose levels covering the seminal vesicles, per group 3 of the CHHIP trial  
protocol.(17) The mean number of monitor units (and standard deviation) for the prostate patients 
was 465.1 ± 25.5 MU.

The five head-and-neck plans all involved complex shapes requiring a higher degree of 
modulation. All were three dose levels and consisted of three hypopharynx, one oropharynx, 
and one supraglottis. These were planned with a two arc solution, with gantry rotation from 
182° to 178° and a collimator angle of 10° in both arcs. The control point spacing was again 
4°, and the beam energy was 6 MV. 66 Gy was prescribed to PTV1, 60 Gy to PTV2, and 54 Gy 
to PTV3 using a simultaneous integrated boost (SIB) technique, in 30 fractions. On average, 
the total monitor units were 529.2 ± 66.2 MU for the head-and-neck plans.

The ten plans were delivered on an Elekta Synergy linear accelerator (Elekta, Crawley, UK) 
which was fitted with a MLCi head (1 cm leaf thickness). The linac had recently been upgraded 
to the Integrity control software such that in ‘Service Mode’, it was possible to deliver plans 
with either BDR or CVDR. Delivery times and dose rates were recorded for each plan.

A. 	 Verification
Dosimetric verification was performed using each delivery method on the Delta4 verification 
phantom (Scandidos, Uppsala, Sweden). The Delta4 phantom consists of two planes of silicon 
diodes in a cylindrical PMMA phantom. With the application of appropriate correction factors, 
a pseudo three-dimensional analysis can be performed against the planned dose, and a gamma 
value calculated. This device has previously been shown to be an effective method for VMAT 
dosimetric verification.(18) The Delta4 was set up at the isocenter of the linac and an inclinometer 
was fixed to the head to monitor gantry angle. Within the Delta4 software, a correction factor 
was applied based on the linac’s recorded output for that day. No automatic alignment of the 
measured dataset was performed. Gamma analysis was performed at the 2%/2 mm, 3%/3 mm, 
and 4%/4 mm levels for each of the plans, with measurement points < 20% of the maximum 
dose excluded from analysis. 

B.  	EPID MLC tracking
A software tool has previously been developed and validated at this center to determine MLC 
positions using the EPID.(19,20) For this study, the software has been expanded to allow for track-
ing of MLC positioning during VMAT delivery. EPIDs have been shown to provide a sensitive 
and independent means of determining MLC positioning in vivo during radiotherapy.(21,22)  
With the Elekta iView system, a movie was acquired over the course of each VMAT delivery 
with a frame recorded approximately every 0.47 s. For each frame of the movie (Fig. 1) a his-
togram of pixel intensities was taken such that the exposed area could be identified. The field 
edge, and therefore the MLC positions, was then determined by thresholding the image at 50% 
of the modal pixel intensity. 

As the iView system does not record the linac gantry angle for each image, the gantry angle 
was determined by using the Service Graphing function within the linac control system. Service 
Graphing records the state of various linac parameters every 0.25 s during treatment, so it was 
possible to ‘tag’ each EPID image with the appropriate gantry angle. The VMAT plans were 
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retrieved from a commercial record and verify system (MOSAIQ), and interrogated to deter-
mine the expected position of the MLCs during treatment. As the plan file only contains MLC 
data at each control point (i.e., every 4º), it was necessary to interpolate the MLC positions for 
images acquired between these gantry angles. 

The accuracy of the EPID at determining MLC positions was found to be within 0.5 mm 
compared to film measurements, and reproducibility of measurements was < 0.01 mm.(19) Prior 
to use with the VMAT plans, the system was tested under dynamic conditions using both a 
conformal (10 × 10 cm) and dynamic arc (a 2 cm sliding window defined by MLCs, similar 
to that described in Bedford and Warrington(14)). For the conformal arc, mean MLC deviation 
was determined to be -0.04 mm with a standard deviation (st. dev.) of 0.3 mm. For the sliding 
window the mean MLC deviation was -0.1 mm with a st. dev. of 1.2 mm.

C.  	Beam flatness and stability
Using the same data from the portal imager, beam stability was assessed over each treatment 
arc for the binned dose rate deliveries and the continuously variable dose rate. Software was 
written which analyzes each frame from the EPID movie and monitors the profile of the beam in 
the gun-target (GT) and transverse (AB) directions. Again, a histogram of the signal intensity in 
the image was used to identify the exposed area of the field, so that the effects of the penumbra 
and noise outside the field could be excluded. Then, the image was integrated across all rows 
(for the GT profile) and all columns (for the AB profile), taking a mean signal intensity per 
exposed pixel (Fig. 2). The standard deviation of each of these 1D profiles was recorded, and 
the process was then repeated over all of the frames of the EPID movie. The fluctuation of the 
beam profile could then be compared between the BDR and CVDR deliveries.

Due to the small sample size, the results of the gamma analysis, MLC deviations, and beam 
stability were statistically compared between BDR and CVDR over all deliveries using a non-
parametric Wilcoxon signed-rank test. Significance was taken as p < 0.05. Where applicable, 
the standard deviation of results has been quoted in parentheses. 

 

Fig. 1.  A single portal image acquired during VMAT delivery, with the MLC positions identified (white dots).
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III.	Res ults 

Delivery times using continuously variable dose rate were reduced compared to the binned 
dose rate system (Table 1). The mean reduction in delivery time for both the prostate plans and 
for the head-and-neck plans was 30.2%. Figure 3 shows how the dose rate varies over one of 
the head-and-neck deliveries. As expected, the CVDR deliveries have smaller steps between 
dose rate bins and a higher average dose rate. The mean dose rate for the CVDR deliveries was 
266 ± 67 MU.min-1 compared to 192 ± 55 MU.min-1 for the BDR deliveries (p < 0.01 over all 

Fig. 2.  Flatness monitoring of a portal image. The pixel intensity is integrated over the whole exposed field area in the 
GT and AB directions to determine the beam profile. The standard deviation of each profile is then calculated to measure 
the flatness.

Table 1.  Delivery times for the VMAT plans delivered with BDR and CVDR.

	 Time (s)

	 Plan	 Binned Dose Rate	 Continuously Variable Dose Rate

	 Prostate 1	 118.9	 80.8
	 Prostate 2	 119.9	 86.8
	 Prostate 3	 119.6	 83.2
	 Prostate 4	 115.9	 87.6
	 Prostate 5	 122.6	 78.4

	 Mean	 119.4	 83.4

	Head and Neck 1	 201.0	 141.5
	Head and Neck 2	 210.3	 146.0
	Head and Neck 3	 205.8	 141.8
	Head and Neck 4	 204.5	 144.3
	Head and Neck 5	 205.0	 143.0

	 Mean	 205.3	 143.3
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patients). Both delivery techniques were capable of switching between dose rate bins in less 
than 0.25 s (i.e., below the resolution of the Service Graphing function).

Results from the Delta4 verifications are shown in Table 2. For the prostate patients, no 
statistically significant difference was observed at the 3%/3 mm gamma analysis between the 
BDR and CVDR deliveries. At 2%/2 mm, there was an improvement in gamma pass in favor 
of CVDR (2.0% pixels failing versus 5.2%, p < 0.01). For head-and-neck plans, a statistically 
significant improvement in gamma pass was observed with CVDR at all gamma levels for 
individual arc verifications on the Delta4. However, the combined dose distributions (summing 
the contributions from both arcs) did not reflect this difference. The Delta4 verifications were 
found to be reproducible, with intercomparison of repeat deliveries giving gamma pass rates 
of 100% at 2%/2 mm.

The mean MLC positioning deviations are shown in Table 3. Over all deliveries, CVDR 
deliveries resulted in larger mean MLC deviations than BDR deliveries (p < 0.01). For the 
head-and-neck plans, this difference was more pronounced than for the prostates, with a mean 
deviation of 0.06 cm measured for the BDR system versus 0.13 cm for the CVDR system. 
Averaged over all patients, the st. dev. of MLC positioning errors was similar for both BDR 
and CVDR (p > 0.2). 

Fig. 3.  Dose rate varying with time for the BDR and CVDR deliveries of one of the head-and-neck arcs.

Table 2.  Delta4 verification results for all plans delivered with BDR and CVDR. Values shown are the mean percent 
measurement points failing gamma analysis (± 1 st. dev.).

	 Prostate	 BDR	 CVDR	 p

	2%/2 mm	 5.2±2.5%	 2.0±1.5%	 <0.01
	3%/3 mm	 0.6±0.8%	 0.0±0.0%	 >0.2

	Head and	 Arc 1	 Arc 2	 Combined

	 Neck	 BDR	 CVDR	 p	 BDR	 CVDR	 p	 BDR	 CVDR	 p

	2%/2 mm	 24.0±10.3%	 23.4±6.0%	 <0.01	 17.2±10.5%	 15.5±6.4%	 <0.01	 6.7±2.1%	 6.5±2.6%	 >0.2
	3%/3 mm	 7.0±5.1%	 6.5±1.8%	 <0.01	 3.9±5.3%	 3.1±1.7%	 <0.01	 1.1±0.4%	 1.0±0.6%	 >0.2
	4%/4 mm	 1.7±1.6%	 1.4±0.5%	 <0.01	 1.0±1.3%	 0.8±0.5%	 <0.01	 0.2±0.1%	 0.1±0.1%	 >0.2
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Using the portal images acquired during delivery, the standard deviation of the GT and AB 
profiles was calculated over each treatment arc. Figure 4 shows how the standard deviation 
varies over one of the head-and-neck arcs, for both CVDR and BDR. Over all the deliveries, 
the mean and maximum st. dev. of the profiles was higher for BDR deliveries compared to 
the CVDR deliveries (p < 0.05 for both prostate and head-and-neck deliveries). In all cases,  
st. dev. was larger in the GT profiles than in the AB direction (Fig. 5).

 

Table 3.  Mean and st. dev. of leaf positioning errors as determined by the EPID MLC tracking.

	 BDR	 CVDR

	 Prostate 	 Mean Positional	 St. Dev.	 Mean Positional	 St. Dev. 
	 Plan	 Error (cm)	 (cm)	 Error (cm)	 (cm)

	 1	 0.08	 0.18	 0.09	 0.17
	 2	 0.07	 0.24	 0.08	 0.21
	 3	 0.09	 0.17	 0.09	 0.22
	 4	 0.07	 0.76	 0.09	 0.31
	 5	 0.08	 0.21	 0.09	 0.17

	 Mean	 0.08	 0.31	 0.09	 0.22

	Head and
	Neck Plan				  

	 1	 0.12	 0.71	 0.17	 0.97
	 2	 0.02	 0.22	 0.10	 0.33
	 3	 0.04	 0.27	 0.13	 0.33
	 4	 0.05	 0.26	 0.11	 0.21
	 5	 0.06	 0.29	 0.13	 0.34

	 Mean	 0.06	 0.35	 0.13	 0.44
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Fig. 4.  Standard deviation of the GT profiles over a head-and-neck arc, plotted alongside dose rate for the BDR delivery 
(a), and for the CVDR delivery (b).
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IV.	D ISCUSSION

As expected, a reduction in delivery time was observed using continuously variable dose rate 
(~ 30.2%), which is in agreement with previous predicted and measured results.(13,23) This 
reduction is due to the ability to select a larger range of dose rates. On average, the increase in 
mean dose rate was 38.6% using CVDR compared to BDR.

In general, dosimetric verification was found to be satisfactory for both the BDR and CVDR 
systems. Following this center’s requirements for gamma evaluation, all prostate and head-
and-neck deliveries were considered clinically acceptable using the Delta4  phantom. For the 
single arc prostate plans, no difference was observed between BDR and CVDR at the 3%/3 mm 
gamma level, although at the tighter tolerance of 2%/2 mm, the CVDR deliveries resulted in a 
higher pass rate. Similarly, for the complex two arc head-and-neck plans, the CVDR deliver-
ies had a higher pass rate at all gamma levels for individual arcs. It is of interest to observe 
that the combined dose distributions (from both arcs) did not reflect this difference. Further 

Fig. 5.  Mean of the standard deviation of the AB and GT profiles for (a) all prostate patients, and (b) all head-and- 
neck patients.
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analysis reveals that, generally, the Delta4 dose measurements of the first head-and-neck arc 
are systematically high, but are systematically low for the second arc (Fig. 6). As such, the 
combined dose distribution results in an acceptable gamma pass rate. The reason for this may 
be attributable to the way in which the dual arc plans are created. The SmartArc plans tended 
to produce one arc which conforms to the shape of the target volumes, and a second which is 
more heavily modulated to ensure a more uniform dose in the target, while maintaining the 
avoidance of organs at risk.

The study by Bertelsen et al.(13) reported higher gamma pass rates for head-and-neck plans, 
which may be due to differences in treatment protocol, and choice of VMAT parameters (a 
single arc, 2º control point spacing, compared to a dual arc, 4º solution in this study). However, 
the results presented here are in agreement with those reported previously, in that they indicate 
a slight improvement in dosimetry with CVDR compared to BDR. 

Fig. 6.  Delta4- measured dose deviations from one head-and-neck plan. The two individual arcs measure systematically 
low and high, such that the combined dose deviation is acceptable.
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The fundamental difference between CVDR and BDR deliveries is the ability to select from 
a larger range of dose rates during treatment, which also allows higher gantry speeds to be 
selected. Using the EPID as an independent means of tracking MLC position, it was possible to 
determine the impact of these changes. While the mean MLC errors were small (head-and-neck 
plans gave 0.13 cm and 0.06 cm for CVDR and BDR, respectively), a statistically significant 
difference was observed between the delivery methods. This trend is similar to that noted by 
Bertelsen et al. However, the two methods are not directly comparable – the Bertelsen study 
uses the leaf error signal from the linac’s service graphing function, whereas this study relates 
MLC position determined independently (from the EPID) with the planned position. 

While it has been observed that the faster CVDR deliveries result in a higher mean MLC 
deviation over each treatment, it is more difficult to determine the whereabouts of any system-
atic positioning errors during the arc. A plot of gantry angle versus MLC deviations (Fig. 7) 
indicates that the leaf bank which is traveling against gravity has larger deviations. However, 
this trend is observed to be similar for both BDR and CVDR deliveries. An investigation of 
MLC deviation against instantaneous gantry speed would be of interest, but this is a difficult 
parameter to determine independently during VMAT delivery. Future work may involve the 
use of an external inclinometer (such as that used with the Delta4 device) to reliably measure 
instantaneous gantry speed, and investigate any relationship to instantaneous MLC errors.

The dynamic monitoring of MLC position within the Elekta control system will temporarily 
interrupt the beam if a leaf error of > 0.4 cm is detected. With the move towards faster VMAT 
deliveries (through the use of CVDR, and potentially much higher dose rates(24)), the tolerance 
of this dynamic error monitoring may have to be tightened.

It is preferential for VMAT to be delivered with a dose rate which is closer to calibration 
and QA conditions.(14) Utilizing the portal imager, it has been possible to confirm that CVDR 
delivery, with its higher mean dose rate, leads to a flatter and more stable beam over the dura-
tion of delivery. Figure 4 shows how the st. dev. of the beam profiles varies over the treatment. 
With the BDR system it is possible to observe ‘spikes’ in the beam flatness which occur when 
there are large changes in dose rate. The CVDR system does not appear to contain these spikes 
due to the smaller intervals between dose rates. While both delivery methods are dosimetrically 
robust, the CVDR system presents an advantage in terms of beam stability during delivery.

Fig. 7.  Scatter plot of mean MLC deviations from each leaf bank (X1 and X2) over all prostate patients, plotted against 
gantry angle. Initially, leaf bank X1 is traveling against gravity. Shaded boxes and circles indicate CVDR delivery.



265    Boylan et al.: Dosimetric impact of continuously variable dose rate VMAT	 265

Journal of Applied Clinical Medical Physics, Vol. 13, No. 6, 2012

These results suggest that any negative dosimetric impact from MLC positioning which 
arises with the use of CVDR is smaller than the positive impact of the improved beam stability. 
It will be of future interest to determine what level of complexity can be achieved before the 
impact of MLC positioning errors becomes significant. It should also be noted that the ability 
of the linac to reach new aperture shapes is strongly dependant on the speed of the MLCs. In 
this study, the Elekta linac was fitted with standard 1 cm MLCi leaves. As VMAT becomes 
more widely used, modern MLC designs are placing greater importance on leaf speed, which 
will enable more complex changes in aperture shape without having to significantly reduce 
the dose rate or gantry speed.

It should be noted that the results presented here may be dependent on the planning system, 
and treatment protocols employed. At present this center uses VMAT for prostate treatments 
and selected head-and-neck sites. It will be of future interest to add to the small sample size 
considered in this study with more complex clinical sites, such as paraspinal tumours(25) and 
medulloblastoma (whole central nervous system) treatments.(26) Furthermore, it will be of use 
to investigate whether the EPID tracking and flatness measurements can be reproduced using 
other devices, such as a head-mounted diode or ion chamber array.

 
V.	 Conclusions

VMAT delivered with both continuously variable dose rate and binned dose rates provides 
high quality dosimetric verification for prostate and head-and-neck plans. The CVDR system, 
packaged with the Elekta Integrity software upgrade, is also capable of significantly shorter 
delivery times. Investigating two important components of the delivery, it was found that MLC 
positioning accuracy is slightly poorer with the faster CVDR deliveries, but that beam flatness 
and stability is improved compared to BDR. For complex VMAT deliveries, therefore, the 
superior beam stability (a result of the higher average dose rate with smaller intervals) appears 
to be the dominant factor in improved dosimetry for CVDR.
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