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ABSTRACT: The detergency of motor gasoline is closely related to vehicle exhaust emissions and fuel economy. This paper
proposed an improved method for the rapid detection of gasoline detergency based on the deposit images of test gasoline on
aluminum plates produced by a multichannel gasoline detergency simulation test (MGST). The detection algorithm system was
structured to recognize the deposit plate images by computer vision based on the convolutional neural networks (CNNs).
Compared with the traditional simulation test, the improved MGST method resulted in significant reductions in fuel consumption,
cost, and test time. The performance of three transfer learning models (Inception-ResNet-V2, Inception-V3, and ResNet50-V2) and
a customized CNN was evaluated in the detection algorithm system, and their detection accuracies reached 94, 94, 88, and 82%.
Inception-RsNet-V2 was selected due to its higher accuracy and better robustness. Based on the model interpretation, it is evident
that the model undergoes feature extraction from the sediment deposits on the deposit plate. Subsequently, it employed the acquired
deposit features to accurately detect gasoline samples that failed to meet detergency standards. This approach was proved to be
effective in enhancing the detection process and ensuring reliable results for gasoline detergency evaluation. It is beneficial to
environmental protection regulators for managing market gasoline detergency and urban mobile source pollution. In addition, a
deposit plate image database should be established to further improve the detection model performance during the environmental
regulation.

1. INTRODUCTION
In recent years, global vehicle ownership has increased rapidly,
driven by the continuous promotion of urbanization.1 It leads
to a substantial amount of carbon dioxide (CO2) emissions
and also releases harmful pollutants into the atmosphere, such
as hydrocarbons (HC), nitrogen oxides (NOx), carbon
monoxide (CO), particulate matter (PM), ozone (O3) and
benzene, and polycyclic aromatic hydrocarbons. Gasoline
vehicles are one of the major contributors to CO2 and
pollutant emissions.
Fuel quality is a critical factor affecting vehicle emissions,

with gasoline detergency serving as a pivotal environmental
attribute for evaluation. Vehicle gasoline detergency refers to
the performance of vehicle gasoline to reduce or prevent
deposits in the engine fuel line, intake valve, and combustion
chamber.2,3 It is an important index that reflects the tendency
of vehicle gasoline to generate carbon deposits during use and
the potential for removing carbon deposits that have already

been generated.4−6 Adding detergent additives to gasoline is an
economical and effective way to improve the detergency of
gasoline and keep engines clean.5,7,8 Previous studies have
substantiated that the incorporation of appropriate detergent
additives into gasoline can effectively cleanse engine carbon
deposits and uphold engine performance, ultimately enhancing
fuel efficiency and mitigating emissions.2,9

The incorporation of appropriate detergent additives not
only leads to the reduction of criteria pollutants emissions but
also diminishes emissions of aromatics, alkanes, and carbonyls.
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Sebastian10 et al. found that fouling on injector tip surfaces and
nozzles in the case of direct injection engines correlated well
with increased particulate numbers and mass (PN/PM)
emissions, consistent with the results reported by Jiang11 et
al. and Houser12 et al. However, if the detergent containing
fuel was used from the beginning of the test, the engine
injectors could be cleaned and resulted in decreased particulate
emissions. Zhu13 et al. evaluated 10 different gasoline
detergents and selected one with good performance. After
adding detergent-containing fuel and driving 1.2 × 104 km,
they found that the mass of deposits on the engine intake valve
was reduced by 6.8 wt % and that the vehicle emissions of HC,
CO, and NOx were obviously decreased by approximately
14.3, 13.6, and 16.7 wt %. Jin14 et al. found that 9, 8, and 7 of
the 14 tested detergent additives contributed to the reduction
of CO, HC, and NOx emissions, and most of the tested
additives reduced fuel consumption by 0.9 to 3.5 v.%.
Improving the gasoline detergency could effectively reduce
the pollutant emissions of vehicles.
In principle, the method of detecting the vehicle gasoline

detergency should closely emulate real-world driving con-
ditions. Globally, bench tests have been used for gasoline
detergency detection, including Ford 2.3 L,15 M111,16 and
M102.17 The Ford 2.3 L method was the same as the ASTM
D6201 method (Standard Test Method for Dynamometer
Evaluation of Unleaded Spark-Ignition Engine Fuel for Intake
Valve Deposit Formation). The detergency was evaluated by
measuring the increase in the mass of the intake valve deposit
(IVD) and combustion chamber deposits (CCDs). The M111
method was equal to the CEC F-20-98 (deposit-forming
tendency on intake valves). After the test, the IVD and CCD
were collected with a special tool, and the evaluation of the
deposits had to be completed within 16 h. This committee also
developed the M102 method, referred to as the gasoline engine
IVD test method CEC F-05-93 (inlet valve cleanliness in the
MB M 102 E engine). The advantage of the bench test
methods was that the test results were more representative of
the real-world gasoline detergency, but the disadvantages were
that they were time-consuming, complicated procedures with
high costs.

For these reasons, several new methods have been invented
to investigate gasoline detergency. Silva9 et al. applied infrared
spectroscopy to detect whether detergent was added.
Rodrigues18 et al. used near-infrared hyperspectral imaging to
identify four detergent and dispersant additives and to detect
their concentrations in gasoline. All the methods mentioned
above could detect whether detergent had been added to the
gasoline, but they did not evaluate whether the gasoline
detergency was up to standard in real-driving conditions. A
simulation test of the IVD of the gasoline engine method was
developed in GB/T 37322-2019 (State Administration for
Market Regulation, Standardization administration, 2019). The
test gasoline was sprayed with constant pressure and flow of air
in a forced-air hood onto an aluminum deposit collector that
had been weighed and heated to a specific test temperature. A
gasoline film was formed on the surface of the deposit plate,
which was continuously heated, baked, and flushed by the
atomized test gasoline. Over time, deposits gradually formed
on the collector surface. The collector was weighed before and
after the test, and the increase was the deposit weight applied
to evaluate the detergency of the gasoline. The traditional
simulation test (TST) is the current test method widely used
in China, which can correct the test gasoline detergency, and
the deposition morphology on the plate also reflects some
other information. Each test consumes approximately 300 mL
gasoline in 2 h and greatly reduces fuel consumption and time
compared to bench tests. However, as the gasoline quality
gradually improves and the weight gain of deposits gradually
decreases, the misjudgment percentage of using the weighing
method to evaluate the gasoline detergency cannot be ignored.
Moreover, promoting the use of the TST method on a large
scale is not convenient due to the influence of experimental
operation and measurement accuracy.
With the development of computer hardware, deep

learning19 has made a big impact in the field of image
recognition, and it has also been widely used in environmental
fields.7,20 A fine-tuned VGG16 neural network was applied to
classify microplastics with an accuracy of 98.33%.21 Apeksha22

et al. found that deep learning models could predict air quality
more accurately than traditional machine learning models,

Figure 1. TST equipment and vehicle-mounted MGST (a, b); the MGST technical schematic (c), including the multichannel gasoline detergency
tester, compressor, and oil pump.
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which was consistent with the findings of ref 23. Li24 et al.
customized a novel CLSTMA model for monitoring water
quality in paper industry wastewater treatment systems. Lu25 et
al. customized a deep learning model to classify recyclable
waste. Although all of these attempts achieved good perform-
ances, no study has applied the deep learning method to
gasoline detergency detection to date.
In this paper, a new method containing a multichannel

gasoline detergency simulation test (MGST) and a gasoline
detergency detection model based on convolutional neural
network (CNN) is proposed, which mainly makes the
following contributions:
(1) A set of gasoline detergency detection methods is

established that can rapidly make deposit plates and
detect test gasoline detergency in the field.

(2) A high-accuracy gasoline detergency detection model is
built based on CNN.

(3) A new solution for evaluating the detergency of vehicle
gasoline is proposed, which is fast, low-cost, and wide
applicability.

2. MATERIALS AND METHODS
2.1. Acquisition of Experimental Data. Through years

of practical experience, the vehicle-mounted MGST equipment
was designed mainly consisting of a car, generator, compressor,
oil pump, and multichannel gasoline detergency tester. It has
been verified that the testing instrument has a correlation
coefficient of 0.94 with the simulation test of IVD of the
gasoline engine method.26 The equipment can produce three
samples at the same time, including 92#, 95#, and 98# gasoline
deposition samples. The test equipment and technical
schematic are shown in Figure 1.
The steps of the deposit plate production are as follows:
1) Polish and grind the deposit plates until the surface is
smooth and free of dirt, fix the deposit plates in the
inspection hood, clamp them to the heating equipment,
and heat them to 180−190 °C.

2) Compress the compressed air to 0.12 MPa, control the
flow at 700 L/h, and supply air to the three nozzles,
while the metering pump supplies gasoline evenly to the
three nozzles at a rate of 4 mL/min. Gasoline and air are
fully mixed in the nozzles and sprayed onto the deposit
plates at the test temperature.

3) Spray the mixture of gasoline and air continuously for 10
min, followed by heating the deposit plate between 215
and 220 °C and baking for 5 min to oxidize the plate
surface to form a gasoline film.

4) After cooling, remove the collector and place it into the
image acquisition device. The images are captured and
passed to the detection system deployed with the trained
deep learning networks for detergency detection.

According to the standard GB/T 37322-2019, using the
TST method, the limit value of deposit plate weight gain was
2.0 mg. The gasoline detergency was considered unqualified
when the weight gain exceeded 2.0 mg. In the past, MGST was
a qualitative analysis method in which the staff subjectively
judged whether the test gasoline detergency was qualified or
not. The test gasoline samples that were judged to be
unqualified or disputed were further tested by the TST
method. The test results of the TST method were recorded as
the label of the test gasoline detergency.

2.2. Deposit Plate Image Processing. The deposit plate
image dataset was divided into two different sets: 80% of the
data were used as the training set, and the test set accounted
for 20%.27 There were also parts of deposit plate images tested
in past years that were obtained from the Academy of
Environmental Sciences. Since the TST method had no special
requirements for deposit plate images, the stock images were
taken under a nonfixed camera and camera position, and the
photo exposure, contrast, and other parameters were not
uniform. In addition, the total number of deposit plate images
was small. Direct training would likely cause model overfitting
and lead to a lack of recognition accuracy.23,28 To address
these problems, normalization and data augmentation were
taken in image preprocessing.29 The transformed images are
expanded into the original training dataset to increase the
amount of training data. In this paper, image transformation
includes many image manipulations from computer vision,
such as random cropping, horizontal flipping, vertical flipping,
random rotation, random color, and contrast enhancement.
2.3. Detergency Detection Model. CNNs are feedfor-

ward neural networks that can be seen as a series of connected
layers. A common CNN is cross-stacked by convolutional,
pooling, and fully connected (FC) layers,30 combined with
special network layers such as the activation function. Finally,
the category probability output is obtained by the sof tmax
function.31 The loss function is a method to calculate the
differences between the predicted and original values. The
model is trained in a direction that makes the loss value
smaller. The convolution layer extracts the features of the
image by the convolution operation of the convolution kernel
with the image pixel matrix. The convolution layer receives an
input feature map in the shape of (image_height, image_width,
image_channels), extracts features from it, and generates an
output feature map in the shape of (height, width, depth). The
formula for calculating the shape of the output feature map is
shown in eqs 1 and 2.

P
height

image height kernel size 2
stride

1=
_ _ +

+
(1)

P
width

image width kernel size 2
stride

1=
_ _ +

+
(2)

where P is the number of paddings. This paper used zero
padding to independently control the shape of the output
feature map, stride is the step size for the motion of the
convolution kernel, and kernel_size is the shape of the kernel.
A single kernel can only extract one kind of feature, so a series
of kernels were applied to extract different features. The depth
is the number of kernels.
The pooling layer can reduce the amount of network data

and further extract the main features of the image, including
max pooling and average pooling. The FC layer can calculate
the summation of all the features extracted by the network,
multiply the input from the previous layer with the weight
matrix W, and add the bias vector b to perform a linear
transformation. Finally, after the nonlinear activation function
f( · ) operation, the algorithm is shown in eq 3.

y f W x b( )= · + (3)

In this paper, we applied three activation functions, ReLu,
tanh, and sof tmax; the first two functions increase the
nonlinearity of the model, while the last one obtains the
category probability output. As shown in eqs 4, 5, and 6.
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Considering the small amount of training data, it could not
achieve a good training effect. Both customized CNNs and
transfer learning (TL) were used in this paper for comparison
to select the model with the best performance for deployment
based on evaluation metrics. The customized CNNs had two
convolutional layers (size of 5 × 5, 64 outputs and size of 5 ×
5, 128 outputs), and each layer was followed by a max pooling

layer 2 × 2; a flattened layer one-dimensional multidimen-
sional input vector and followed by a dropout layer with a
dropout rate of 0.4;32 an FC layer with 50 units followed by a
dropout layer with a dropout rate of 0.4; and an FC layer with
2 units followed by sof tmax activation function to output the
probabilities of one image under each category. The maximum
value was taken as the final classification result.33 The dropout
layers were designed to prevent overfitting. The structure of
the customized CNN detection model is shown in Figure 2.
TL could counter the problem of limited size of the training

samples because of using pretrained models to extract features
to gain better performance.34 In this paper, we selected three
pretrained models that are widely used, including (a)
ResNet50-V2,35 (b) Inception-V3,36 and (c) Inception-
Resnet-V2.37 The hyperparameters of each model were
determined after multiple experiments. The customized
CNNs trained all parameters, and the pretrained models that

Figure 2. Structure of the customized CNN detection model.

Figure 3. Structure of the Inception-ResNet-V2 networks.
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were only used for feature extraction trained the customized
FC layers, leaving other layers frozen. By comparing the
classification performance metrics of four models, Inception-
ResNet-V2 showed the best performance in this paper.
Inception-ResNet-v2 networks include the Inception block

and the ResNet block, and the structure of the networks is
shown in Figure 3. The structure of the backbone networks
was constructed by the stem networks, including five groups of
Inception-ResNet-A blocks, a reduction-A reduction layer, 10
groups of Inception-ResNet-B blocks, a reduction-B reduction
layer, and 5 groups of Inception-ResNet-C blocks, followed by
a global average pooling layer, a dense layer, and the sof tmax
function.
The inception partial structure split the large convolutional

kernels into small convolutional kernels in series; for example,
the large convolutional kernel of 7 × 7 was split into small
convolutional kernels of 1 × 7 and 7 × 1. This asymmetric
structure enabled the extraction of more multilevel structural
and diversity features. As the core part of the networks, there
were three types of Inception-ResNet blocks in the
combinatorial network, and the formulas of the three types
of blocks were calculated as eq 7.

l
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+

= (7)

In the above equation, h(xi + 1 | δ) denotes the i-th block
feature map of Inception-ResNet-δ (δ = A, B, C), g denotes the
activation function of the network, F denotes the linear
transformation function to compute the output features of the
multiplexed convolution in the block, L(l, j) denotes the l-th
output feature in the j-th layer convolutional network, and Wn

l

and bn
l denote the n-th parameter in the l-layer network.

2.4. Performance Evaluation. To evaluate the perform-
ance of the models, based on the confusion matrix, a scientific
evaluation index system was established, including the
following:
(a) TP (true positives): correctly characterized qualified

deposit plate images.
(b) TN (true negatives): correctly characterized unqualified

deposit plate images.
(c) FP (false positives): incorrectly characterized unqualified

deposit plate images.

(d) FN (false negatives): incorrectly characterized qualified
deposit plate images.
Accuracy is the most commonly used classification perform-

ance metric, and a greater value means that a larger proportion
of observations are predicted correctly. Precision is similar to
accuracy, but the difference is that precision evaluates the
effectiveness of only one category while accuracy evaluates the
overall classification results. Recall is the proportion of every
positive observation that is TP. The calculation formulas are
shown in eqs 8, 9 and 10.

Accuracy
TP TN

TP TN FP FN
= +

+ + + (8)

Recall
TP

TP FN
=

+ (9)

Precision
TP

TP FP
=

+ (10)

It is desirable to score high on both precision and recall, but
they represent a paradoxical pair of metrics. Fβ_score is found
to balance precision and recall, and Fβ_score with β = 1 is the
F1_score that is a kind of average used for ratios referred to as
the harmonic mean. F1_score is the most popular adopted
metric in binary classification tasks, where the relative
contributions of both accuracy and recall are equal. The
calculation formulas are as follows in eqs 11 and 12.

F score
(1 ) precision Recall

(precision Recall)

2

2_ = + × ×
× + (11)

F score 2
Precision Recall
Precision Recall1_ = × ×

+ (12)

3. RESULTS AND DISCUSSION
3.1. Experimental Results of Detergency Testing. In

this study, a total of 25 test samples of market gasoline were
selected from Beijing and surrounding areas. Each sample was
subjected to the TST and MGST methods with a total of 50
deposit plates. Before the development of the detection model,
the detergency of gasoline sample could only be determined
qualitatively by human experts based on the morphological
characteristics of the deposits. Although subjective judgment
can rapidly screen out unqualified gasoline samples, qualitative
assessment methods are plagued by inherent uncertainties and
present significant challenges for widespread implementation

Table 1. TST Test Results

numbering increase (mg) class numbering increase (mg) class

01 2.9 ± 0.1 unqualified 14 4.4 ± 0.1 unqualified
02 0.2 ± 0.1 qualified 15 6.6 ± 0.1 unqualified
03 0.1 ± 0.1 qualified 16 1.4 ± 0.1 qualified
04 0.1 ± 0.1 qualified 17 2.8 ± 0.1 unqualified
05 0.4 ± 0.1 qualified 18 1.1 ± 0.1 qualified
06 0.1 ± 0.1 qualified 19 0.1 ± 0.1 qualified
07 0.3 ± 0.1 qualified 20 0.3 ± 0.1 qualified
08 0.4 ± 0.1 qualified 21 0.4 ± 0.1 qualified
09 0.1 ± 0.1 qualified 22 1.4 ± 0.1 qualified
10 8.2 ± 0.1 unqualified 23 1.5 ± 0.1 qualified
11 2.7 ± 0.1 unqualified 24 0.2 ± 0.1 qualified
12 2.3 ± 0.1 unqualified 25 2.4 ± 0.1 unqualified
13 1.6 ± 0.1 qualified
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and applicability in a larger context. The deposit plate weight
gain obtained from the TST was accurately measured to
determine whether the detergency weight exceeded the 2.0 mg
limit. The deposit plates obtained from the identical set of
gasoline samples using the MGST method were subjected to
the same detection result as the TST method. The MGST was
significantly improved in terms of time, gasoline consumption,
and test costs. Compared with the TST method, the most
common method, the cost and gasoline consumption of
MGST were reduced by 87.5 and 80.0% v.%. Since the MGST
could test three gasoline samples at the same time, the time
consumption would be reduced by 92.6% if all channels
worked simultaneously. Even if only one sample was tested, the
time consumption could also be reduced by 77.8%. If the
complete detection cycle were considered, the time con-
sumption could be further reduced because the model
detection time could be ignored.
The experimental results are shown in Table 1. According to

the statistical findings, the measured weight increments of the
deposit plates ranged from 0.1 to 6.6 mg, indicating substantial
variations in the gasoline detergency within the same city area.
Out of the total samples, 17 gasoline samples complied with
the specified limit, resulting in a qualification rate of 68.0%.
This finding suggests that a majority of the gasoline samples
demonstrate satisfactory detergency according to the relevant
standards. However, a considerable proportion of the gasoline
samples still fall short of meeting the established criteria.
Three sets of deposit plate images were selected to represent

different situations for presentation. The results of the
comparative testing of selected samples No. 1, 15, and 18
are shown in Figure 4. The first group deposit plate with a
weight gain of 2.9 mg exceeded the limit of the test result.
However, the center of the deposition was diffuse, and such a
situation might be caused by adding insufficient detergent
additives or not adding detergent additives as needed. The
15th group deposit plate with a weight gain of 6.6 mg
drastically exceeded the limit, in which deposition was greater
without obvious spread caused by not adding the detergent
additives. The 23rd group test result was qualified with a
weight gain of 1.5 mg, for which deposition was clear diffusion.
The analysis of deposit characteristics from the comparative
images of the deposit plates in the graph indicates a significant
correlation between the morphological features obtained
through both preparation methods.
In addition, 113 deposit plate images retained by the TST

method test were obtained from the Academy of Environ-
mental Sciences, including five qualified gasoline deposit plate
images and 108 unqualified. Since there was no need for image

recognition in the past test method, most of the deposit plates
with qualified test results were washed and reused without
obtaining photos. Therefore, most of the previous images were
unqualified deposit plate photos. A total of 163 images of
deposit plates were obtained in this study, of which 39 were
qualified and 124 were unqualified. A total of 130 deposit plate
images were included in the training dataset containing 101
unqualified deposit plate images and 29 qualified deposit plate
images. In the test dataset, there were 23 unqualified samples
and 10 qualified samples.
3.2. Image Preprocessing and Model Training. We

applied the Python library to convert 2D images to three-
channel images and then resized the images to the same size of
224 × 224 or 299 × 299 px based on the different neural
networks. All pixel values were divided by the maximum pixel
value to values between 0 and 1. The algorithm is shown in eq
13.

x
x X

X X
min

max min
=

(13)

In this paper, x′ is the obtained value, x is the pixel value,
Xmax is 255, and Xmin is 0. Then, we used three methods
(random cropping, horizontal flipping, and random rotation)
to expand the training dataset. The number of training dataset
images increased from 130 to 520. Table 2 lists the final
number of images in two different categories used for the
training and test datasets.

In this study, the Python 3.8 programming language and
TensorFlow 2.4.1 framework were utilized as the backend
tools. All experiments were performed on a computer equipped
with an Intel Core I5-10400F processor operating at 2.90 GHz,
16 GB RAM, and an NVIDIA GeForce GTX 1660 graphics
card.
The optimal hyperparameters of each model were finally

determined through a series of experiments, as shown in Table
3. Serious overfitting occurred when training the customized
CNNs, so early stopping was applied when the model
performance was best with epochs = 20 to improve the
generalization performance of the model.38 The vanishing

Figure 4. MGST deposit plate images (a−c); the TST deposit plate images (A−C).

Table 2. Final Image Numbers of the Training and Test
Datasets

sets qualified unqualified total

train 116 404 520
test 10 23 33
total 126 427 553
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gradient occurred in ResNet50-V2 networks using only tanh as
the activation function, which led to the failure to improve the
accuracy of the model. Therefore, when designing the FC
layers of the ResNet50-V2 model, a combination of the tanh
activation function followed by the reLu activation function
was added to solve the vanishing gradient while ensuring that
all features were learned.
3.3. Performance of the Detection Model. Figure 5

shows the confusion matrix for the model classification result.
Figure 5a−d represents Inception-ResNet-V2, Inception-V3,
ResNet50-V2, and customized CNNs. The rows of the
matrixes represent the predicted classes of deposit plate
images, and the columns of the matrixes represent the true

categories of deposit plate images. The on-diagonal values in
Figure 5a−d indicate the number of correctly classified images,
and the off-diagonal values present the number of misclassified
images. For example, in Figure 5a, 23 deposit plate images of
the unqualified category and eight qualified images were
correctly classified, and two images at qualified classes were
incorrectly identified. Due to the obvious distinction of the
deposition, all four models performed well on the unqualified
classes. However, different situations occurred in the detection
of 10 qualified deposit plate images because of the small
number of qualified training images. The Inception-ResNet-V2
and Inception-V3 models were able to classify eight images
correctly, while ResNet50-V2 and customized CNNs were
correct in classifying six and four samples. Therefore,
increasing the number of training images to enhance the
accuracy of the network will be part of our future work, such as
the development of deposit plate image databases.
Based on the results of the confusion matrixes and the

previously developed evaluation metrics, eqs 8−12, Table 4
presents the performance of each model. The classification
accuracy of the Inception-ResNet-V2 and Inception-V3 models
on the test set was 94%, compared with 88% for ResNet50-V2
and 82% for customized CNNs. Using small convolution

Table 3. Hyperparameters of Different Models

models LR batch_size epochs activation optimizer

Inception-ResNet-
V2

0.001 16 81 Tanh SGD

Inception-V3 0.001 16 75 Tanh SGD
ResNet50-V2 0.001 10 79 Tanh,

ReLu
SGD

customized CNN 0.001 8 20 ReLu SGD

Figure 5. Confusion matrixes of the deposit plate with four methods. The ground truths of the gasoline labels are listed on the vertical axis, while
estimations are listed on the horizontal axis. (a) Inception-ResNet-V2, (b) Inception-V3, (c) ResNet50-V2, and (d) customized CNNs.
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kernels instead of large ones, Inception-ResNet-V2 and
Inception-V3 achieved better results, and Inception-V3 cost
less time than Inception-ResNet-V2 because of the simpler
structure. However, time cost was not the most important
evaluation metric, and it should be further validated which
model performed better.
The loss values and accuracy of the four models were

visualized in the form of line graphs during the training and
validation process, as shown in Figure 6. From Figure 6b,B,c,C,
both the Inception-V3 and ResNet50-V2 models had a larger
change in the loss curve, showing less stability, and the two
models performed better on the training set than on the
validation set with slight overfitting. Figure 6d,D shows that
the customized CNNs were not suitable for small dataset
classification. Although the early stopping technique was used,
the model still exhibited severe overfitting and poor robustness.
As the number of epochs increased, the loss values of
Inception-ResNet-V2 steadily declined, and the accuracy
gradually increased. The validation accuracy was higher than
that of the training set, as illustrated in Figure 6a,A. Although
the training time of the Inception-ResNet-V2 model took
longer, it had better robustness and generalization ability that
was more suitable to deploy as the final gasoline detergency
detection model.
The reason for false positive detection errors was also worth

noting, and the comparison of the two methods on the 23rd
test gasoline sample results is shown in Figure 7a,b, in which
the MGST results were misjudged. The weight gain of the 23rd
TST deposit plate was 1.5 mg so that the 23rd MGST deposit
plate image obtained a qualified label. However, after
comparing with other photos of the deposit plates labeled
qualified and unqualified, the amount of deposition of the 23rd
MGST result was indeed greater, which might be due to some
mistakes in the process of producing the deposit plates.
Therefore, parallel experiments should be carried out
immediately if the gasoline detergency was judged to be
unqualified in the actual detection process using the MGST
method. If the two test results were unqualified, it was
necessary to conduct further TST for final detection. Figure 7c
shows a previous deposit plate with a weight gain of 1.9 mg,
which was very close to the limit value. Considering only the
morphological characteristics of the deposition, it is difficult to
determine the gasoline detergency when the weight gain of the
deposit plate is close to the limit value. This problem gradually
decreases with the increase in training data, but it is difficult to
fundamentally solve it.
3.4. Model Interpretation. Deep learning models are

widely regarded as black-box models due to their ability to
extract features and make predictions in a manner that is
difficult for humans to comprehend.39 Interpreting the features

on which the model relies to determine gasoline detergency in
a reliable manner is of paramount importance.
In this study, an activation feature map and heatmap of

activation values were applied to analyze the model detection
process. The first channel of each convolutional layer was
chosen to visualize, resulting in a total of 780 feature maps. As
shown in Figure 8a, these feature maps show the hierarchical
abstraction of input deposit plate image by the model at
different layers and illustrate the model performance of feature
extraction. From the illustrations, it is evident that the
convolutional feature maps extracted by the model exhibit a
progressively abstract and sophisticated trend as the network
depth increases. In the shallow layers of the feature maps, the
model could proficiently extract low-level characteristics such
as deposit edges, colors, and textures, accomplishing an initial
level of image processing. As the depth of the model increases,
the model learns higher-level feature representations in the
deeper layers, and the feature maps progressively exhibit more
abstract features. This hierarchical feature representation
enables the model to better comprehend the intrinsic structure
of the input deposit plate images, facilitating accurate detection
and analysis of gasoline detergency.
In Figure 8b, the average activation value for each layer in

the model is depicted as a heatmap, with each small grid
serving as a representation. Notably, the last four small grids
have been left empty and are filled with zeros for illustrative
purposes. The heatmap reflects the significance of deposit
features extracted by the model at different levels, where higher
average activation values correspond to features of greater
importance, whereas lower values indicate features that the
model pays less attention to or is less sensitive to. As depicted
in the figure, in the initial shallow layer, the model primarily
learns low-level features, such as sediment edges, color, and
texture, resulting in relatively higher average activation values.
However, as the model depth increases, there is a subsequent
decrease in the average activation value, indicating the gradual
abstraction of deposit characteristics. Notably, the average
activation value of the final model layer experiences an
increase, implying a heightened focus on the final abstraction.
This observation suggests that the model makes decisions in
gasoline detergency detection based on both graphical features
of the deposit and the deep-level features extracted by the
model.
The activation feature maps provide insights into the process

of feature extraction for deposit identification by the model.
On the other hand, the class activation heatmap aids in
identifying the precise deposit plate image features that drive
the model’s detection results.40 This combined analysis
facilitates a comprehensive understanding of the model’s
decision-making process and the crucial features guiding its
performance in gasoline detergency detection. The regions

Table 4. Performance of Four Models

models sorts precision recall F1_score accuracy times

Inception-ResNet-V2 unqualified 0.92 1.00 0.96 0.94 33.38 min
qualified 1.00 0.80 0.89

Inception-V3 unqualified 0.92 1.00 0.96 0.94 11.64 min
qualified 1.00 0.80 0.89

ResNet50-V2 unqualified 0.85 1.00 0.92 0.88 22.11 min
qualified 1.00 0.60 0.75

customized CNNs unqualified 0.79 1.00 0.88 0.82 2.23 min
qualified 1.00 0.40 0.57
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Figure 6. Both the training and validation loss values and accuracy of the four models. The horizontal coordinate indicates the number of epochs.
(a, A) Inception-ResNet-V2, (b, B) Inception-V3, (c, C) ResNet50-V2, and (d, D) customized CNNs.
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with colors leaning toward red in the heatmap represent the
deposit features on which the model relies to judge the
detergency of the gasoline sample. More red color indicates
that the model places greater emphasis on these features,
which have a stronger impact on determining whether the
gasoline sample is qualified. As shown in Figure 9, the red-
colored regions are mostly concentrated around the area of
deposit, covering aspects such as the quantity, contours, and
center of the deposit, et al. This closely resembles the way
human experts analyze the morphological features of deposits
manually. Consequently, it is evident that the model makes
detergency judgments based on specific morphological

characteristics of the deposit. This similarity to manual analysis
further reinforces the model’s ability to accurately assess
gasoline detergency by focusing on the precise shape-related
features of the deposit.

4. CONCLUSIONS AND FUTURE WORK

In this paper, an improved method for the rapid detection of
gasoline detergency was proposed, which used MGST to
produce deposit plates and applied a deep learning model to
determine. The features of the deposit plate images were
extracted by the CNNs to evaluate the gasoline detergency in

Figure 7. (a) 23rd test result of MGST; (b) 23rd test result of TST; (c) previous deposit plate image with a weight gain of 1.9 mg.

Figure 8. Activation feature maps (a) and the heatmap of activation values (b) for all layers.

Figure 9. Class activation heatmap of typical deposit plates, including the training set data (a−c), along with the testing set data (d−f).

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c05350
ACS Omega 2023, 8, 34134−34145

34143

https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c05350?fig=fig9&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c05350?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the field. The main conclusions drawn from the study are as
follows:
Compared with traditional methods, the MGST method

achieved good performance in reducing the test time and fuel
consumption. It took 77.8% less time to generate a single
sample and 92.6% less time to generate multiple samples
simultaneously. In addition, the MGST method reduced 87.5
and 80% of cost and gasoline consumption. The detection
efficiency was greatly improved, and the exhaust emissions
were also significantly reduced in the detection process.
The gasoline detergency detection system was established

based on the deep learning. Four different models, including
three TF models (Inception-ResNet-V2, Inception-V3, Re-
sNet50-V2) and a customized CNN, were compared in this
paper. Their accuracies were 94, 94, 88, and 82%. Compared to
the Inception-V3 model, the Inception-ResNet-V2 model had
better robustness and generalization ability to perform more
effectively in detection. After the model interpretation, it is
found that the model can detect the gasoline detergency by
recognizing the deposit characteristics of the deposition plate.
The regulatory efficiency of the regulatory authorities was
greatly improved when the system was deployed on personal
computers.
The detection scheme of the new method based on practical

experience is as follows:
1) The environmental regulatory staff first takes a 1-L
sample of gasoline when arriving at the gas station and
then takes 60 mL from the sample for the MGST.

2) This batch of gasoline is deemed to be qualified if the
test result of MGST is satisfactory. The staff should
immediately take a 350 L gasoline sample from the same
gasoline gun if the result is unsatisfactory, and another
60 mL gasoline will be taken for the second MGST.

3) The results of the first and second MGST are compared.
If the results are different, it means that the detergency
gasoline provided by the gas station is doubtful. The
samples are taken back to the laboratory and the small
and large samples of gasoline are subjected to the TST
separately.

4) The laboratory test report is produced based on the TST
results.

Good results were achieved on the existing dataset, but the
accuracy can still be improved when the deposit plate weight
gain is close to the limited value with the update of vehicle
gasoline. It could be widely applied for improving the quality of
gasoline detergency due to the advantages of low cost, reduced
time consumption, high accuracy, and convenient operation.
The current detection efficiency of the model for gasoline

detergency is still insufficient. In the future, the establishment
of a database of deposit plate images is proposed to
continuously update the version of the detection network.
This effort is crucial in ensuring the model’s effectiveness in
gasoline detergency testing and its potential for broad adoption
in practical applications.
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