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the worsening of knee flexion ROM during the TKA course using a machine learning algorithm and to
examine its accuracy and predictive variables.
Methods: Altogether, 344 patients (508 knees) who underwent TKA were enrolled. Knee flexion ROM
worsening was defined as ROM decrease of >10° between 1 month and 6 months post-TKA. A predictive
model for worsening was investigated using 31 variables obtained retrospectively. 5 data sets were
created using stratified 5-fold cross-validation. Total data (n = 508) were randomly divided into training
(n = 407) and test (n = 101) data. On each data set, 5 machine learning algorithms (logistic regression,
support vector machine, multilayer perceptron, decision tree, and random forest) were applied; the
optimal algorithm was decided. Then, variables extracted using recursive feature elimination were
combined; by combination, random forest models were created and compared. The accuracy rate and
area under the curve were calculated. Finally, the importance of variables was calculated for the most
accurate model.
Results: The knees were classified into the worsening (n = 124) and nonworsening (n = 384) groups. The
random forest model with 3 variables had the highest accuracy rate, 0.86 (area under the curve, 0.72).
These variables (importance) were joint-line change (1.000), postoperative femoral-tibial angle (0.887),
and hemoglobin Alc (0.468).
Conclusions: The random forest model with the above variables is useful for predicting the worsening of
knee flexion ROM during the course post-TKA.
© 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee
Surgeons. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/
4.0/).

Introduction

ability and leaves the patient’s preoperative expectations unmet
post-TKA [1-3]. Therefore, good ROM is an important goal to ach-

Total knee arthroplasty (TKA) is an effective surgical procedure
for pain relief and functional restoration in patients with advanced
knee osteoarthritis and rheumatoid arthritis. After TKA, it is
important to achieve and maintain a functional range of motion
(ROM). Poor flexion ROM reduces patient’s activities of daily living
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ieve and maintain.

Postoperative knee flexion ROM is affected by preoperative,
intraoperative, and postoperative factors such as age, sex, obesity,
diabetes, preoperative ROM, and joint-line changes [4—9]. There
are cases where the flexion ROM, once acquired in the early post-
operative period, gradually worsens during the course post-TKA
[9,10]. Predicting this worsening of flexion ROM may play a vital
role in postoperative follow-up and rehabilitation and help
improve patients’ activities of daily living ability and meet their
expectations. Therefore, predicting the worsening of flexion ROM
during the course post-TKA is clinically meaningful.

2352-3441/© 2022 The Authors. Published by Elsevier Inc. on behalf of The American Association of Hip and Knee Surgeons. This is an open access article under the CC BY
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Recently, the number of reports using machine learning (ML) for
accurate predictions has increased in the field of total joint
arthroplasty [11—15]. ML is a theoretical system used to create
models for predicting unknown data from past data. ML allows us
to select an optimal algorithm from various predictive methods and
to create the best predictive model. Moreover, ML algorithms can
extract variables (input features) that contribute to the prediction
of the target variable (herein, the worsening of flexion ROM). ML
differs from conventional statistical methods in that the algorithms
are designed to improve the predictive accuracy of future data from
past data. Therefore, compared with conventional methods, it can
be expected to construct a predictive model that is more robust
with respect to unknown data.

This retrospective study aimed to investigate the algorithm with
the highest predictive performance for the worsening of knee
flexion ROM during the course post-TKA, to create a predictive
model with the highest predictive performance, to verify its pre-
dictive accuracy, and to investigate which variables are necessary
for the accurate prediction.

Material and methods
Ethical information

This retrospective study was approved by the institutional re-
view board and conducted according to the principles of the
Declaration of Helsinki. Informed consent was obtained from all
patients for the use of their information.

Study design and patients

This retrospective study included 401 consecutive patients (578
knees), in whom primary TKA was performed at our center, from
April 2017 to July 2021. We excluded 23 patients (30 knees) who
could not be followed up until 6 months post-TKA from the analyses.

Procedure and rehabilitation protocols

All TKAs were performed by the same single surgeon. The sur-
gery was performed using a standard medial parapatellar approach
or lateral parapatellar approach. Six patients (7 knees) who had a
lateral parapatellar approach were excluded. Different prostheses
were utilized: Logic knee system (234 knees; Exactech Inc., Gain-
esville, FL), Persona knee system (221 knees; Zimmer Biomet Inc.,
Warsaw, IN), or FINE knee system (53 knees; Nakashima Medical
Inc., Okayama, Japan). The FINE knee system was used with an
antimicrobial coating for patients at relatively high risk of infection.
Different implant surfaces were used, namely cruciate-retaining,
posterior-stabilizing, cruciate-substituting, bicruciate-retaining, or
medial-congruent implants. Twenty-eight patients (33 knees) with
a non—cruciate-retaining design were excluded. All patients un-
derwent the same postoperative rehabilitation program, which was
started with standard postoperative ROM exercises, as tolerated, at
1 day postoperatively.

Radiological measurements

The anteroposterior and lateral radiographs of the knees were
obtained preoperatively and immediately after surgery in all pa-
tients. Four component angles (a, B, v, and 6) were measured on the
postoperative radiographs [16,17]. The a-angle was defined as the
internal angle between the parallel line with the femoral condyles
and the femoral shaft axis in the anteroposterior radiographs. The -
angle was defined as the internal angle between the parallel line to
the plateau of the metal tibial component and the tibial shaft axis in

the anteroposterior radiographs. The y-angle was defined as the
angle between the line perpendicular line to the distal metal-cement
interface of the femoral component and the femoral shaft axis in the
lateral radiographs. The 6-angle was defined as the angle between
the parallel line to the plateau of the metal tibial component and the
tibial shaft axis in the lateral radiographs. We measured the height of
the joint line using the method described by Figgie et al. [ 18], which
is the distance from the top of the tibial tuberosity to the tibial
plateau on the preoperative lateral radiographs or from the top of
the tibial tuberosity to the most distal femoral component on the
postoperative lateral radiographs. The joint-line change was calcu-
lated as the difference between the preopertaive and postoperative
height of the joint line. Moreover, at discharge, coronal long-leg ra-
diographs were taken, for which the patient stood with the limb in
neutral rotation, the patella facing forward, and the knee extended.
The femoral-tibial angle (FTA) was measured on long-leg radio-
graphs. In all radiological measurements, the intraclass correlation
coefficients for intrarater reliability were in the range of 0.93-0.99,
and the intraclass correlation coefficients for interrater reliability
were in the range of 0.72-0.92.

Primary outcome and predictive variables

The primary outcome was the changes in knee flexion ROM during
the course post-TKA. Since, according to a previous study, evident
improvement in ROM continues during the first 6 months post-TKA
[19], we checked for the worsening of flexion ROM at this time. The
worsening of flexion ROM was defined as a decrease of >10° in the
flexion ROM from 1 month to 6 months post-TKA; it was recorded as a
binary variable (worsening or nonworsening). A study reported that
the minimum significant difference in knee ROM measurement using
agoniometer is > 10° [20]. Therefore, in this study, the cutoff value for
the worsening of flexion ROM was set at 10°. The knee flexion ROM
was passively measured using a long goniometer at 1 month and 6
months post-TKA. The patients assumed the supine position, and the
flexion ROM was measured with reference to bone landmarks,
including the greater trochanter, lateral epicondyle of the femur, and
lateral malleolus. Selection bias would have occurred if we excluded
patients who, within 6 months post-TKA, underwent surgical
manipulation under anesthesia. Therefore, for such patients, flexion
ROM data were recorded immediately before manipulation under
anesthesia as data at 6 months post-TKA.

We retrospectively collected 31 variables, which were divided
into the following 3 categories: (1) preoperative, (2) intraoperative,
and (3) postoperative variables. The preoperative variables
included patient’s age, sex, body mass index, operated side, primary
disease (osteoarthritis or rheumatoid arthritis), history of ipsilat-
eral knee procedure, hemoglobin Alc (HbA1c), FTA, active/passive
knee flexion ROM, active/passive knee extension ROM, comfort-
able/maximum gait speed, and Japanese Orthopedic Association
score. The Japanese Orthopedic Association score, an orthopedic
method for assessing physical function, consists of 100 points, with
higher scores indicating better function [21-23].

The intraoperative variables (obtained during or immediately
post-TKA) included prosthetic component (Logic, Persona, or FINE),
a-angle, B-angle, y-angle, 6-angle, and joint-line changes.

The postoperative variables were the FTA at discharge, active/
passive knee flexion ROM, active/passive knee extension ROM,
comfortable/maximum gait speed, and Japanese Orthopedic Asso-
ciation score at 1 month post-TKA.

Statistical analyses

In total, 94 of 16,256 records (0.6%) were incomplete. Incom-
plete data were fully imputed using multiple imputation by chained
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equation [24]. First, we investigated an algorithm that could accu-
rately predict the worsening of knee flexion ROM. The procedure
for this investigation is outlined in Figure 1. Cross-validation en-
ables us to validate how the model will perform on an unknown
data set (test data set, ie, not used for training) and, so, it is used for
a more accurate evaluation of model prediction performance. We
created 5 data sets using stratified 5-fold cross-validation (Fig. 2). In
the stratified 5-fold cross-validation, all data were divided equally
and randomly into 5 folds, and each fold was further divided into 5
groups. One test data was selected for each fold, and the remaining
4 were used as training data. The test and training data within the 5
folds were added together to create 1 data set. Each group was used
once as the test data and 4 times as the training data to create 5 data
sets. For each data set, 5 variables, considered useful for predicting
the worsening of flexion ROM, were extracted from 31 variables
using recursive feature elimination with the random forest algo-
rithm. Then, we attempted to create a model that could predict the

worsening of flexion ROM. We applied the following 5 ML algo-
rithms to each data set: (1) logistic regression, (2) support vector
machine, (3) multilayer perceptron, (4) decision tree, and (5)
random forest (Fig. 3). Logistic Regression is an algorithm for
classifying data by linear separation. Support vector machine is an
algorithm for optimal classification based on the distance between
the boundary surface and the respective data. Multilayer Percep-
tron is an algorithm for creating complex and flexible prediction
models by using hidden layers and nonlinear activation functions.
Decision tree is an algorithm for classifying data by learning simple
decision rules inferred from the data features. Random forest is an
algorithm for using bootstrap aggregating to create multiple deci-
sion trees. Next, we performed hyperparameter tuning using the
grid search method and created predictive models for each dataset.
Grid search is an exhaustive algorithm to find the best combination
of hyperparameters (Fig. 4). We divided the domain of the hyper-
parameters into a grid. We tried every combination of values of this

TKA dataset (n=508 knees) with 31 predictive variables

Stratified fivefold cross-validation

Total data were divided into the training data and test data
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Figure 1. Flow of the first analysis.
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Figure 2. Summary chart of stratified 5-fold cross-validation.

grid and compared the values of the area under the curve (AUC)
calculated in these combinations. The point of the grid with the
maximum AUC was assumed the best combination of hyper-
parameters. Finally, to assess the performance of predictive models,
the average accuracy rate and AUC were calculated for each algo-
rithm. The AUCs of 0.6-0.7, 0.71-0.8, and >0.8 were interpreted as
weak, satisfactory, and strong predictive performance, respectively
[25]. The aforementioned method was effective for creating a
predictive model that was robust to outliers and reduced the risk of
overfitting.

Second, we investigated the optimal combination of variables to
create the best predictive model. For the same 5 data sets used
earlier, we set 4 conditions for variable extraction by recursive
feature elimination, such as conditions with the superior 5, 4, 3, or 2
variables. For each condition, predictive models were created using
the random forest, which had exhibited the highest predictive ac-
curacy in the first investigation. We performed hyperparameter
tuning using the grid search method. The average accuracy rate and
AUC for each condition were calculated to assess the performance
of predictive models.

Third, we calculated the importance of variables based on the
results of the first and second investigations. The importance of
each variable indicated the degree of influence in predicting the
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worsening of flexion ROM. From the same 5 data sets used earlier, 3
superior variables, that is, the condition of variables with the
highest predictive accuracy in the second investigation, were
extracted using recursive feature elimination. Then, the importance
of these variables for 5 data sets was calculated using a random
forest algorithm. The average importance of variables was calcu-
lated for each variable. It was standardized to a minimum value of
0 and a maximum value of 1 and then averaged for all data sets. The
codes to perform analysis were written using Python [26]. We have
publicly released the code for reproducibility (https://github.com/
yoshitomosaiki/flexion_change_prediction).

Results

Summary of predictive variables for the worsening and
nonworsening groups

In total, 344 patients (508 knees) were analyzed. Table 1 shows a
summary of the 31 predictive variables for the worsening (n = 124)
and nonworsening (n = 384) groups. The knee flexion ROM at 6
months post-TKA was 111.3 + 12.2° in the worsening group and
123.2 + 9.2° in the non-worsening group (P < .001).
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Figure 3. 5 machine learning algorithms.
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Figure 4. Summary chart of hyperparameter tuning using the grid search.

Algorithm selection based on the predictive accuracy

Table 2 shows the average accuracy rate and AUC for the 5 ML
models. Of the 5 models, the random forest had the highest accu-
racy rate (0.84) and AUC (0.71).

Optimal predictive variables and their importance

Table 3 shows the average accuracy rate and AUC for 5 combi-
nations of variables, such as the superior 5, 4, 3, or 2 variables. The
random forest model with 3 variables had the highest accuracy rate
(0.86) and AUC (0.72). Table 4 shows the importance of variables in

Table 2
Algorithm selection based on the predictive accuracy.
Algorithms Accuracy rate AUC

Logistic regression 0.81 (0.77-0.86) 0.63 (0.49-0.76)
Support vector machine 0.81 (0.76-0.86) 0.63 (0.50-0.77)
Multilayer perceptron 0.80 (0.77-0.83) 0.61 (0.50-0.72)
Decision tree 0.82 (0.78-0.86) 0.69 (0.56-0.81)
Random forest 0.84 (0.81-0.88) 0.71 (0.58-0.83)

Values are presented as mean (95% confidence interval).

the best predictive model. The importance of the 3 variables was as
follows: joint-line change (1.000), postoperative FTA (0.887), and
HbA1c (0.468). Figure 5 shows the distribution of these variables.

Discussion

This study demonstrates that the random forest model with 3
variables, including joint-line change, postoperative FTA, and
HbA1c, had a satisfactory predictive performance and was suitable
for predicting the worsening of knee flexion ROM during the course
post-TKA.

The main difference between ML and traditional statistical
methods is its purpose. ML models estimate model parameters
from data sets and are created to improve the predictive accuracy of
future data as much as possible, whereas statistical models deter-
mine associations between variables in a data set. Therefore, in
multiple regression analysis, weights that are overfitted to the data
set are learned when trying to predict future data using a

Table 1
Summary of 31 predictive variables (worsening vs nonworsening).
Variables Worsening Nonworsening P value
n=124 n =384

Preoperative variables
Age (y) 74.1 (7.8) 74.1 (6.6) .980
Sex (female, %) 71.0, 88 79.7, 306 .048
Body mass index (kg/m?) 25.8 (3.7) 25.6 (4.2) .696
Operated side (right, %) 53.2, 66 51.0, 196 .681
Primary disease (osteoarthritis, %) 93.5,116 91.1, 350 458
Prior ipsilateral knee procedure (%) 4.0, 5 21,8 322
Hemoglobin Alc (%) 6.1 (0.7) 5.9(0.5) .001
Femoral-tibial angle (°) 185.5 (5.7) 184.6 (7.2) 199
Active flexion ROM (°) 119.0 (17.9) 121.3 (16.1) 180
Passive flexion ROM (°) 124.2 (17.7) 126.5 (16.0) 177
Active extension ROM (°) -10.2 (8.5) -9.7 (74) 530
Passive extension ROM (°) -8.4(8.1) -8.3(7.3) .891
Comfortable gait speed (m/sec) 0.85 (0.28) 0.86 (0.30) 547
Maximum gait speed (m/sec) 1.07 (0.39) 1.07 (0.38) 977
JOA score (points) 57.6 (13.6) 60.1 (11.6) .047

Intraoperative variables
Prosthetic component (Logic, %) 42.7,53 47.1, 181 409
Prosthetic component (Persona, %) 49.2, 61 41.7, 160 146
Prosthetic component (FINE, %) 8.1,10 11.2,43 399
a-angle (°) 96.8 (2.4) 96.5 (5.0) .554
B-angle (°) 89.7 (1.2) 89 3(44) 265
y-angle (°) 3.7 (2.2) 8 (2.0) 702
0-angle (°) 86.5 (2.0) 86 8 (1.8) 136
Joint-line change (mm) 3.0(3.1) 1.5(22) <.001

Postoperative variables
Femoral-tibial angle (°) 174.0 (2.1) 175.1 (1.8) <.001
Active flexion ROM (°) 117.6 (10.7) 117.3 (10.0) .763
Passive flexion ROM (°) 124.2 (104) 123.1 (9.5) 177
Active extension ROM (°) -7.1(6.4) -5.7(5.1) .010
Passive extension ROM (°) -2.5(3.3) -1.9(3.2) .107
Comfortable gait speed (m/sec) 0.81 (0.22) 0.82 (0.23) 851
Maximum gait speed (m/sec) 1.00 (0.28) 0.99 (0.30) 532
JOA score (points) 71.3(10.2) 73.4 (10.0) .042

JOA, Japanese Orthopedic Association.
Values are presented as mean (standard deviation) or percentage, number.
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Table 3
Optimal predictive variables.

Combinations of variables Accuracy rate AUC

0.84 (0.81-0.88) 0.71 (0.58-0.83)
0.85 (0.81-0.88) 0.72 (0.59-0.84)
0.86 (0.81-0.89) 0.72 (0.59-0.85)
0.84 (0.80-0.87) 0.70 (0.58-0.82)

5 variables
Four variables
Three variables
Two variables

Values are presented as mean (95% confidence interval).

regression function that has overfitting weight parameters, and the
estimation accuracy is often reduced. The random forest algorithm
can create highly representative predictive models by performing
nonlinear separation, and use bootstrap aggregating to create
multiple decision trees, which are weak classifiers constructed by a
combination of different features [27]. At the time of prediction, the
output results of multiple weak classifiers with different properties
are integrated. Moreover, in decision trees and random forests,
decision rules suitable for classification are selected based on the
results of statistical analysis, and features that are not suitable for
classification are removed internally. The other algorithms do not
have an effective feature selection function, which may have
reduced their accuracy. We consider that these representativeness,
bootstrap aggregating and feature selection were the reason for the
higher prediction accuracy in the random forest algorithm than in
the other 4 algorithms. Therefore, high predictive performance was
obtained because a solution with high certainty can be determined.
Additionally, in ML, it is important to verify properly the perfor-
mance of the predictive model for unknown data. Therefore,
stratified k-fold cross-validation was used. In this method, different
combinations of training data and test data are created, and a
model is created and averaged for each combination; thus, the
performance of the predictive model can be appropriately verified.
Hence, it is considered that the construction of the predictive
model of this study and its accuracy verification were performed
appropriately.

In the ML model, variables are selected to maximize the pre-
diction accuracy. The problem is that it is difficult to interpret the
relationship between the target and predictor variables and the
reasons for the prediction. However, to increase the transparency
of the predictive model, it is necessary to review the data and
discuss the reasons for the predictions. In this study, the predictive
variables in the best predictive model were joint-line change,
postoperative FTA, and HbA1c. Previous studies have reported that
excessive joint-line elevation of more than 4-5 mm may decrease
flexion ROM [18,28,29]. The present study also showed a signifi-
cant increase in the joint line in the worsening group. Further-
more, Figure 2a shows a low worsening probability with an
increase of 0-2 mm and a high worsening probability with an
increase of >4 mm. Since patients with a higher joint line require
more stretching of the knee joint extensor muscles during flexion,
we believe that the ROM once acquired through intensive reha-
bilitation during hospitalization will decrease if the same level of
stretching load is not given after discharge. There are few reports
on postoperative FTA and flexion angle. Figure 2b confirms a high
worsening probability for patients with valgus >173°. Joint laxity
may have an effect, but it is difficult to clarify the relationship
between postoperative FTA and worsening of the flexion angle

Table 4
Importance of variables in the best predictive model.

Variables Importance
Joint-line change 1.000
Femoral-tibial angle (postoperative) 0.887
Hemoglobin Alc 0.468
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Figure 5. Distribution of the variables. (a) Distribution of joint-line change for the 2
groups. (b) Distribution of postoperative femoral-tibial angle for the 2 groups. (c)
Distribution of HbA1c for the 2 groups.

from this study. Previous studies have shown that patients with
diabetes mellitus are likely to decrease the knee flexion ROM post-
TKA [8,9]. Figure 2c shows that the worsening probability of the
flexion angle is particularly high in patients with HbA1c 5.5-6.0 or
>6.5, which suggests that HbA1c contributes to the prediction of
cases with relatively high values. Therefore, we believe that joint-
line change, postoperative FTA, and HbA1lc are valid predictors.
Moreover, these variables have high availability in that they are
often obtained in daily clinical practice. However, some variables
still require investigation, such as component rotational alignment
and psychological factors. Component malrotation reportedly
causes arthrofibrosis and stiffness [30,31]. Furthermore, we could
not evaluate psychological factors. Psychological factors, such as
kinesiophobia and neglect-like symptoms, were reported to affect
flexion ROM post-TKA [32,33]. The use of these variables may
improve the predictive performance in the future.

The 3 variables extracted in this study can be obtained early
post-TKA in daily practice. Therefore, the policy of rehabilitation
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after discharge can be determined according to the predicted
results. Fleischman et al. [34] reported that home exercise
rehabilitation was noninferior to professional supervised reha-
bilitation in flexion ROM at 6 months post-TKA, while recom-
mending supervised rehabilitation for patients with poor
recovery. Our predictive model may act as a reference for
postdischarge rehabilitation strategy. If predicted as the non-
worsening type, home exercise rehabilitation could be initiated
subsequent to hospital discharge, whereas if predicted as the
worsening type postdischarge, supervised rehabilitation could be
provided for 3-6 months post-TKA [19].

One of the strengths of this study is that it may aid in developing
a method for predicting postoperative outcomes using ML.
Recently, ML has been introduced in the medical field, and its
further expansion and development are expected. Second, the re-
sults of this study suggest that the worsening of flexion ROM during
the course post-TKA can be predicted with fewer variables at an
early postoperative stage. Third, although this was a retrospective
study, the number of missing data was small, and bias was reduced
as much as possible using multiple imputations.

The study also has a few limitations. First, the predictive per-
formance may be improved as discussed previously. Unexamined
variables may improve predictive performance and should be
further investigated. Second, the study could not be externally
validated. Although we have decreased the analysis error using
stratified 5-fold cross-validation, data were obtained from a single
center. In the future, based on the attached code, the performance
of our predictive model should be verified at multiple centers.

Conclusions

We created a model that predicted the worsening of knee
flexion ROM during the course post-TKA using an ML algorithm and
examined its accuracy and predictive variables. We found that the
random forest algorithm with 3 variables, including joint-line
change, postoperative FTA, and HbAlc produced the prediction
model with satisfactory accuracy for flexion ROM deterioration
from 1 to 6 months after TKA. This predictive model may be highly
useful and available for postdischarge rehabilitation strategies after
TKA because on these 3 variables can be obtained early post-TKA in
daily practice.
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