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Abstract

We propose a method for learning multi-agent policies to compete against multiple oppo-

nents. The method consists of recurrent neural network-based actor-critic networks and

deterministic policy gradients that promote cooperation between agents by communica-

tion. The learning process does not require access to opponents’ parameters or observa-

tions because the agents are trained separately from the opponents. The actor networks

enable the agents to communicate using forward and backward paths while the critic net-

work helps to train the actors by delivering them gradient signals based on their contribu-

tion to the global reward. Moreover, to address nonstationarity due to the evolving of

other agents, we propose approximate model learning using auxiliary prediction networks

for modeling the state transitions, reward function, and opponent behavior. In the test

phase, we use competitive multi-agent environments to demonstrate by comparison the

usefulness and superiority of the proposed method in terms of learning efficiency and

goal achievements. The comparison results show that the proposed method outperforms

the alternatives.

Introduction

Recently, multi-agent reinforcement learning has garnered attention by addressing many

challenges, including autonomous vehicles [1], network packet delivery [2], distributed

logistics [3], multiple robot control [4], and multiplayer games [5, 6]. Due to the recent

progress in deep reinforcement learning that allows the study of many agents in various

environments, multi-agent reinforcement learning has thrived. However, most of the recent

work considers fully cooperative tasks and communication within agents [7, 8], yet multi-

agent competition is one of the crucial domains for multi-agent reinforcement learning.

This task aims to coevolve two or more agents which interact with each other in the same

environment. Competitive multi-agent reinforcement learning was behind the recent suc-

cess of Go without human knowledge [9]. Furthermore, the competitive multi-agent envi-

ronment provides agents with a customized curriculum to facilitate efficient learning and

avoid local optimum [10].
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In multi-agent settings, including competitive tasks, the problem of reinforcement learning

is notoriously complex because two or more agents share an environment. When agents are

trained by simple single-agent learning methods, they violate the basic assumption of rein-

forcement learning that the environment should be stationary and Markovian. For example,

one agent’s state depends not only on its own behavior but also on the behaviors of other

agents, such as teammates or opponents [11, 12]. In such cases, current state-of-the-art learn-

ing methods often fail because the other agent is simply treated as a static part of the environ-

ment without considering its learning process. The centralized training of a decentralized

policies paradigm can alleviate the challenge of non-Markovian and nonstationary environ-

ments during learning [12] and has recently attracted attention in the multi-agent reinforce-

ment learning community [12, 13, 14, 15].

Although the advent of centralized training of decentralized policies can moderate the non-

stationary environment problem, learning algorithms still suffer from instability because of the

inherent nonstationarity. In particular, it is more severe in imperfect information games

whose agents partially observe different parts of states than in perfect information games [16].

Therefore, some research has been conducted to address this problem using opponent model-

ing [11, 17]. Opponent modeling is based on reasoning about other agents’ intentions and

being able to predict their behavior. It is inspired by the human mental process of simulating

others’ behavior by interacting with them, which allows humans to understand others’ inten-

tions and act accordingly in social settings. It is also associated with model-based reinforce-

ment learning because it models the policies of opponent agents while considering them as

part of the environment. The previous studies demonstrate that opponent modeling leads to

better performance than pure model-free reinforcement learning algorithms.

Combined with the opponent modeling, model-free reinforcement learning has shown

promising performance for competitive tasks. However, most of the previous studies have

relied on fully competitive one-on-one competition tasks [10, 18, 19, 20]. In this study, we

focus on many against many competition tasks that contain both cooperation tasks within a

team and competitions between opponents. In particular, we consider environments in which

agents only observe their team rewards being shared equally by each agent. To handle this

problem, algorithms should promote learning through competition with opponents as well as

cooperation by communication with teammates. Moreover, multi-agent credit assignment

should be considered in estimating the contribution of each agent.

In this study, we propose an actor-critic method for learning policies in a competitive

multi-agent environment based on the framework of centralized training and decentralized

policies. To learn multiple policies capable of communication, we propose using recurrent

neural network-based actor-critic networks with deterministic policy gradients. Because the

proposed method allows for the communication and centralized training of the decentralized

policies by the gradient flows in recurrent actor-critic networks, it can avoid violating the sta-

tionary and Markovian assumptions. Moreover, to enhance the stability of the learning pro-

cess, we propose approximate model learning for perceiving environment dynamics and

opponent behaviors. By using the auxiliary prediction network, approximate model learning

can be readily adapted to the existing model-free methods. Consequently, the agents can be

well trained under nonstationary environments and partial observability.

The main contributions of this study can be summarized as follows:

1. We propose a competitive training framework using recurrent layers to handle cooperative

multi-agent tasks without access to opponents’ parameters. With deterministic policy gradi-

ents, agents learn differentiable communication protocols for coordinating with others. In
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addition, the recurrent critic network helps actors train based on the global reward for each

team while addressing the multi-agent credit assignment.

2. We propose approximate model learning using auxiliary prediction networks (AMLAPNs)

to address the problem of the partial observability and variance increase of the learned pol-

icy. The AMLAPN can estimate approximate state transitions, the reward function and

opponents’ behavior to improve the robustness of the learning process. Moreover, the auxil-

iary prediction network can straightforwardly be combined with model-free reinforcement

learning methods without any assumptions about the environment.

3. To demonstrate the usefulness and applicability of the proposed method, we use simulated

environments and compare the proposed method with existing methods in terms of learn-

ing efficiency and achieving the goal in the test phase. The results show that the proposed

method is promising.

The remainder of this paper is organized as follows. The next section presents related

works. The third section describes the problem definition and background of the research.

The 4th section presents the details of the proposed method, and the 5th Section presents a sim-

ulation study to examine the performance of the proposed method and compare it with other

methods under various scenarios. Finally, Section 6th contains our concluding remarks.

Related works

In some multi-agent systems, single-agent reinforcement learning methods can be directly

applied with minor modifications [21]. One of the simplest approaches is to independently

train each agent to maximize their individual reward while treating other agents as part of the

environment [6, 22]. However, this approach violates the basic assumption of reinforcement

learning that the environment should be stationary and Markovian. In many cases, the envi-

ronment of any single agent is dynamic and nonstationary due to the changing policies of

other agents [12]. Another basic approach designs multiple agents as a single agent whose

action space is the joint action space of all the agents [23]. While allowing coordinated behav-

iors across agents, this approach is not scalable because the size of the action space increases

exponentially with the number of agents. In this study, we tackled these limitations by central-

izing the training of decentralization policies.

An alternative is to use model-based policy optimization for learning optimal policies

through backpropagation. However, because this approach requires a differentiable model of

the dynamics and assumptions of the interactions between agents, it leads to a high computa-

tional cost for the optimization process [24]. The proposed method is a model-free reinforce-

ment learning method, making its optimization process efficient.

From a game theory perspective, Heinrich & Silver studied fictitious competitive training

for achieving an approximate Nash equilibrium in imperfect information games such as poker

[16]. Recently, Foerster et al. introduced an algorithm of which learning rule includes an addi-

tional term that accounts for the impact of one agent’s policy on the anticipated parameter

update of the other agents, and showed that it can achieve cooperation [17]. However, it only

considers one-to-one competition tasks and the algorithm requires access to the opponent’s

parameters. Lowe et al. proposed the multi-agent deep deterministic policy gradients

(MADDPG) with a central critic that can observe the joint state and actions of all agents to

reduce variance [14]. The MADDPG is demonstrated on various many-to-many competition

tasks. However, it is hard to apply imperfect information games such as the StarCraft because

its learning process must know opponents’ parameters. In this study, we do not assume that

the learning algorithm has access to the opponent’s parameters or observations. Moreover, we
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test fully competitive settings between two adversarial teams in a 2D world with simulated

physics.

Opponent modeling has been extensively studied in imperfect information games. Most

existing approaches fall into the category of explicit modeling, in which a supervised learning

model is built to directly predict the opponent’s action [25, 26], private information [27, 28],

or domain-specific strategies [29, 30]. However, most previous approaches have focused on

developing models with domain-specific probabilistic priors or strategy parametrizations. In

contrast, we propose a general end-to-end framework for opponent modeling using neural

networks the does not require any domain knowledge. Davidson applied neural networks to

opponent modeling that trained a simple artificial neural network as a classifier to predict

opponent actions [31]. Lockett et al. proposed an neural network architecture to identify the

type of opponent. However, instead of learning hidden representations, they use a mixture of

weights over a pre-specified set of opponents [32]. In addition, Lockett et al. used the neural

network as a standalone solver without a reinforcement learning setting, which may be unsuit-

able for more complex problems. He et al. proposed the deep reinforce opponent network

based on deep Q-network to discover strategy patterns of opponents [11]. However, it only

considers one-to-one competition tasks. To address limitations of existing studies, we consider

predicting opponents’ actions for many-to-many competition tasks. In addition, the oppo-

nents’ behavior can be considered as part of environment dynamics in terms of one agent. In

this study, we also consider state transition and reward function as well as the opponent

modeling. Although inferring environment change surrounding one agents is main idea of the

model-based reinforcement learning, we apply this idea to model-free methods without any

assumption of the environment.

Preliminaries

In this study, we consider a competitive multi-agent task with multiple agents that can be

described as a multi-agent extension of the Markov decision processes (MDPs) called “partially

observable Markov games (G).” It is defined by the tuple G = hS,U,P,r,Z,O,n,γi, in which n
agents identified by a2A�{1,. . .,n} choose sequential actions. s2S describes the true state of

the environment. Each agent receives a private observation correlated to s. At each time step,

each agent simultaneously chooses an action ua2U, forming a joint action u2U�Un. Agents

on the same team share the same reward function rðs; uÞ : S� U! R: γ2[0,1] is a discount

factor that determines the extent to which the policy favors immediate rewards over long-term

gains [33, 34].

We consider a partially observable scenario in which each agent draws individual observa-

tions z2Z according to the observation O(s,a):S×A!Z. Each agent has an action-observation

history τa2T�(Z×U)�, on which it bases a stochastic policy πa(ua|τa):T×U![0,1]. The joint

policy π has a joint action-value function: Qpðst;utÞ ¼ Estþ1:1 ;utþ1:1
½Rtjst;ut� where Rt ¼

P1

i¼0
girtþi is the discounted return. The agents aim to learn a policy that maximizes their

expected discounted returns.

Proposed method

We consider the problem of multiple agents acting in competitive environments to maximize

shared rewards. Therefore, learning communication among agents is important for sharing

the information required to handle the tasks. In this section, our goal is to derive an algorithm

that works well under the following four constraints: (1) the learned policies can only use their

own observations during the execution phase, (2) agents can understand the environment

dynamics based on model-free methods, (3) cooperation is possible without sharing
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information with other agents, and (4) the learning algorithm does not require accessing the

opponent’s parameters or observations. The above considerations will lead to a multi-agent

learning algorithm that can be applied to the competitive tasks of two adversarial teams. These

tasks consist of cooperation within the same team and competition between the two different

teams.

Competitive training framework using recurrent layers (CTRL)

To enable competition between agents of the different teams, we propose a competitive train-

ing framework using recurrent layers (CTRL). In this framework, the multi-agent policies of

one team are modeled by the recurrent neural network to communicate with each other. Thus,

each team can be isolated by each recurrent neural network. Adversarial teams compete with

each other in environments while maximizing the rewards shared among teammates. This

enables isolated training of each team because it does not require access to the opponent’s

parameters or observations. These settings are especially useful for learning in imperfect infor-

mation games.

To foster cooperation within agents of the same team, we propose a multi-agent determin-

istic policy gradient with recurrent layers. The proposed method is a combination of central-

ized training and decentralized execution based on differentiable inter-agent learning. It is

thus possible to generate end-to-end learning across agents through a differentiable communi-

cation channel in recurrent layers. These settings can share parameters and deliver gradients

from one agent to the next using the communication channel.

In this study, both the actor and critic networks use long short-term memory (LSTM) lay-

ers. In particular, actors consist of bidirectional LSTM layers to reduce the dependency on

agent sequences. In the execution phase, the actor network receives a sequence composed of

agents’ observations and generates actions for each individual agent. In the training phase,

critic networks estimate the Q-value, which evaluates the current states with a sequence of

observations and the actions of all agents. The input sequence containing the information of

the agents is accumulated sequentially through the recurrent layer. Because recurrent layers

can serve as a communication channel as well as a local memory saver, each individual agent

can maintain its own internal state and share information with its collaborators. Fig 1 shows

the overall architecture of the proposed method.

More precisely, we consider actor networks, i.e., the policy π, parameterized by θ for the

agents of one team. Given N agents, let u = {u1,. . .,uN} be the set of all agent actions and o =

{o1,. . .,oN} the set of all agent observations. We can then write the gradient of the expected

return for agent i, JðyÞ ¼ E½R� as:

ryJðyÞ ¼ Es�r;u�pðsÞ½rylogpyðujoÞQ
pðo; uÞ�; ð1Þ

where Qπ is a centralized action-value function, i.e., critic networks, that takes as input the

actions and the observed state information of all agents. It produces a single Q-value that con-

siders the interactions between all agents and an environment. We can extend the above

framework to work with the following deterministic policy gradients and the Gumbel-Softmax

distribution scheme:

ryJðyÞ ¼ Eu;o�D½rypyðujoÞruQ
pðo; uÞ�; ð2Þ

where D is the replay memory containing the tuples (o,u,r,o0), storing the experiences of all

agents. According to the above formula, the policy is learned via a gradient on the Q-value.

Therefore, if the critic estimates the action-value function satisfactorily, it delivers the appro-

priate gradient signals to each agent although the agents can only observe a shared reward.

Multi-agent reinforcement learning for competitive games

PLOS ONE | https://doi.org/10.1371/journal.pone.0222215 September 11, 2019 5 / 20

https://doi.org/10.1371/journal.pone.0222215


The centralized action-value function, i.e., critic, Qπ is optimized by minimizing the following

temporal-difference loss:

LðycÞ ¼ Eo;u;r;o0½ðQðo; ujycÞ � y
DQNÞ

2
�;

yDQN ¼ r þ gmaxu0 �Qðo
0; u0jy�c Þ; ð3Þ

where �Q is the target Q-value function. y
�

C are the parameters of a target critic network that is

frozen for a number of iterations while updating the online critic network. The proposed

CTRL training algorithm is summarized as follows:
Algorithm 1: CTRL
1.K: number of teams (1,. . .,k,. . .,K)
2.Actor and critic networks are parameterized by yak and yck,
respectively.
3.Initialize replay butter, Dk
4.for episode = 1 to num episodes do
5. Receive initial state o = (o1,o2,. . .,oN)
6. for t = 1 to steps per episode do
7. for k = 1,. . ., K do
8. For each agent i, select the action uki � p

k
i ðoiÞ

9. Execute the action uk ¼ ðuk
1
; uk

2
; . . . ; ukNÞ

10. Observe the reward r and new observations o0 = (o01,o02,. . .,
o0N)
11. Store (o,u,r,o0) in a replay buffer Dk
12. o o0

13. // Update
14. if t % train interval = 0 do
15. Sample a random mini-batch B m×(oj,uj,rj,o0j) from Dk

Fig 1. Overview of the proposed CTRL when two adversarial teams exist. Each team is trained independently.

https://doi.org/10.1371/journal.pone.0222215.g001
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16. Compute target values for each sample using a target
network
17. yj ¼ rj þ g�Qðo0j; ujÞ
18. Update the critic by minimizing the loss:

19. L yck

� �
¼ 1

S

P
jðy

j � Qpkðoj; ðpk
1
ðo1Þ; . . . ;pkNðoNÞÞÞ; yckÞ

2

20. Update the actor using the sampled policy gradient:

21. ryak
J pya
� �

¼ 1

M

XM

j¼1

XN

i¼1

@Qp
k
ðoj ;ðpk

1
ðo1Þ;...;p

k
N ðoN ÞÞÞ

@uki

@pki ðoiÞ
@yak

22. end for
23. end for
24. Update the target network parameters:
25. for k = 1,. . ., K do
26. y

0

ak
 tyak þ ð1 � tÞy

0

ak

27. y
0

ck
 tyck þ ð1 � tÞy

0

ck

28. end for
29. end for

Approximate model learning using auxiliary prediction networks

(AMLAPN)

To deal with the fact that reinforcement learning algorithms are prone to suffer local optima,

we propose AMLAPNs. Learning environment dynamics can be helpful in avoiding this prob-

lem. Especially, in competitive multi-agent tasks, environment dynamics depend on not only

the intrinsic state transition mechanism but also on an opponent’s behavior. To perceive the

dynamics, we consider two auxiliary prediction tasks: Task (1) models environment dynamics

for each team, and Task (2) models environment dynamics for adversary teams. Task (1) con-

sists of two supervised learning problems: predicting the next states and rewards based on the

observed state transitions. These predictive tasks are linked to model-based reinforcement

learning algorithms aiming for the optimal policy by exploiting the dynamics of the environ-

ment (i.e., the state transitions). Task (2) can further be divided into two supervised learning

problems: predicting the opponents’ policies and rewards based on the information observed.

These predictive tasks are an extension of approximate model learning for competitive multi-

agent settings. They can stabilize the learning process in imperfect information games by infer-

ring the opponent’s behavior. Although model-based algorithms have the advantage of learn-

ing a robust policy and sampling efficiency, they are computationally more complex than

model-free methods. Thus, we attempt to embed the advantages of model-based algorithms in

our model-free algorithm. Fig 2 shows actor and critic network architectures combined with

the AMLAPN.

For learning environment dynamics for each team, Task (1), we proposed the auxiliary

next states the prediction networks (f owna ) residing within the actor networks to promote

an understanding of the ways in which agent actions affect the environment. The auxiliary

networks predict the next observations of all agents based on their current observations

and actions. Furthermore, the auxiliary reward prediction networks (f ownc ) belonging to

the critic networks perceive the reward mechanism inherent to the environment associ-

ated with the states and actions of all agents. The auxiliary reward prediction networks

estimate the reward using the current observations and actions of all agents. Therefore,

the actor and critic networks learn the dynamics of the environments more readily than

pure model-free learning algorithms. The auxiliary networks on the actor and critic

Multi-agent reinforcement learning for competitive games
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network can be learned by minimizing the following mean squared losses:

Lstate ¼ Eu;o�D½ðô
0 � o0Þ2�; where ô 0 ¼ f owna ðo; uÞ: ð4Þ

Lrown ¼ Eu;o;r�D½ðr̂ own � rownÞ
2
�; where r̂ own ¼ f

own
c ðo; uÞ: ð5Þ

The predicted observations and rewards are not used as inputs when determining actions.

They are only used for the purpose of the auxiliary prediction of the observations and

rewards which in turn promotes the cognition of complex environment operations.

For task (2), the auxiliary opponents’ actions prediction networks (f adva ) are combined with

the actor networks to promote the inferring of adversarial agents’ actions. The auxiliary net-

works predict the actions of all opponents based on their observations. To handle the varying

number of adversarial agents, we used LSTM layers. Furthermore, the auxiliary reward predic-

tion networks (f advc ) belong to the critic networks to perceive the reward mechanism inherent

to the environment associated with the states and actions of all opponent’s agents. The auxil-

iary reward prediction networks estimate the reward using the current observations and

actions of agents. Therefore, the actor and critic networks learn the opponents’ behavior more

readily than pure model-free learning algorithms. The auxiliary networks on the actor and

critic network can be learned by minimizing the following losses:

Lop ¼ Eu;o�D½ûadvlog ûadv�; where ûadv ¼ f
adv
a ðoÞ: ð6Þ

Lradv ¼ Eu;o;r�D½ðr̂ adv � radvÞ
2
�; where r̂ adv ¼ f

adv
c ðo; uÞ: ð7Þ

The outcomes of two auxiliary networks are only used for promoting the cognition of oppo-

nents’ behaviors, which are a part of competitive multi-agent environments.

Fig 2. Architectures of the CTRL with an AMLAPN. In the training phase, the observations are sequentially processed by the actor and critic along the arrows. The

gradient signals are propagated in the reverse direction of the arrows. The shaded regions represent the auxiliary prediction networks for the approximate model

learning. The number of units are shown within parentheses.

https://doi.org/10.1371/journal.pone.0222215.g002
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The auxiliary prediction networks are simultaneously trained with policy learning. The gra-

dients augmented by model-based learning can be expressed as follows:

rya
JðyaÞ ¼ Eu;o�D½ryapyaðujoÞruQ

pðo; uÞ � rf owna
Lstate � rf adva

Lop�; ð8Þ

ryc
LðycÞ ¼ Eu;o�D½ðr þ gQ

pðo; uÞ � Qpðo; uÞÞruQ
pðo; uÞ � rf ownc

Lrown � rf advc
Lradv �: ð9Þ

Hererya
JðyaÞ is a gradient for actor networks, andryc

LðycÞ is a gradient for critic networks.

These gradient signals implicitly contribute to determining actors’ actions while considering

state transition and opponent policies. To ensure against environment dynamics and oppo-

nent evolution information being forgotten, we maintain an experience replay memory and

cull batches of samples in memory at every model update.

Experiments

Environments

We used a multi-agent particle environment to evaluate the capabilities of the proposed

method. The environment consisted of two adversarial teams, N agents for team A,M agents

for team B, and L landmarks. Teams A and B have different tasks, and they are hostile rela-

tions. The environment possesses the properties of two-dimensional continuous space and dis-

crete time, and agents can take physical actions and observe the relative positions of other

agents and landmarks based on their own position. Physical actions allow agents to move in

the environment. To further simplify the control problem, we used five-dimensional discrete

action spaces, enabling agents to move up, down, left, right, or to stay still. However, agents

could not move in strict accordance with the given discrete physical action because the frame-

work includes a basic engine that takes into account their momentum [14]. In our experi-

ments, we considered four competitive multi-agent scenarios in which all agents should

maximize team rewards. Some scenarios required communication between agents to achieve

the best reward, while others required agents to perform physical actions. Fig 3 shows the

graphical descriptions of experimental environments of all scenarios.

Physical deception. This scenario consists of two agents belonging to team A. They coop-

erate to reach a single target landmark from two possible landmarks. They are rewarded based

on the minimum distance of an agent to the target. However, a single adversary (team B) also

wishes to reach the target landmark; the catch is that the adversary does not know which of the

landmarks is the correct one. Thus, the cooperating agents, who are penalized based on the

adversary’s distance to the target, learn to spread out and cover all landmarks to deceive the

adversary.

Keep-away. This scenario consists of two landmarks, including a target landmark, two

cooperating agents (team A) who know the target landmark and are rewarded based on their

distance to the target, and one adversarial agent (team B) who must prevent the cooperating

agents from reaching the target. The adversary accomplishes this by physically pushing the

agents away from the landmark, temporarily occupying it. While the adversaries are also

rewarded based on their distance to the target landmark, they do not know the correct target;

this must be inferred from the movements of the agents.

Predator-prey. In this variant of the classic predator-prey game, three cooperating agents

of team A are the predators and one adversary of team B is the prey. Because the prey is faster

than the predators, the agents of team A must, while cooperating, chase the prey around a ran-

domly generated environment with two large landmarks impeding the way. Each time the

cooperative agents collide with an adversary, the agents are rewarded while the adversary is
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penalized. Agents observe the relative positions and velocities of other agents as well as the

positions of the landmarks.

Complex predator-prey. This scenario is a complex version of the predator-prey game.

The overall settings are the same as in the predator-prey game except for forests and foods.

Two preys (team A) can hide in the forests to avoid being seen from outside. Four predators

(team B) chase the preys. The adversary leader can see the agents at all times and has the

responsibility of sending messages to the other adversaries to help coordinate the chase. The

prey should obtain as much food as possible while avoiding collisions.

Results

We examined the performance of the proposed methods under the four scenarios in terms of

episode rewards in training and test phases. We compared three proposed methods while vary-

ing the levels of approximate model learning. The first method is CTRL without AMLAPN,

the second method is CTRL with AMLAPN to enable agents to understand environment

Fig 3. Illustrations of the experimental environment for four scenarios: physical deception (top left), keep-away (top right), predator-prey (bottom left), and complex

predator-prey (bottom right).

https://doi.org/10.1371/journal.pone.0222215.g003
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dynamics (AMLAPN(own)), and the last method is CTRL with AMLAPN to enable agents to

understand environment dynamics and opponent behavior (AMLAPN(adv)). From the first

to the last method, the levels of approximate model learning increase. We hypothesized that

the AMLAPNs would show better performance because they can perceive the intrinsic mecha-

nism in the environments, including the adversarial team’s policies. In addition, we compared

them with the MADDPG, of which learning process although requires accessing the oppo-

nents’ parameters. However, the proposed methods assume that the parameters of adversarial

agents are unknown.

In our experiments, all methods were implemented such that their number of layers and hid-

den dimensions or learning parameters were equivalent to those in our method. We used three-

layer neural networks with rectified linear unit activations to represent the actor and critic net-

works. Each network was trained with ten random seeds, and all methods were restricted to

experience 40,000 episodes. The size of the replay buffer was one million, and we updated the

network parameters after every hundred samples added to the replay buffer. Therefore, all train-

ing was conducted using the same amount of experience. In addition, we used an Adam opti-

mizer with a learning rate of 0.01 and τ = 0.001 to update the target networks. The discount

factor γ was set to 0.95, and a batch size of 1,024 was used. The source code of the proposed

method can be found here at https://github.com/yjpark1/competitiveMARL. We implemented

the MADDPG using git repositories (github.com/openai/maddpg) written by the authors of the

MADDPG papers [14].

Fig 4 shows the learning curves and convergence points of the rewards sum of two teams.

Although all methods show similar learning stabilities, each method converged differently in

terms of the rewards sum. In most scenarios, the proposed methods outperformed the

MADDPG. In particular, the performances of the proposed CTRL demonstrate its effective-

ness in learning multiple policies to compete with others. In addition, we could identify that

the AMLAPN increased the learning performance of the CTRL. In “keep away” and “preda-

tor-prey” scenarios, the convergence of rewards is high; the level of approximate model learn-

ing increases while it outperforms the MADDPG. Although the MADDPG is still more

effective than the proposed method in the complex “predator-prey” scenario, the CTRL is

highly enhanced by the AMLAPN. Thus, we could conclude that the proposed AMLAPN pro-

motes competitive training by perceiving environment dynamics and opponent behavior.

To evaluate test phase performances, we conducted round-robin tournaments in which the

participants were trained agents. Table 1 shows the round-robin tournament results for the

four scenarios. The trained models ran 100 episodes with 50 random seeds. The boldface rep-

resents the highest reward for each corresponding scenario. Fig 5 shows an average perfor-

mance plot to facilitate the interpretation of these comparative results. In this plot, we can

measure the robustness of performance when encountering different opponents because each

bar indicates the average rewards of various competitors. In all cases, the CTRL is improved by

the AMLAPN, and the AMLAPN(adv) shows similar or better performances than the

AMLAPN(own). Moreover, the proposed methods outperformed the MADDPG in most

cases. In some cases, although the MADDPG shows the highest relative scores, we can identify

the effectiveness of the AMLAPN in constantly improving the performance of the CTRL.

Thus, we can conclude that the AMLAPN is also helpful for learning robust policies.’

The effects of approximate model learning

In this section, we evaluated the approximate model learning under partial observations. To

do this, we modified two scenarios: the predator-prey and the complex predator-prey. The

number of predators and prey were increased to six and eight in the predator-prey scenario
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Fig 4. Learning curves for the four competitive scenarios: episode rewards in physical deception (top left), episode rewards in keep away (top right), episode rewards

in predator-prey (bottom left), and episode rewards in complex predator-prey (bottom right) scenarios. Each bar cluster represents the converged episode reward at the

end of training. The shading region is a 95% confidence interval across the different random seeds.

https://doi.org/10.1371/journal.pone.0222215.g004

Table 1. Round-robin tournament results for the four scenarios. Standard deviations are shown within parentheses.

Scenario Method Reward

Team A Team B Team A Team B

Physical deception MADDPG MADDPG 4.47 (18.74) 6.71 (2.09)

w/o AMLAPN -1.06 (22.48) 9.42 (3.55)

AMLAPN(own) -10.93 (20.33) 14.38 (6.36)

AMLAPN(adv) -23.78 (14.48) 21.06 (5.42)

w/o AMLAPN MADDPG 119.90 (17.52) 7.57 (2.34)

w/o AMLAPN 105.15 (18.29) 16.04 (10.36)

AMLAPN(own) 94.44 (11.71) 20.73 (11.09)

AMLAPN(adv) 73.78 (13.9) 32.37 (8.68)

AMLAPN(own) MADDPG 153.06 (6.81) 6.44 (2.11)

w/o AMLAPN 143.16 (8.92) 11.78 (2.96)

AMLAPN(own) 122.31 (14.23) 22.49 (7.68)

AMLAPN(adv) 107.44 (17.71) 29.88 (9.42)

AMLAPN(adv) MADDPG 144.44 (12.15) 6.28 (2.02)

w/o AMLAPN 139.91 (13.34) 9.16 (2.86)

AMLAPN(own) 130.21 (12.04) 14.04 (3.99)

AMLAPN(adv) 102.12 (15.25) 28.25 (7.14)

(Continued)
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Table 1. (Continued)

Scenario Method Reward

Team A Team B Team A Team B

Keep away MADDPG MADDPG -7.49 (1.02) -9.11 (3.17)

w/o AMLAPN -7.65 (0.99) -1.93 (2.5)

AMLAPN(own) -7.77 (0.93) -0.97 (0.85)

AMLAPN(adv) -7.80 (0.93) -0.87 (0.82)

w/o AMLAPN MADDPG -8.56 (5.6) -8.66 (2.97)

w/o AMLAPN -8.78 (5.54) -0.71 (3.46)

AMLAPN(own) -8.88 (5.5) -0.60 (3.05)

AMLAPN(adv) -8.90 (5.48) -0.52 (2.87)

AMLAPN(own) MADDPG -6.51 (0.38) -9.97 (2.94)

w/o AMLAPN -6.71 (0.42) -2.82 (2.38)

AMLAPN(own) -6.84 (0.37) -1.84 (0.37)

AMLAPN(adv) -6.87 (0.37) -1.72 (0.38)

AMLAPN(adv) MADDPG -6.53 (0.36) -9.94 (2.9)

w/o AMLAPN -6.70 (0.41) -2.85 (2.36)

AMLAPN(own) -6.85 (0.37) -1.86 (0.36)

AMLAPN(adv) -6.85 (0.37) -1.75 (0.38)

Predator-prey MADDPG MADDPG -7.96 (1.4) 23.89 (4.2)

w/o AMLAPN -8.80 (4.51) 26.39 (13.52)

AMLAPN(own) -10.88 (2) 32.65 (6)

AMLAPN(adv) -12.96 (2.05) 38.88 (6.16)

w/o AMLAPN MADDPG -17.60 (9.57) 52.81 (28.7)

w/o AMLAPN -15.80 (5.65) 47.40 (16.94)

AMLAPN(own) -24.66 (15.82) 73.98 (47.46)

AMLAPN(adv) -28.21 (15.95) 84.63 (47.86)

AMLAPN(own) MADDPG -15.19 (3) 45.56 (9.01)

w/o AMLAPN -17.87 (8.27) 53.61 (24.8)

AMLAPN(own) -19.56 (3.44) 58.68 (10.31)

AMLAPN(adv) -25.53 (4.53) 76.59 (13.58)

AMLAPN(adv) MADDPG -15.06 (1.73) 45.19 (5.2)

w/o AMLAPN -17.08 (7.95) 51.24 (23.84)

AMLAPN(own) -19.31 (3.81) 57.93 (11.43)

AMLAPN(adv) -25.02 (2.66) 75.06 (7.99)

Complex predator-prey MADDPG MADDPG -29.37 (5.66) 121.20 (22.69)

w/o AMLAPN -7.93 (6.58) 35.64 (25.6)

AMLAPN(own) -14.99 (2.62) 63.70 (10.34)

AMLAPN(adv) -15.17 (3.81) 64.39 (15.4)

w/o AMLAPN MADDPG -33.59 (9.99) 138.96 (40.09)

w/o AMLAPN -6.55 (4.45) 30.70 (17.81)

AMLAPN(own) -23.30 (19.02) 97.72 (76.17)

AMLAPN(adv) -27.89 (18.58) 115.58 (74.37)

AMLAPN(own) MADDPG -25.77 (5.03) 106.67 (19.75)

w/o AMLAPN -5.03 (4.14) 24.18 (16.44)

AMLAPN(own) -8.94 (2.71) 39.58 (10.57)

AMLAPN(adv) -9.88 (3.09) 43.38 (12.34)

AMLAPN(adv) MADDPG -25.32 (5.9) 104.43 (23.86)

w/o AMLAPN -4.67 (2.34) 22.28 (9.51)

AMLAPN(own) -5.77 (2.31) 26.30 (9.44)

AMLAPN(adv) -10.70 (4.48) 46.20 (18.24)

https://doi.org/10.1371/journal.pone.0222215.t001
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and the complex predator-prey scenario, respectively. In addition, there were the same num-

ber of predators and prey in these settings. The most crucial modifications are that agents can-

not observe the positions of teammates and that all positions represent their absolute

coordinates. Under these settings, many reinforcement learning algorithms suffer from agents

observing only a part of the environment (partial observation). To overcome this limitation,

agents can infer hidden information by exploiting only observed information. The experi-

ments were conducted to examine whether the approximate model learning helped agents

exploit the information they observed.

Fig 6 shows the learning curves and convergence points of the rewards sum of two teams

under partial observation conditions. Unlike in previous experimental results, the AMLAPN

(own) shows higher performance than the other methods in all scenarios. This result implies

that approximate model learning for inferring one’s state transition is more important than

opponent modeling. In the case of the AMLAPN(adv), the inference capabilities of agents’

own state transition could be degraded by opponent modeling because the actor and critic net-

works simultaneously minimize losses for learning environment dynamics and opponent

behavior. Thus, we can conclude that environment dynamics are more important than oppo-

nent modeling when agents can access partial observations, even in competitive tasks.

As with previous experiments, we also conducted round-robin tournaments to evaluate test

phase performances. The participants were trained the four different methods. Table 2 shows

the round-robin tournament results for the four scenarios with partial observations. The

trained models ran a hundred episodes with ten random seeds. The boldface represents the

highest rewards for each corresponding scenario. Fig 7 shows an average performance plot to

facilitate the interpretation of these comparative results. In the predator-prey scenario, the

AMLAPN(own) shows the highest performance against other methods, indicating that the

AMLAPN perceiving environment dynamics is important for obtaining robust policies against

various opponents. However, in the case of the complex predator-prey scenario, the AMLAPN

(adv) and CTRL without AMLAPN earned the highest average rewards on team A and team B,

Fig 5. Relative performances in round-robin tournament evaluations: the performances of team A trained by four

methods (a), and the performances of team B trained by four methods (b). Each bar cluster shows the score for a set of

competing policies; a higher score is better for the agent.

https://doi.org/10.1371/journal.pone.0222215.g005

Fig 6. Learning curves in the partial observation environments: episode rewards in predator-prey (left) and episode rewards in complex predator-prey (right)
scenarios. Each bar cluster represents the converged episode reward at the end of training. The shading region is a 95% confidence interval across the different random

seeds.

https://doi.org/10.1371/journal.pone.0222215.g006
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respectively. Moreover, the AMLAPN does not improve team B’s performance in solving the

task in the complex predator-prey scenario. To solve this task, especially, team B (predators)

must cooperate based on observation of the leader agent. In this case, the AMLAPN is hard to

improve multiple agents with different roles because of the limited information about adver-

sary’s observation. This implies that there is room for improvement of the proposed approxi-

mate model learning under complex environments.

According to the above results in the simulation environments, the following can be

obtained: (1) the proposed AMLAPN promotes the learning process of CTRL for understand-

ing environment dynamics, including opponent behavior, and (2) the proposed AMLAPN

without opponent modeling shows relatively better performance in the case of partially

observed states.

Table 2. Round-robin tournament results for the four scenarios with partial observations. Standard deviations are shown within parentheses.

Scenario Method Reward

Team A Team B Team A Team B

Predator-prey MADDPG MADDPG -25.25 (4.57) 75.74 (13.72)

w/o AMLAPN -13.92 (6.47) 41.76 (19.41)

AMLAPN(own) -34.12 (17.64) 102.37 (52.93)

AMLAPN(adv) -20.37 (4.58) 61.12 (13.75)

w/o AMLAPN MADDPG -49.98 (14.99) 149.93 (44.98)

w/o AMLAPN -16.78 (10.65) 50.34 (31.95)

AMLAPN(own) -54.02 (21.07) 162.06 (63.2)

AMLAPN(adv) -29.90 (16.44) 89.70 (49.32)

AMLAPN(own) MADDPG -33.27 (14.75) 99.82 (44.24)

w/o AMLAPN -14.24 (13.42) 42.72 (40.27)

AMLAPN(own) -27.82 (13.63) 83.46 (40.88)

AMLAPN(adv) -21.28 (11.5) 63.84 (34.5)

AMLAPN(adv) MADDPG -35.02 (8.53) 105.07 (25.59)

w/o AMLAPN -14.76 (8.78) 44.28 (26.33)

AMLAPN(own) -35.54 (17.3) 106.62 (51.91)

AMLAPN(adv) -16.42 (2.66) 49.26 (7.97)

Complex predator-prey MADDPG MADDPG -13.64 (3.73) 62.04 (15.01)

w/o AMLAPN -18.18 (18.76) 80.98 (74.46)

AMLAPN(own) -15.81 (4.71) 71.57 (18.2)

AMLAPN(adv) -11.34 (2.48) 53.01 (8.94)

w/o AMLAPN MADDPG -18.40 (8.57) 81.32 (33.82)

w/o AMLAPN -8.98 (7.94) 44.32 (31.94)

AMLAPN(own) -11.30 (2.59) 53.56 (11.45)

AMLAPN(adv) -11.42 (4.13) 53.04 (16.57)

AMLAPN(own) MADDPG -8.65 (2.22) 41.11 (8.51)

w/o AMLAPN -20.54 (20.14) 89.64 (81)

AMLAPN(own) -14.87 (3.27) 66.56 (14.13)

AMLAPN(adv) -8.98 (2.83) 42.96 (11.43)

AMLAPN(adv) MADDPG -9.85 (2.37) 46.22 (9.47)

w/o AMLAPN -16.66 (15.07) 73.36 (59.62)

AMLAPN(own) -15.56 (6.75) 69.08 (28.17)

AMLAPN(adv) -9.04 (2.49) 42.56 (9.86)

https://doi.org/10.1371/journal.pone.0222215.t002
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Conclusions

In this study, we examined the problem of learning multi-agent policies in competitive envi-

ronments in which agents receive global reward sharing with their team. In this setting, learn-

ing algorithms must cope with the following challenges: (1) partial observability, (2) credit

assignment problem of the global reward, (3) performance degradation for learning algorithms

because of nonstationary and non-Markovian environments, and (4) evolving opponent poli-

cies under imperfect information game conditions. We propose the CTRL with approximate

model learning to tackle these issues in multi-agent environments based on centralized train-

ing for each team. Through deterministic policy gradient methods and recurrent actor–critic

networks, we demonstrate the superiority of the proposed method over another multi-agent

reinforcement learning algorithm, the MADDPG, which is a representative method. In partic-

ular, we identify that the AMLAPN improves the performance of the CTRL by promoting an

understanding of the environment dynamics and opponent behavior. Our experiments with

Fig 7. Average relative performances with partial observation in round-robin tournament evaluations: performances

of team A trained by four methods (a) and performances of team B trained by four methods (b). Each bar cluster

shows the score for a set of competing policies; a higher score is better for the agent.

https://doi.org/10.1371/journal.pone.0222215.g007
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four competitive multi-agent environments demonstrate the superiority of the proposed

method compared to competitors in terms of learning efficiency. Moreover, we reveal that the

proposed method produces robust performances against the MADDPG by performing round-

robin tournament evaluations.

There are a couple of interesting directions for future research. One is to consider the

dependency between opponent policies and state transition in auxiliary prediction networks

for improving performance in complex environments. Another interesting direction is to use

the transformer [35], an alternative recurrent neural network, in the actor–critic architecture

to handle the sequencing of agents with no arbitrary orders.
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