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Abstract: We propose a new class of nonlocal Total Variation (TV), in which the first derivative and
the second derivative are mixed. Since most existing TV considers only the first-order derivative, it
suffers from problems such as staircase artifacts and loss in smooth intensity changes for textures
and low-contrast objects, which is a major limitation in improving image quality. The proposed
nonlocal TV combines the first and second order derivatives to preserve smooth intensity changes
well. Furthermore, to accelerate the iterative algorithm to minimize the cost function using the
proposed nonlocal TV, we propose a proximal splitting based on Passty’s framework. We demonstrate
that the proposed nonlocal TV method achieves adequate image quality both in sparse-view CT and
low-dose CT, through simulation studies using a brain CT image with a very narrow contrast range
for which it is rather difficult to preserve smooth intensity changes.

Keywords: image reconstruction; computed tomography; compressed sensing; nonlocal total
variation; sparse-view CT; low-dose CT; proximal splitting; row-action; brain CT image

1. Introduction

Nonlocal Total Variation (TV) [1–6] was proposed as an improved version of ordinary TV. Nonlocal
TV can use a weighting function (e.g., the weight of nonlocal means filter) by taking the intensity
difference between the pixel pair into account, and can obtain higher image quality than the ordinary
TV that uses only pairs of adjacent pixels.

Since G. Gilboa and S. Osher (2009) [5] proposed nonlocal operator, nonlocal TV has been widely
applied to image reconstruction problems in sparse-view CT and low-dose CT [1–4].

H. Kim et al. (2016) [2] applied nonlocal TV to sparse-view CT and showed that nonlocal TV
improves image quality over ordinary TV and incorporating the reweighted L1 norm into nonlocal TV
further improves tissue contrast and structural details. Following this, K. Kim et al. (2017) [3] applied
nonlocal TV to low-dose CT and showed nonlocal TV is effective for low-dose noise (Poisson noise).

D. Lv et al. (2019) [4] proposed a hybrid prior distribution (called NLTG prior) that combines
nonlocal TV with Gaussian distribution. Additionally, they showed the possibility of applying NLTG
prior to a large class of image reconstruction problems, especially when reference images were available.

However, the most existing nonlocal TV studies [2–4] are based on the first-order derivative, and
still contain the staircase artifact problem as a potential drawback. Since the first-order derivative is
too sensitive to the pixel values, even linear intensity changes are detected as false edges, which leads
to staircase artifacts in the same way as local TV does [7–9].

On the other hand, higher-order derivatives (the second-order or more) possesses a potential risk
that, as the order of differentiation is larger, its ability enhance image edges is smaller leading to an
image blurring problem.
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In previous studies, to overcome the disadvantage of using only the first-order or only the
second-order, Bredies et al. (2010) [10] proposed Total Generalized Variation (TGV) that involves and
balances higher-order derivatives and showed impressive results in the denoising problem. After that
work, Ranftl et al. (2014) [11] proposed a nonlocal version of TGV.

Our proposed method is also a combined method of the first and second order derivatives.
We define the regularization term as a weighted sum of two terms, where the first term is the ordinary
nonlocal TV based on the first-order and the second term is based on the second-order. Additionally,
in this paper, we introduce a newly discovered idea called nonlocal Total K-Split Variation, which is
based on the second-order derivative using nonlocal regularization. This idea allows us to preserve
smooth intensity changes well.

Furthermore, to accelerate the iterative algorithm associated with the proposed nonlocal TV, we
propose a specially designed proximal splitting based on Passty’s framework. In this proximal splitting,
as the number of dividing the cost function into small subfunctions increases, the faster convergence
is achieved [12–14]. The structure of final iterative algorithm is row-action type with respect to both
the data-fidelity term and the regularization term [15–17], which converges to a minimizer very
quickly [18–22].

Finally, in order to demonstrate the performances of combining the first and second order
derivatives in reconstructed images, we use a brain CT image, in which a very narrow contrast range
is used to display the image, where it is very difficult to preserve smooth intensity changes. Also,
simulation studies are performed for both the sparse-view CT and the low-dose CT. We demonstrate
that the proposed nonlocal TV method achieves adequate image quality within a small number
of iterations.

2. Methodology

2.1. Problem Definition

We define the following unconstrained cost function:

argmin
→
x≥0

J(
→
x ) = f (

→
x ) + u(

→
x ) =

∥∥∥∥A
→
x −

→

b
∥∥∥∥2

2
+ βω

∥∥∥W
→
x
∥∥∥1

1, (1)

where f
(
→
x
)
= ‖A

→
x −

→

b ‖
2

2 is the data-fidelity term, and u
(
→
x
)
= βω‖W

→
x ‖

1
1 is the regularization term,

and A =
{
ai j

}
is the I × J system matrix, β is the hyper-parameter to control regularization strength, and

ω is the weight of regularization term, and W is the sparsifying transform to make W
→
x sparse. Image

reconstruction is an inverse problem to recover the image of attenuation coefficients
→
x =

(
x1, x2, . . . , xJ

)T

from the measured projection data
→

b = (b1, b2, . . . , bI)
T.

In the sparse-view CT [23,24], by using the projection data corresponding to less than 100

directions (the conventional CT uses 1000–2000 projection data), the equation A
→
x =

→

b becomes
severely underdetermined, i.e., the dimension J of unknowns

→
x is larger than the dimension I of

measurements
→

b (I < J). In this case, the regularization term acts to avoid the ill-posed problem by
introducing the prior knowledge that most components of the vector W

→
x are close to 0.

On the other hand, in the low-dose CT, the equation A
→
x =

→

b becomes inconsistent due to Poisson

noise
→
n (A

→
x −

→

b =
→
n ). In this case, the regularization term helps to reduce the effect of Poisson noise

→
n by a smoothing.
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First, we begin by the modified anisotropic nonlocal TV based on the first-order derivative
expressed as

Nonlocal TV = uTV
(
→
x
)
= βt

J∑
j=1

∑
j′∈Ω

ω j j′
∣∣∣x j − x j′

∣∣∣, (2)

where x j is the intensity in the pixel j, and x j′ is the intensity in a distant pixel j′, and ω j j′ is the weight
of smoothing assigned for each pixel pair

(
x j, x j′

)
.

Next, we describe a newly discovered regularization term based on the second-order derivative
called nonlocal Total K-split Variation (TKV). The main idea is to consider more derivatives around x j
and x j′ as

Nonlocal TKV = uTKV
(
→
x
)
=
β(1− t)

8

J∑
j=1

∑
j′∈Ω

8∑
k=1

ω j j′
∣∣∣∣(x j − x jk

)
−

(
x j′ − x j′k

)∣∣∣∣, (3)

where x jk is the adjacent pixel value of x j, x j′k
is the adjacent pixel value of x j′ . We remark that the TKV

term is divided into a sum of eight terms dependent of the direction to take the pixel difference as
shown in Figure 1.
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In the proposed method, we assume that the reconstructed image
→
x is close to piecewise-polynomial

of first order. Under this assumption, our proposed regularization term is designed to include both the
first and second order derivatives as

u
(
→
x
)
= β

J∑
j=1

∑
j′∈Ω

ω j j′

t∣∣∣x j − x j′
∣∣∣+ (1− t)

8

8∑
k=1

∣∣∣∣(x j − x jk

)
−

(
x j′ − x j′k

)∣∣∣∣, (0 < t < 1), (4)

where the proposed regularization term is a combination of two terms (u
(
→
x
)
= uTV

(
→
x
)
+ uTKV

(
→
x
)
).

Additionally t is the trade-off parameter between nonlocal TV and TKV. If t is large, the reconstructed
image becomes closer to that of nonlocal TV. If t is small, the reconstructed image becomes closer to
that of nonlocal TKV. To match the strength of the first term into that of the second term, we divide the
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second-order derivative based nonlocal TKV into 8 directions. Figure 1 shows the location of pixels
appearing in uTV

(
→
x
)

and uTKV
(
→
x
)

for k = 1, 2, 3, · · · , 7, 8.

2.2. Accelerated Algorithm Using the Proximal Splitting with Passty’s Framework

To accelerate the iterative algorithm to minimize the cost function, we propose a specially designed
proximal splitting with Passty’s framework. The ordinary proximal splitting is able to minimize a cost
function consisting of a sum of only two component terms, where the proximity operator corresponding
to each subfunction is applied alternately [12,13]. On the other hand, by using Passty’s framework
which is not well-known in the image reconstruction community, a cost function can be divided into
a number of much simpler subfunctions [14]. This results in considerable benefits for optimization
problems appearing in CT reconstruction. By applying the proximity operator corresponding to each
subfunction alternately, the proposed algorithm possesses a form of row-action type [15–17], which
converges to a minimizer very quickly [18–22].

We begin by a brief review the proximal splitting with Passty’s framework. Let us consider a
convex minimization problem formulated as

argmin
→
x

J
(
→
x
)
, (5)

where J
(
→
x
)

is a lower semi-continuous (lsc) convex function.

The proximity operator corresponding to the function J
(
→
x
)

is defined as

→
x = proxαJ

(
→
z
)
≡ argmin

→
x

(J
(
→
x
)
+

1
2α
‖
→
x −

→
z ‖

2
2), (6)

where α is the parameter called step-size. We note that J
(
→
x
)

can be a non-differentiable function such
as component terms of TV or nonlocal TV. The proximity operator is a non-expansive mapping such
that its fixed-points

→
x satisfying

→
x = proxαJ

(
→
x
)

coincides with a minimizer of J
(
→
x
)

for any α > 0.

Therefore, the minimization problem of J
(
→
x
)

can be solved by the iterative formula expressed as
→
x
(n+1)

= proxαJ

(
→
x
(n))

(i.e., proximal algorithm). Next, we are going to explain the proximal splitting

with Passty’s framework.
[Passty’s framework] Let us consider the case where J

(
→
x
)

can be divided into a sum of subfunctions
as:

J
(
→
x
)
=

I∑
i=1

Ji
(
→
x
)
. (7)

The iterative algorithm can be constructed by applying the proximity operator corresponding to
each subfunction Ji

(
→
x
)
(i = 1, 2, . . . , I) as below

→
x
(n+1)

= proxα(n) JI
· · · · ·proxα(n) J2

·proxα(n) J1

(
→
x
(n))

. (8)

Furthermore, let us consider the case where Ji
(
→
x
)

is a sum of two subfunctions, like our cost
function including data-fidelity term and regularization term as

Ji
(
→
x
)
= fi

(
→
x
)
+ u

(
→
x
)
. (9)
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The update can be constructed by applying two operators corresponding to each subfunction
alternately as below

→
x
(n+1)

= proxα(n)u·proxα(n) fi

(
→
x
(n))

. (10)

Finally, we show in Algorithm 1 the optimization model applied to this paper:
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In Passty’s framework, by increasing the number to divide the cost function into smaller
subfunctions, the better convergence can be expected. In this paper, this division is performed as
follows. First, the data-fidelity term is divided as shown in Equation (7) in such a way that each
subfunction fi

(
→
x
)

contains only a single term corresponding to projection data bi. Therefore, the final
algorithm can be designed in the form of a row-action type algorithm such as ART method.

We mention that u
(
→
x
)

can also be divided into a sum of many subfunctions. In this paper, we

divide u
(
→
x
)

as finely as possible similarly to the case of the data-fidelity term. This idea leads to
a significant benefit to simplify the processing of nonlocal TV+TKV term as well as improving the
convergence speed. With respect to the regularization term u

(
→
x
)
, we perform a division described in

Section 2.3.2.

2.3. Optimization

In this section, we focus on how to divide the cost function and how to derive the resulting
iterative algorithm.

2.3.1. Update the Data-Fidelity Term

The data-fidelity term can be divided into I subfunctions as below

Example conversion error

Example of correct conversion

Incorrect of vector symbols

(11)

where I is the number of projection data, and
→
a i is i-th row vector of the system matrix A, and bi is i-th

component of projection data. Furthermore, we note that fi
(
→
x
)

is a subfunction corresponding to the
data-fidelity term.

The minimization problem for the data-fidelity term can be defined as

→
x
(n,i+1)

= proxα(n) fi

(
→
x
(n,i))

= argmin
→
x

{(
→
a

T
i
→
x − bi

)2
+

1
2α(n)

‖
→
x −

→
x
(n,i)
‖

2
2

}
. (12)

By introducing a slack variable

Example conversion error

Example of correct conversion

Space is error

Incorrect of vector symbols

, the above minimization problem for each subfunction
fi
(
→
x
)

can be converted into the constrained minimization below

Example conversion error

Example of correct conversion

Space is error

Incorrect of vector symbols

(13)
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The Lagrange function can be defined by

L fi

(
→
x , z,λ

)
= (z− bi)

2 +
1

2α(n)
‖
→
x −

→
x
(n,i)
‖

2
2 + λ

(
z−
→
a

T
i
→
x
)
, (14)

where λ is the Lagrange multiplier called the dual variable.
Finally, by optimizing the Lagrange function, we obtain the following expression of row-action

type iteration.

→
x
(n,i+1)

=
→
x
(n,i)

+ α(n)
bi−
→
a

T
i
→
x
(n,i)

1/2+α(n)‖
→
a i‖

2
2

→
a i, α(n) =

α0
1+εn ,

(
i ∈ R[I]

)
,

(α0 : initial value of step size, ε : deceleration rate of step-size, R[I] : ordered subsets
) (15)

where α(n) is the step-size parameter to control the convergence, and n is the number of main iterations.
After updating all elements of projection data, n is increased by 1. The step-size α(n) is diminished
gradually to zero as the iteration proceeds (i.e. diminishing step-size rule). In Passty’s framework, it is
known that this diminishing contributes to ensuring an exact convergence to a minimizer, thereby,
avoiding the so-called limit cycle problem. Furthermore, we introduce a random-access order of
projection data R[I] to enable a fast convergence within 20–30 iterations [19,20]. The mathematical
detail to derive the update formula in Equation (15) has been already described in our previous
studies [19–22].

2.3.2. Update the Regularization Term

We describe how to divide the regularization term. The modified anisotropic nonlocal TV
possesses the following structure and is called L1 based group LASSO here. The L1 based group LASSO
possesses a very simple structure, where each absolute value term can be considered a group element.

uTV
(
→
x
)
= βt

J∑
j=1

∑
j′∈Ω

ω j j′
∣∣∣x j − x j′

∣∣∣ = βt
G∑

g=1

[
ω j j′

∥∥∥→x j −
→
x j′

∥∥∥1
1

]
g
= βt

G∑
g=1

uTV
g

(
→
x
)
, ( j = g). (16)

where g is the group index, and the group index g corresponds to the pixel index j, and the TV term
can be divided into G groups (G subfunctions). Furthermore, the group itself becomes a subfunction
uTV

g

(
→
x
)
.

In the case of the TKV term, it can be divided into (G× 8) subfunctions as below

uTKV
(
→
x
)
=
β(1− t)

8

8∑
k=1

G∑
g=1

[
ω j j′

∥∥∥(→x j −
→
x jk

)
−

(
→
x j′ −

→
x j′k

)∥∥∥1

1

]
g
=
β(1− t)

8

8∑
k=1

G∑
g=1

uTKV
g

(
→
x
)
. (17)

The detailed structure of the TV term is shown in Figure 2. Among the elements of the group, the
pixel j is common and distant pixel j′ has different values for each other.
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Figure 2. Raster scanning during the update ( j′ = 1, 2, 3, . . . ).

The sequential update is related to raster scanning.
In the TV term, when assuming that x j and x j′ are updated simultaneously, x j is updated

sequentially J′ times, and x j′ is updated once respectively.
In the case of TKV term, when assuming that x j, x jk , x j′ , x j′k

are updated simultaneously, x j is
updated sequentially (J′ × 8) times, and x j′ is updated sequentially eight times. Following this, x jk and
x j′k

(the adjacent pixels) are updated once respectively.
[Update the TV term] First, we consider updating the pixel j.
The proximity operator for a subfunction can be defined as follows

argmin
→
x j

(ω j j′‖
→
x j −

→
x
(n)
j′ ‖

1
1 +

1
2α(n)

‖
→
x j −

→
x
(n, j′)
j ‖

2
2), (18)

where x(n)j′ is the current updated solution as a constant approximation, which is the image updated
from the data-fidelity term. The above L1 norm minimization problems can be solved with the
following soft-thresholding.

S∇
(
x(n, j′)

j

)
= x(n, j′)

j −


∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,(
τTV = (x(n, j′)

j − x(n)j′ ),∇ = α(n)βtω j j′

)
,

(19)

where S∇
(
x(n, j′)

j

)
is the soft-thresholding function. The solution (S∇

(
x(n, j′)

j

)
) corresponding to otherwise

is simply x(n)j′ .
For better convergence, although it is possible to update only pixel j, we update the pixel j and

j′ simultaneously.
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For updating the pixel j and j′, we further divide a subfunction uTV
g

(
→
x
)

into two subfunctions
as below

uTV
(
→
x
)
= βt

G∑
g=1

uTV
g

(
→
x
)
= βt

G∑
g=1

[
ω j j′‖

→
x j −

→
x j′‖

1
1

]
g

= βt
G∑

g=1


ω j j′

∥∥∥∥∥∥→x j−
→
x j′

2

∥∥∥∥∥∥1

1


x j

+

ω j j′

∥∥∥∥∥∥→x j−
→
x j′

2

∥∥∥∥∥∥1

1


x j′


g

= βt
G∑

g=1

[
p
(
→
x j

)
+ p

(
→
x j′

)]
g
.

(20)

where p
(
→
x j

)
= [ ]x j

, p
(
→
x j′

)
= [ ]x j′

.

The proximity operator for each subfunction (proxα(n)p

(
→
x
(n, j′)
j

)
, proxα(n)p

(
→
x
(n)
j′

)
) can be defined

as follows

argmin
→
x j

(ω j j′

∥∥∥∥∥∥→x j −

→
x
(n, j′)
j +

→
x
(n)
j′

2

∥∥∥∥∥∥
1

1
+ 1

2α(n)

∥∥∥∥→x j −
→
x
(n, j′)
j

∥∥∥∥2
2),

argmin
→
x j′

(ω j j′

∥∥∥∥∥∥−→x j′ +
→
x
(n, j′)
j +

→
x
(n)
j′

2

∥∥∥∥∥∥
1

1
+ 1

2α(n)

∥∥∥∥→x j′ −
→
x
(n)
j′

∥∥∥∥2
2),

(21)

where x(n, j′)
j and x(n)j′ are the current updated solution as a constant approximation, which is the image

updated from the data-fidelity term.
Finally, the above L1 norm minimization problems can be solved with the

following soft-thresholding.

S∇
(
x(n, j′)

j

)
= x(n, j′)

j −


∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,

S∇
(
x(n)j′

)
= x(n)j′ +


∇, τ > ∇
−∇, τ < −∇
τTV (otherwise)

,(
τTV =

(
x(n, j′)

j − x(n)j′

)
/2, ∇ = α(n)βtω j j′

)
,

(22)

where S∇
(
x(n, j′)

j

)
and S∇

(
x(n)j′

)
are soft-thresholding functions. By dividing a subfunction and updating

for each variable as shown in Equations (20)–(22), the solution (S∇
(
x(n, j′)

j

)
, S∇

(
x(n)j′

)
) corresponding to

otherwise becomes the average of x(n, j′)
j and x(n)j′ ((x(n, j′)

j + x(n)j′ )/2). Compared to Equation (19), this
weak average that occurs otherwise can reduce the error in convergence and improve the stability of
convergence.
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[Update the TKV term] We update the pixel j, jk, j′, j′k simultaneously. For updating the pixel j,

jk, j′, j′k, we further divide a subfunction uTKV
g

(
→
x
)

into four subfunctions as below

uTKV
(
→
x
)
=

β(1−t)
8

8∑
k=1

G∑
g=1

uTKV
g

(
→
x
)
=

β(1−t)
8

8∑
k=1

G∑
g=1

[
ω j j′

∥∥∥(→x j −
→
x jk

)
−

(
→
x j′ −

→
x j′k

)∥∥∥1

1

]
g

=
β(1−t)

8

8∑
k=1

G∑
g=1


ω j j′

∥∥∥∥∥∥ (
→
x j−

→
x jk

)−(
→
x j′−

→
x j′k

)

4

∥∥∥∥∥∥
1

1


x j

+

ω j j′

∥∥∥∥∥∥ (
→
x j−

→
x jk

)−(
→
x j′−

→
x j′k

)

4

∥∥∥∥∥∥
1

1


x jk

+

ω j j′

∥∥∥∥∥∥ (
→
x j−

→
x jk

)−(
→
x j′−

→
x j′k

)

4

∥∥∥∥∥∥
1

1


x j′

+

ω j j′

∥∥∥∥∥∥ (
→
x j−

→
x jk

)−(
→
x j′−

→
x j′k

)

4

∥∥∥∥∥∥
1

1


x j′k


g

=
β(1−t)

8

8∑
k=1

G∑
g=1

[
q
(
→
x j

)
+ q

(
→
x jk

)
+ q

(
→
x j′

)
+ q

(
→
x j′k

)]
g
,

(23)

where q
(
→
x j

)
= []x j

, q
(
→
x jk

)
= []x jk

, q
(
→
x j′

)
= []x j′

, q
(
→
x j′k

)
= []x j′k

.

The proximity operator for each subfunction (proxα(n)q

(
→
x
(n, j′,k)
j

)
, proxα(n)q

(
→
x
(n)
jk

)
, proxα(n)q

(
→
x
(n,k)
j′

)
,

proxα(n)q

(
→
x
(n)
j′k

)
) can be defined as follows

argmin
→
x j

(ω j j′

∥∥∥∥∥∥∥→x j −
3
→
x
(n, j′ ,k)
j +

→
x
(n)
jk

+
→
x
(n,k)
j′ −

→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖
→
x j −

→
x
(n, j′,k)
j ‖

2
2),

argmin
→
x jk

(ω j j′

∥∥∥∥∥∥∥−→x jk +

→
x
(n, j′ ,k)
j +3

→
x
(n)
jk
−
→
x
(n,k)
j′ +

→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖
→
x jk −

→
x
(n)
jk ‖

2
2),

argmin
→
x j′

(ω j j′

∥∥∥∥∥∥∥−→x j′ +

→
x
(n, j′ ,k)
j −

→
x
(n)
jk

+3
→
x
(n,k)
j′ +

→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖
→
x j′ −

→
x
(n,k)
j′ ‖

2
2),

argmin
→
x j′k

(ω j j′

∥∥∥∥∥∥∥→x j′k
−

−
→
x
(n, j′ ,k)
j +

→
x
(n)
jk

+
→
x
(n,k)
j′ +3

→
x
(n)
j′k

4

∥∥∥∥∥∥∥
1

1

+ 1
2α(n)
‖
→
x j′k
−
→
x
(n)
j′k
‖

2
2),

(24)

where
→
x
(n, j′,k)
j ,

→
x
(n)
jk ,

→
x
(n,k)
j′ ,

→
x
(n)
j′k

are the current updated solution as a constant approximation, which
is the image updated from the TV term.
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Finally, the above L1 norm minimization problems can be solved with the
following soft-thresholding.

S∇
(
x(n, j′,k)

j

)
= x(n, j′,k)

j −


∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,

S∇
(
x(n)jk

)
= x(n)jk

+


∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,

S∇
(
x(n,k)

j′

)
= x(n,k)

j′ +


∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,

S∇
(
x(n)j′k

)
= x(n)j′k

−


∇, τ > ∇
−∇, τ < −∇
τTKV (otherwise)

,(
τTKV =

(
x(n, j′,k)

j − x(n)jk
− x(n,k)

j′ + x(n)j′k

)
/4, ∇ = α(n)β(1− t)ω j j′/8

)
,

(25)

where S∇
(
x(n, j′,k)

j

)
, S∇

(
x(n)jk

)
, S∇

(
x(n,k)

j′

)
, S∇

(
x(n)j′k

)
are soft-thresholding function.

2.3.3. The Weight

In this paper, we used the weight of nonlocal means filter [25] as

ω j j′ =
exp(−max(‖B(x j) − B(x j′)‖

2
2 − 2σ2, 0)/h2)∑

j′∈Ω exp(−max(‖B(x j) − B(x j′)‖
2
2 − 2σ2, 0)/h2)

, (26)

where ‖B(x j) − B(x j′)‖
2
2 means the average Euclidean distance between patches (B

(
x j

)
, B

(
x j′

)
) centered

in an interest pixel x j and a distant pixel x j′ .
Theoretically, the weight must be a fixed value as a hyper-parameter of the regularization term.

However, there have been previous studies showing that reweighting at each iteration contributes to
better image quality [2,9]. Additionally, the larger the size of weight (Ω), the better the performance
of removing artifacts or noise. As long as the computer is capable of processing, we recommend
increasing the size of the weight. However, if the size of the weight is too large, the calculation cost
will increase enormously as compared with the image quality improvement. Therefore, it is important
to decide the size of the weight while paying attention to cost performance considering the level of
artifacts or noise. Figure 3 shows the cost performance of changing the size of weight.
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Next, we describe the proper estimation of the weight. If the ground truth image is known, the
weight can be calculated from the ground truth image. However, in the image reconstruction, only the
projection data is given and the reconstructed image and the weight must be estimated simultaneously
from the projection data. Therefore, we construct the optimization by alternating the estimation of the
reconstructed image and the weight.

We show the reweighting process of optimization including the data-fidelity term and
regularization term:

Sensors 2020, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors 

Algorithm 1: Proximal splitting with Passty’s framework 
Give an initial vector �⃗�( , ). Execute the following. 

⎣⎢⎢
⎡For 𝑛 = 0, 1, 2, …,   (𝑛 is the main iteration)     For 𝑖 = 1, 2, … , 𝐼       �⃗�( , ) = 𝑝𝑟𝑜𝑥 ( ) �⃗�( , )�⃗�( , ) = �⃗�( , )   

⎩⎪⎪⎪
⎨⎪⎪
⎪⎧𝐹𝑜𝑟 𝑖 = 1,2,3, … , 𝐼 (𝐼 is the number of projection data) 1) Update the data term by Equation (15): �⃗�( , ) = 𝑝𝑟𝑜𝑥 ( ) �⃗�( , ) ;𝑖𝑓 (𝑖 𝑚𝑜𝑑 𝑆) == 02) Calculate the weight 𝜔  from �⃗�( , );3) Update the TV term by Equation (22);4) Update the TKV term by Equation (25);�⃗�( , ) ← �⃗�( , ) 

(27)(27)

where the weight is calculated once as common to nonlocal TV and TKV and the weight is calculated
from the image updated from the data-fidelity term. The span parameter S determines how often
regularization is performed in the main iteration n. If S is small, many regularization updates
are performed in one iteration. Theoretically, the smaller the S, the more accurate the convergence.
However, since nonlocal TV has a large amount of computational complexity, it is desirable to determine
an appropriate value of S.

Figure 4 shows how the size of weight (Ω) influences image quality and computation time.Sensors 2020, 20, x FOR PEER REVIEW 10 of 17 
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3. Experimental Results

We performed simulation studies using a brain CT image. The reason behind using the brain
image is as follows. In the brain CT imaging, the reconstructed images are shown with a compressed
gray scale range much larger compared to the other CT imaging like chest imaging or abdominal
CT imaging. Therefore, preserving smooth intensity changes and avoiding the staircase artifacts are
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much important in the brain case. Additionally, simulation studies were performed for both the
sparse-view CT (the number of projection data was 64) and the low-dose CT (the number of photons was
3× 106). The reconstructed image consisted of 512× 512 pixels, where the pixel size was 0.0585 (cm2).
We compressed the range showing the reconstructed images to [7.82, 62.30] HU, where this contrast
range was determined based on the contrast range used in clinical brain CT imaging. To evaluate
image quality, standard RMSE, PSNR, SSIM values were used as metrics. The number of iterations in
image reconstructions was 20 for nonlocal TV, TKV, and TV+TKV, which was determined by the fact
that changes in image were small enough with this iteration number. We also showed the reconstructed
images by the standard Filtered Back-Projection (FBP), and differences in image quality by changing
values of the hyper-parameter t (i.e., the trade-off parameter between nonlocal TV (first derivative) term
and the TKV (second derivative) term). The ground truth image and the FBP reconstructions are shown
in Figure 5. The reconstructed images in the case of sparse-view CT are shown in Figure 6. In Figure 7,
we show the used brain CT image with three display gray-scale ranges, from which we observe that
the staircase artifacts are severe when the range of display gray-scale range is small. The reconstructed
images in the case of low-dose CT are shown in Figure 8. In Figures 9–11, we show convergence
properties of our iterative algorithm based on Passty’s proximal splitting framework. In Figures 12
and 13, to show the effect of acceleration by Passty’s proximal splitting, we incorporated the TV+TKV
term into SIRT (simultaneous iterative reconstruction technique) which is a non-row-action method (a
type of the standard iterative algorithm) and compared this with row-action based on our proposed
nonlocal TV+TKV. From these figures, it can be observed that our algorithm converged very quickly.
It is well-known that the standard iterative algorithms such as Chambolle–Pock [26] and proximal
gradient algorithms require several hundreds of iteration up to the convergence. The benefit of our
iterative algorithm mainly originates from the fact that our algorithm is of row-action type.Sensors 2020, 20, x FOR PEER REVIEW 11 of 17 
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Figure 7. Demonstration of appearance of the staircase artifacts with various gray-scale ranges in
displaying the brain CT image. (a) Window Width [−346.27, 416.40] HU, (b) Window Width [−128.36,
198.49] HU, (c) Window Width [7.82, 62.30] HU.
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Figure 8. The reconstructed images of low-dose CT (256 projection data and the number of photon
counts 3×106). (a) Ground truth, (b) Nonlocal TV (t = 1.0), (c) Nonlocal TKV (t = 0.0), (d) Nonlocal
TV+TKV (t = 0.3) were compared. All images are displayed with the same window of [7.82, 62.30] HU.
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Figure 13. The reconstructed images of low-dose CT (256 projection data and the number of photon
counts 3× 106). SIRT nonlocal TV+TKV and row-action accelerated nonlocal TV+TKV (our proposed
method) were compared. All images are displayed with the same window of [7.82, 62.30] HU.

4. Discussion

The experimental results Table 1 showed that the reconstructed image by nonlocal TV+TKV was
closest to the ground truth image, with good RMSE, PSNR and SSIM values. Furthermore, no isolated
points caused by outliers of the soft-thresholding, which often appear in the TV-class reconstruction
methods, were visible. In the sparse-view CT, the result of nonlocal TV (t = 1.0) using only the
first-order derivative was of very high-contrast, but the staircase artifacts appeared in the smooth
intensity changes. In other words, the region with small intensity changes was over-smoother by the
regularization as if the oil-painting. In the low-dose CT, the result of nonlocal TV showed isolated
points in the region closer to the center of the image. In both the sparse-view CT and the low-dose CT,
nonlocal TKV (t = 0.0) using only the second-order derivative was able to preserve fine soft tissues
well including textures and low-contrast objects, however, it suffered from the blurring in the edge
parts. This is because, by using a large weight in the second-order derivative, the threshold value
(τTKV) of the soft-thresholding operation becomes very small (i.e., τTV � τTKV).

Table 1. Summary of each method.

Nonlocal TV Nonlocal TKV Nonlocal TV + TKV

Convergence Good Not bad Good

High contrast Yes No Yes

Smooth intensity change No Yes Yes

5. Conclusions

In this paper, we proposed a new concept in nonlocal TV, in which the first and second order
derivatives are combined in the regularization term. By combining the two terms, we were able to
compensate for each other’s weaknesses, i.e., staircase artifact and loss in smooth intensity changes in
the first derivative and image blurring in the second derivative. Furthermore, we proposed a specially
designed proximal splitting algorithm that is based on Passty’s framework. The key idea is to split the
original cost function to minimize as finely as possible to accelerate convergence and simplify necessary
computations. This allows as to make the final iterative algorithm into a form of row-action type, which
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is known to converge very quickly compared to other standards such as Chambolle–Pock algorithm
and proximal gradient. In our experiments, we experimentally confirmed that the proposed algorithm
converges within 20 iterations even for the case of brain CT imaging in which the requirement of image
contrast is very severe. The simulation results with the brain CT image were performed for both the
sparse-view CT and the low-dose CT. We showed that our proposed algorithm works well in practice.

As future work, our proposed nonlocal TV can be compared with the latest technology e.g., deep
leaning [27,28] or other applied methods such as low-rank minimization [29,30].

Recently, image reconstruction methods using deep learning have been actively investigated. Our
proposed method can be compared with existing deep leaning [27,28] as advanced compressed sensing.
Additionally, our proposed method can be applied to low-rank TV, which can improve image quality
by combing low-rank minimization and Total Variation [29,30].
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